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Abstract
In recent years, studying degenerate versions of various special polynomials and
numbers has attracted many mathematicians. Here we introduce degenerate type 2
Bernoulli polynomials, fully degenerate type 2 Bernoulli polynomials, and degenerate
type 2 Euler polynomials, and their corresponding numbers, as degenerate and type
2 versions of Bernoulli and Euler numbers. Regarding those polynomials and
numbers, we derive some identities, distribution relations, Witt type formulas, and
analogues for the Bernoulli interpretation of powers of the firstm positive integers in
terms of Bernoulli polynomials. The present study was done by using the bosonic and
fermionic p-adic integrals on Zp.
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1 Introduction
Studies on degenerate versions of some special polynomials and numbers began with the
papers by Carlitz in [3, 4]. In recent years, studying degenerate versions of various special
polynomials and numbers has regained interest of many mathematicians. The research
has been carried out by several different methods like generating functions, combina-
torial approaches, umbral calculus, p-adic analysis, and differential equations. This idea
of studying degenerate versions of some special polynomials and numbers turned out to
be very fruitful so as to introduce degenerate Laplace transforms and degenerate gamma
functions (see [11]).

In this paper, we introduce degenerate type 2 Bernoulli polynomials, fully degenerate
type 2 Bernoulli polynomials, and degenerate type 2 Euler polynomials, and their corre-
sponding numbers, as degenerate and type 2 versions of Bernoulli and Euler numbers.
We investigate those polynomials and numbers by means of bosonic and fermionic p-adic
integrals and derive some identities, distribution relations, Witt type formulas, and ana-
logues for the Bernoulli interpretation of powers of the first m positive integers in terms
of Bernoulli polynomials. In more detail, our main results are as follows.
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As to the analogues for the Bernoulli interpretation of power sums, in Theorem 2.6
we express powers of the first m odd integers in terms of type 2 Bernoulli polynomials
bn(x), in Theorem 2.11 alternating sum of powers of the first m odd integers in terms of
type 2 Euler polynomials En(x), in Theorem 2.9 sum of the values of the generalized falling
factorials at the first m odd positive integers in terms of degenerate Carlitz type 2 Bernoulli
polynomials bn,λ(x), and in Theorem 2.17 alternating sum of the values of the generalized
falling factorials at the first m odd positive integers in terms of degenerate type 2 Euler
polynomials En,λ(x). Witt type formulas are obtained for bn(x), Bn,λ(x), En(x), and En,λ(x)
respectively in Lemma 2.1, Theorem 2.7, Lemma 2.10, and Theorem 2.16. Distribution
relations are derived for bn(x) and En(x) respectively in Theorem 2.3 and Theorem 2.13.

In the rest of this section, we will introduce type 2 Bernoulli and Euler numbers, re-
call the bosonic and fermionic p-adic integrals, and mention the degenerate exponential
function.

Let p be a fixed odd prime number. Throughout this paper, Zp, Qp, and Cp will denote
the ring of p-adic integers, the field of p-adic rational numbers, and the completion of an
algebraic closure of Qp, respectively. The p-adic norm | · |p is normalized by |p|p = 1

p .
It is well known that the ordinary Bernoulli polynomials are defined by

t
et – 1

ext =
∞∑

n=0

Bn(x)
tn

n!
(see [2, 5, 14, 15, 17]). (1)

When x = 0, Bn = Bn(0) are called the Bernoulli numbers.
Also, the type 2 Bernoulli polynomials are given by

t
2

csch
t
2

ext =
t

e t
2 – e– t

2
ext =

∞∑

n=0

bn(x)
tn

n!
. (2)

For x = 0, bn = bn(0) are called the type 2 Bernoulli numbers so that they are given by

t
2

csch
t
2

=
t

e t
2 – e– t

2
=

∞∑

n=0

bn
tn

n!
. (3)

In fact, the type 2 Bernoulli polynomials and numbers are slightly differently defined in
[12].

The ordinary Euler polynomials are defined by

2
et + 1

ext =
∞∑

n=0

E∗
n(x)

tn

n!
(see [1, 6, 9, 10]). (4)

When x = 0, E∗
n = E∗

n(0) are called the Euler numbers.
Now, we define the type 2 Euler polynomials by

2
e t

2 + e– t
2

ext =
∞∑

n=0

En(x)
tn

n!
(see [6, 12, 13]). (5)
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For x = 0, En = En(0) are called the type 2 Euler numbers so that they are given by

2
e t

2 + e– t
2

= sech
t
2

=
∞∑

n=0

En
tn

n!
. (6)

Again, the type 2 Euler polynomials and numbers are slightly differently defined in [12].
From (4) and (6), we note that

E∗
n

(
1
2

)
= En (n ≥ 0), (see [12]).

Let f be a uniformly differentiable function on Zp. The bosonic (also called Volkenborn)
p-adic integral on Zp is defined by

I1(f ) =
∫

Zp

f (x) dμ1(x) = lim
N→∞

1
pN

pN –1∑

x=0

f (x) (see [8–10]). (7)

From (7), we note that

I1(f1) – I1(f ) = f ′(0), (8)

where f1(x) = f (x + 1) and f ′(0) = df
dx |x=0.

The fermionic p-adic integral on Zp was introduced by Kim as

I–1(f ) =
∫

Zp

f (x) dμ–1(x) = lim
N→∞

pN –1∑

x=0

(–1)xf (x) (see [9, 10]). (9)

By (9), we easily get

I–1(f1) + I–1(f ) = 2f (0). (10)

For λ ∈R, the degenerate exponential function is defined by

ex
λ(t) = (1 + λt)

x
λ (see [3, 4, 6, 11–13]). (11)

Note that limλ→0 ex
λ(t) = ext . From (11) we have

ex
λ(t) = (1 + λt)

x
λ =

∞∑

k=0

(x)k,λ
tk

k!
, (12)

where (x)k,λ = x(x – λ)(x – 2λ) · · · (x – (k – 1)λ), (k ≥ 1), and (x)0,λ = 1.

2 Some identities of special polynomials arising from p-adic integrals on Zp

From (8), we note that

∫

Zp

e(x+y+ 1
2 )t dμ1(y) =

t
e t

2 – e– t
2

ext
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=
t
2

csch
t
2

ext

=
∞∑

n=0

bn(x)
tn

n!
. (13)

On the other hand, we have

∫

Zp

e(x+y+ 1
2 )t dμ1(x) =

∞∑

n=0

∫

Zp

(
x + y +

1
2

)n

dμ1(x)
tn

n!
. (14)

Therefore, by (13) and (14), we obtain the following lemma.

Lemma 2.1 For n ≥ 0, we have

∫

Zp

(
x + y +

1
2

)n

dμ1(x) = bn(x).

By (7), we get

∫

Zp

f (x) dμ1(x) = lim
N→∞

1
pN

pN –1∑

x=0

f (x) = lim
N→∞

1
dpN

dpN –1∑

x=0

f (x)

=
1
d

d–1∑

a=0

lim
N→∞

1
pN

pN –1∑

x=0

f (a + xd) =
1
d

d–1∑

a=0

∫

Zp

f (a + xd) dμ1(x), (15)

where d is a positive integer.
Therefore, by (15), we obtain the following lemma.

Lemma 2.2 For d ∈N, we have

∫

Zp

f (x) dμ1(x) =
1
d

d–1∑

a=0

∫

Zp

f (a + xd) dμ1(x).

Applying Lemma 2.2 to f (x) = e(x+y+1/2)t , we have

∫

Zp

e(x+y+1/2)t dμ1(y) =
1
d

d–1∑

a=0

∫

Zp

e(x+a+dy+1/2)t dμ1(y)

=
1
d

d–1∑

a=0

∫

Zp

ed(y+ 1
d (x+a+ 1–d

2 )+1/2)t dμ1(y). (16)

Thus, by (16), we get

∞∑

n=0

∫

Zp

(
x + y +

1
2

)n

dμ1(y)
tn

n!

=
∞∑

n=0

dn–1
d–1∑

a=0

∫

Zp

(
y +

1
d

(
a + x +

1 – d
2

)
+ 1/2

)n

dμ1(y)
tn

n!
. (17)
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By comparing the coefficients on both sides of (17), we get

∫

Zp

(
x + y +

1
2

)n

dμ1(y) = dn–1
d–1∑

a=0

∫

Zp

(
y +

1
d

(
a + x +

1 – d
2

)
+ 1/2

)n

dμ1(y). (18)

By Lemma 2.1 and (18), we get

bn(x) = dn–1
d–1∑

a=0

bn

(x + a + 1
2 (1 – d)

d

)
(n ≥ 0), (19)

where d is a positive integer.

Theorem 2.3 For d ∈N and n ∈ N∪ {0}, we have

bn(x) = dn–1
d–1∑

a=0

bn

(x + a + 1
2 (1 – d)

d

)
.

For r ∈N, we consider the multivariate p-adic integral on Zp as follows:

∫

Zp

· · ·
∫

Zp

e(x1+x2+···+xr+r/2)t dμ1(x1) dμ1(x2) · · ·dμ1(xr)

=
(

t
et/2 – e–t/2

)r

=
(

t
2

csch
t
2

)r

. (20)

Now, we define the type 2 Bernoulli numbers of order r by

(
t

et/2 – e–t/2

)r

=
(

t
2

csch
t
2

)r

=
∞∑

n=0

b(r)
n

tn

n!
. (21)

By (20) and (21), we see that

∫

Zp

· · ·
∫

Zp

(
x1 + x2 + · · · + xr +

r
2

)n

dμ1(x1) · · ·dμ1(xr) = b(r)
n (n ≥ 0). (22)

On the other hand,

∫

Zp

· · ·
∫

Zp

(
x1 + x2 + · · · + xr +

r
2

)n

dμ1(x1) · · ·dμ1(xr)

=
∑

i1+i2+···+ir=n
i1,i2,...,ir≥0

(
n

i1, i2, . . . , ir

)∫

Zp

(
x1 +

1
2

)i1
dμ1(x1) · · ·

∫

Zp

(
xr +

1
2

)ir
dμ1(xr)

=
∑

i1+i2+···+ir=n
i1,i2,...,ir≥0

(
n

i1, i2, . . . , ir

)
bi1 bi2 · · ·bir . (23)

Therefore, by (22) and (23), we obtain the following theorem.
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Theorem 2.4 For n ≥ 0, r ∈N, we have

b(r)
n =

∑

i1+i2+···+ir=n
i1,i2,...,ir≥0

(
n

i1, i2, . . . , ir

)
bi1 bi2 · · ·bir .

From (21), we have

tr =
∞∑

l=0

b(r)
l

tl

l!
(
e

t
2 – e– t

2
)r =

∞∑

l=0

b(r)
l

tl

l!
r!

∞∑

m=r
T(m, r)

tm

m!

=
∞∑

n=r
r!

n∑

m=r

(
n
m

)
T(m, r)b(r)

n–m
tn

n!
, (24)

where T(m, r) are the central factorial numbers of the second kind.
Therefore, by (24), we obtain the following theorem.

Theorem 2.5 For n, r ∈ N∪ {0} with n ≥ r, we have

n∑

m=r

(
n
m

)
T(m, r)b(r)

n–m =

⎧
⎨

⎩
1 if n = r,

0 if n > r,

where T(m, r) is the central factorial number of the second kind.

From Lemma 2.1, we note that

bn(x) =
∫

Zp

(
y + x +

1
2

)n

dμ1(y) =
n∑

l=0

(
n
l

)
xn–l

∫

Zp

(
y +

1
2

)l

dμ1(y)

=
n∑

l=0

(
n
l

)
xn–lbl. (25)

By (25), we get

bn(x) =
n∑

l=0

(
n
l

)
xn–lbl. (26)

Now, we observe that

n–1∑

k=0

e(k+ 1
2 )t = e

1
2 t

n–1∑

k=0

ekt =
1

e t
2 – e– t

2

(
ent – 1

)

=
(

t
e t

2 – e– t
2

ent –
t

e t
2 – e– t

2

)
1
t

=
1
t

∞∑

m=0

(
bm(n) – bm

) tm

m!
=

∞∑

m=0

(bm+1(n) – bm+1)
m + 1

tm

m!
. (27)
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On the other hand,

n–1∑

k=0

e(k+ 1
2 )t =

∞∑

m=0

n–1∑

k=0

(
k +

1
2

)m tm

m!
. (28)

By (27) and (28), we get

n–1∑

k=0

(2k + 1)m = 2m
(

bm+1(n) – bm+1

m + 1

)
. (29)

Therefore, by (29), and interchanging m and n, we obtain the following theorem.

Theorem 2.6 For m ∈N and n ∈N∪ {0}, we have

1n + 3n + · · · + (2m – 1)n = 2n
(

bn+1(m) – bn+1

n + 1

)
.

We define the fully degenerate type 2 Bernoulli polynomials by

1
λ

(
log(1 + λt)

e1/2
λ (t) – e–1/2

λ (t)

)
ex
λ(t) =

∞∑

n=0

Bn,λ(x)
tn

n!
. (30)

When x = 0, Bn,λ = Bn,λ(0) are called the fully degenerate type 2 Bernoulli numbers.
We note that

∫

Zp

ex+y+1/2
λ (t) dμ1(y) =

log(1 + λt)
λ

· 1
e1/2
λ (t) – e–1/2

λ (t)
ex
λ(t)

=
∞∑

n=0

Bn,λ(x)
tn

n!
. (31)

Thus, by (31) and (12) we obtain

∫

Zp

(
x + y +

1
2

)

n,λ
dμ1(y) = Bn,λ(x). (32)

As is known, the degenerate Stirling numbers of the first kind are defined by

(x)n,λ =
n∑

l=0

S1,λ(n, l)xl (n ≥ 0). (33)

By (32), (33), and Lemma 2.1, we have

Bn,λ(x) =
n∑

l=0

S1,λ(n, l)bl(x). (34)

Also, from (12) and (31) we observe that

∫

Zp

ex+y+1/2
λ (t) dμ1(y) = ex

λ(t)
∫

Zp

ey+1/2
λ (t) dμ1(y)
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=
∞∑

l=0

(x)l,λ
tl

l!

∞∑

m=0

Bm,λ
tm

m!

=
∞∑

n=0

n∑

m=0

(
n
m

)
Bm,λ(x)n–m,λ

tn

n!
. (35)

Therefore, from (32), (34), and (35), we have the following theorem.

Theorem 2.7 For n ≥ 0, we have

Bn,λ(x) =
∫

Zp

(
x + y +

1
2

)

n,λ
dμ1(y) =

n∑

l=0

S1,λ(n, l)bl(x) =
n∑

m=0

(
n
m

)
Bm,λ(x)n–m,λ.

As is known, the degenerate Carlitz type 2 Bernoulli polynomials are defined by

t

e
1
2
λ (t) – e– 1

2
λ (t)

ex
λ(t) =

∞∑

n=0

bn,λ(x)
tn

n!
. (36)

When x = 0, bn,λ = bn,λ(0), (n ≥ 0) are called the degenerate Carlitz type 2 Bernoulli num-
bers.

It is well known that the Daehee numbers, denoted by dn, are defined by

log(1 + t)
t

=
∞∑

n=0

dn
tn

n!
(see [7, 16]). (37)

Now, from (31), (36), and (37), we observe that

∞∑

n=0

Bn,λ
tn

n!
=

∫

Zp

ex+1/2
λ (t) dμ1(x) =

log(1 + λt)
λt

t
e1/2
λ (t) – e–1/2

λ (t)

=
∞∑

l=0

λl dl
tl

l!

∞∑

m=0

bm,λ
tm

m!

=
∞∑

n=0

n∑

l=0

(
n
l

)
λl dlbn–l,λ

tn

n!
. (38)

Therefore, by (38) and (12), we obtain the following theorem.

Theorem 2.8 For n ≥ 0, we have

Bn,λ =
∫

Zp

(
x +

1
2

)

n,λ
dμ1(x) =

n∑

l=0

(
n
l

)
λl dlbn–l,λ.

For n ∈N, by (8), we easily get

∫

Zp

f (x + m) dμ1(x) =
m–1∑

l=0

f ′(x) +
∫

Zp

f (x) dμ1(x). (39)
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By applying (39) to f (x) = ex+ 1
2

λ (t), we get

1
e1/2
λ (t) – e–1/2

λ (t)
em
λ (t) –

1
e1/2
λ (t) – e–1/2

λ (t)
= e1/2

λ (t)
m–1∑

l=0

el
λ(t). (40)

From (40), we derive the following equation:

1
t

∞∑

n=0

(
bn,λ(m) – bn,λ

) tn

n!
=

∞∑

n=0

(m–1∑

l=0

(
l +

1
2

)

n,λ

)
tn

n!
. (41)

By (41), we get

∞∑

n=0

(
bn+1,λ(m) – bn+1,λ

n + 1

)
tn

n!
=

∞∑

n=0

(
1
2n

m–1∑

l=0

(2l + 1)n,2λ

)
tn

n!
. (42)

Therefore, by (42), we obtain the following theorem.

Theorem 2.9 For n ≥ 0, m ∈N, we have

2n

n + 1
(
bn+1,λ(m) – bn+1,λ

)
=

m–1∑

l=0

(2l + 1)n,2λ.

From (10), we observe that

∫

Zp

et(x+y+ 1
2 ) dμ–1(y) =

2
et/2 + e–t/2 ext = sech

t
2

ext =
∞∑

n=0

En(x)
tn

n!
. (43)

Thus from (43) and (12), we have the following lemma.

Lemma 2.10 For n ≥ 0, we have

∫

Zp

(
x + y +

1
2

)n

dμ–1(y) = En(x).

From Lemma 2.10, we have

En(x) =
∫

Zp

(
x + y +

1
2

)n

dμ–1(y) =
n∑

l=0

(
n
l

)
xn–l

∫

Zp

(
y +

1
2

)l

dμ–1(y)

=
n∑

l=0

(
n
l

)
xn–lEl (n ≥ 0). (44)

Let d ∈N with d ≡ 1 (mod 2). Then, by (10), we get

∫

Zp

f (x + d) dμ–1(x) +
∫

Zp

f (x) dμ–1(x) = 2
d–1∑

l=0

(–1)lf (l). (45)
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Let us take f (x) = e(x+1/2)t . Then, by (45), we get

emt
∫

Zp

e(x+1/2)t dμ–1(x) +
∫

Zp

e(x+1/2)t dμ–1(x) = 2
m–1∑

l=0

(–1)le(l+1/2)t . (46)

From (46), we have

2
et/2 + e–t/2 emt +

2
et/2 + e–t/2 = 2

m–1∑

l=0

(–1)le(l+1/2)t . (47)

By (5) and (47), we get

∞∑

n=0

(
En(m) + En

) tn

n!
=

∞∑

n=0

(
2

m–1∑

l=0

(–1)l
(

l +
1
2

)n
)

tn

n!
. (48)

Therefore, by (48), we obtain the following theorem.

Theorem 2.11 For m ∈N with m ≡ 1 (mod 2), n ∈N∪ {0}, we have

2n–1(En(m) + En
)

=
m–1∑

l=0

(–1)l(2l + 1)n.

The following lemma can be easily shown.

Lemma 2.12

∫

Zp

f (x) dμ–1(x) =
d–1∑

a=0

(–1)a
∫

Zp

f (a + dx) dμ–1(x),

where d ∈N with d ≡ 1 (mod 2).
Let us apply Lemma 2.12 to f (y) = (x + y + 1/2)n. Then we have

∫

Zp

(
x + y +

1
2

)n

dμ–1(y) =
d–1∑

a=0

(–1)a
∫

Zp

(
x + a + dy +

1
2

)n

dμ–1(y)

= dn
d–1∑

a=0

(–1)a
∫

Zp

(x + a + 1
2 (1 – d)

d
+ y +

1
2

)n

dμ–1(y). (49)

Therefore, by (49), we have the following theorem.

Theorem 2.13 For d ∈N with d ≡ 1 (mod 2), n ∈N∪ {0}, we have

En(x) = dn
d–1∑

a=0

(–1)aEn

(x + a + 1
2 (1 – d)

d

)
.

For r ∈N, let us consider the following fermionic p-adic integral on Zp:

∫

Zp

∫

Zp

· · ·
∫

Zp

e(x1+x2+···+xr+ r
2 )t dμ–1(x1) dμ–1(x2) · · ·dμ–1(xr)
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=
(

2
e t

2 + e– t
2

)r

=
(

sech
t
2

)r

. (50)

Let us define the type 2 Euler numbers of order r by

(
2

e t
2 + e– t

2

)r

=
(

sech
t
2

)r

=
∞∑

n=0

E(r)
n

tn

n!
. (51)

From (50) and (51), we have

∫

Zp

∫

Zp

· · ·
∫

Zp

(
x1 + x2 + · · · + xr +

r
2

)n

dμ–1(x1) dμ–1(x2) · · ·dμ–1(xr) = E(r)
n

(n ≥ 0). (52)

On the other hand,

∫

Zp

∫

Zp

· · ·
∫

Zp

(
x1 + x2 + · · · + xr +

r
2

)n

dμ–1(x1) dμ–1(x2) · · ·dμ–1(xr)

=
∑

i1+i2+···+ir=n
i1,i2,...,ir≥0

(
n

i1, . . . , ir

)∫

Zp

(
x1 +

1
2

)i1
dμ–1(x1) · · ·

∫

Zp

(
xr +

1
2

)ir
dμ1(xr)

=
∑

i1+i2+···+ir=n
i1,i2,...,ir≥0

(
n

i1, . . . , ir

)
Ei1 Ei2 · · ·Eir . (53)

Therefore, by (52) and (53), we obtain the following theorem.

Theorem 2.14 For n ≥ 0, we have

E(r)
n =

∑

i1+i2+···+ir=n
i1,i2,...,ir≥0

(
n

i1, . . . , ir

)
Ei1 Ei2 · · ·Eir .

From (51), we have

2r =
∞∑

l=0

E(r)
l

tl

l!
(
e

t
2 + e– t

2
)r

=
∞∑

l=0

E(r)
l

tl

l!

r∑

j=0

(
r
j

)
e(j– r

2 )t

=
∞∑

l=0

E(r)
l

tl

l!

∞∑

m=0

r∑

j=0

(
r
j

)(
j –

r
2

)m tm

m!

=
∞∑

n=0

n∑

m=0

r∑

j=0

(
r
j

)(
n
m

)(
j –

r
2

)m

E(r)
n–m

tn

n!
. (54)

Comparing the coefficients on both sides of (54), we obtain the following theorem.
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Theorem 2.15 For n ≥ 0, we have

n∑

m=0

r∑

j=0

(
r
j

)(
n
m

)(
j –

r
2

)m

E(r)
n–m =

⎧
⎨

⎩
2r if n = 0,

0 if n > 0.

We define the degenerate type 2 Euler polynomials by

2
e1/2
λ (t) + e–1/2

λ (t)
ex
λ(t) =

∞∑

n=0

En,λ(x)
tn

n!
. (55)

When x = 0, En,λ = En,λ(0) are called the degenerate type 2 Euler numbers.
From (10), we can derive the following equation:

∫

Zp

ex+y+ 1
2

λ (t) dμ–1(y) =
2

e1/2
λ (t) + e–1/2

λ (t)
ex
λ(t)

=
∞∑

n=0

En,λ(x)
tn

n!
. (56)

By (56) and (12), we get

En,λ(x) =
∫

Zp

(
x + y +

1
2

)

n,λ
dμ–1(y) (n ≥ 0). (57)

By (57), (33), and Lemma 2.10, we get

En,λ(x) =
n∑

l=0

S1,λ(n, l)El(x). (58)

Also, from (12) and (56), we observe that
∫

Zp

ex+y+1/2
λ (t) dμ–1(y) = ex

λ(t)
∫

Zp

ey+1/2
λ (t) dμ–1(y)

=
∞∑

l=0

(x)l,λ
tl

l!

∞∑

m=0

Em,λ
tm

m!

=
∞∑

n=0

n∑

m=0

(
n
m

)
Em,λ(x)n–m,λ

tn

n!
. (59)

Therefore, by (57)–(59), we obtain the following theorem.

Theorem 2.16 For n ≥ 0, we have

En,λ(x) =
∫

Zp

(
x + y +

1
2

)

n,λ
dμ–1(y) =

n∑

l=0

S1,λ(n, l)El(x) =
n∑

m=0

(
n
m

)
Em,λ(x)n–m,λ.

For m ∈N with m ≡ 1 (mod 2), from (45) we have

∫

Zp

em+x+1/2
λ (t) dμ–1(x) +

∫

Zp

ex+1/2
λ (t) dμ–1(x) = 2

m–1∑

l=0

(–1)lel+1/2
λ (t). (60)
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From (60), we have

∞∑

n=0

(
En,λ(m) + En,λ

) tn

n!
= 2

∞∑

n=0

m–1∑

l=0

(–1)l
(

l +
1
2

)

n,λ

tn

n!

=
∞∑

n=0

(
1
2

)n–1 m–1∑

l=0

(–1)l(2l + 1)n,2λ

tn

n!
. (61)

Therefore, by (61), we obtain the following theorem.

Theorem 2.17 For n ≥ 0, m ∈N with m ≡ 1 (mod 2), we have

2n–1(En,λ(m) + En,λ
)

=
m–1∑

l=0

(–1)l(2l + 1)n,2λ.

For r ∈N, we have
∫

Zp

· · ·
∫

Zp

ex1+···+xr+r/2
λ (t) dμ–1(x1) dμ–1(x2) · · ·dμ–1(xr)

=
(

2
e1/2
λ (t) + e–1/2

λ (t)

)r

. (62)

Now, we define the degenerate type 2 Euler numbers of order r which are given by

(
2

e1/2
λ (t) + e–1/2

λ (t)

)r

=
∞∑

n=0

E(r)
n,λ

tn

n!
. (63)

By (62), (63), and (12), we get

∫

Zp

· · ·
∫

Zp

(
x1 + x2 + · · · + xr +

r
2

)

n,λ
dμ–1(x1) dμ–1(x2) · · ·dμ–1(xr) = E(r)

n,λ (n ≥ 0).

3 Conclusion
In recent years, studying degenerate versions of various special polynomials and numbers
has attracted many mathematicians and has been carried out by several different methods
like generating functions, combinatorial approaches, umbral calculus, p-adic analysis, and
differential equations. In this paper, we introduced degenerate type 2 Bernoulli polynomi-
als, fully degenerate type 2 Bernoulli polynomials, and degenerate type 2 Euler polynomi-
als, and their corresponding numbers, as degenerate and type 2 versions of Bernoulli and
Euler numbers. We investigated those polynomials and numbers by means of bosonic and
fermionic p-adic integrals and derived some identities, distribution relations, Witt type
formulas, and analogues for the Bernoulli interpretation of powers of the first m positive
integers in terms of Bernoulli polynomials. In more detail, our main results are as follows.

As to the analogues for the Bernoulli interpretation of power sums, in Theorem 2.6 we
expressed powers of the first m odd integers in terms of type 2 Bernoulli polynomials
bn(x), in Theorem 2.11 alternating sum of powers of the first m odd integers in terms of
type 2 Euler polynomials En(x), in Theorem 2.9 sum of the values of the generalized falling
factorials at the first m odd positive integers in terms of degenerate Carlitz type 2 Bernoulli
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polynomials bn,λ(x), and in Theorem 2.17 alternating sum of the values of the generalized
falling factorials at the first m odd positive integers in terms of degenerate type 2 Euler
polynomials En,λ(x). Witt type formulas were obtained for bn(x), Bn,λ(x), En(x), and En,λ(x)
respectively in Lemma 2.1, Theorem 2.7, Lemma 2.10, and Theorem 2.16. Distribution
relations were derived for bn(x) and En(x) respectively in Theorem 2.3 and Theorem 2.13.

As one of our future projects, we would like to continue to do research on degenerate
versions of various special numbers and polynomials and to find many applications of
them in mathematics, science, and engineering.
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