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Abstract
This paper introduces the improved LS-SVM algorithms for solving two-point and
multi-point boundary value problems of high-order linear and nonlinear ordinary
differential equations. To demonstrate the reliability and powerfulness of the
improved LS-SVM algorithms, some numerical experiments for third-order,
fourth-order linear and nonlinear ordinary differential equations with two-point and
multi-point boundary conditions are performed. The idea can be extended to other
complicated ordinary differential equations.
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1 Introduction
High-order boundary value problems for ordinary differential equations are used to model
different problems in some fields such as biology, economics, and engineering. Due to the
importance of high-order ordinary differential equations, a considerable size of research
work has been carried out about this problem. Among others, finite difference method [1]
was proposed to solve two-point boundary value problems for high-order linear and non-
linear ordinary differential equations. Homotopy perturbation method [2, 3] was used for
the solution of fourth-order and sixth-order boundary value problems. Ali [4] proposed
the optimal homotopy asymptotic method to solve multi-point boundary value prob-
lems. Adomian decomposition method [5–10] was presented for solving two-point and
multi-point boundary value problems of high-order ordinary differential equations. Haar
wavelets method [11] and Shannon wavelet method [12] were proposed to solve bound-
ary value problems of high-order ordinary differential equations. Doha [13] proposed
spectral Galerkin algorithms based on Jacobi polynomials for solving two-point boundary
value problems of third-order and fifth-order ordinary differential equations. Doha [14]
proposed spectral Galerkin algorithms by using Chebyshev polynomials of the third and
fourth kinds for solving high even-order differential equations. Shifted Jacobi collocation
method [15] was proposed for solving nonlinear high-order multi-point boundary value
problems. Saadatmandi and Dehghan [16] discussed sinc-collocation method for solving
multi-point boundary value problems. Variational iteration method [17–19] was applied
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to solving two-point boundary value problems of high-order linear and nonlinear ordinary
differential equations. Although these numerical methods provide good approximations
to the solution, the approximate solution derivatives are discontinuous and can seriously
affect the stability of the solution.

Neural network, which is one of machine intelligence techniques, has universal function
approximation capabilities [20–22], and the solution obtained from the neural network is
differentiable and in closed analytic form. Neural network has been widely used for solving
ordinary differential equations [23, 24], partial differential equations [25–27], fractional
differential equations [28–30], and integro-differential equations [31, 32]. Chakraverty
and Mall [33] analyzed a regression-based neural network algorithm to solve two-point
boundary value problems of fourth-order linear ordinary differential equations. Malek
[34] proposed a novel hybrid method based on optimization techniques and feed forward
artificial neural networks methods for two-point boundary value problems of fourth-order
ordinary differential equations. Mai-Duy [35] discussed radial basis function networks for
boundary value problems of high-order ordinary differential equations directly. However,
artificial neural network has several drawbacks, such as the need for a large number of con-
trolling parameters and the difficult choice of the number of hidden units. Furthermore,
its training procedure is time-consuming and can be trapped in local minima.

SVM algorithms [36] were introduced by Vapnik in the framework of statistical learning
theory. SVM algorithms map the input data into a high-dimensional feature space using a
feature map. SVM algorithms can achieve a global optimum by solving a convex quadratic
programming problem. Meanwhile, SVM algorithms adopt the structural risk minimiza-
tion principle, which has a better generalization performance. LS-SVM algorithms [37] are
a modification of SVM algorithms. LS-SVM algorithms change inequality constraints to
equality constraints and regard the sum of squared errors loss function as experience loss
of the training set. LS-SVM algorithms will deal with a set of linear equations instead of
a quadratic optimization problem, which reduces the computation time of model learn-
ing significantly and improves higher solution accuracy. Therefore, LS-SVM algorithms
have various applications in the area of pattern recognition [38], fault diagnosis [39], and
time-series prediction [40, 41]. In addition, LS-SVM algorithms have been successfully
applied for solving differential equations [42, 43], differential algebraic equations [44, 45],
and integral equations [46].

LS-SVM algorithms are only used to solve two-point boundary value problems of
second-order linear ordinary differential equations [42]. To the best of our knowledge,
there are not too many results on LS-SVM algorithms for solving two-point and multi-
point boundary value problems of high-order linear and nonlinear ordinary differential
equations. The main goal of the present thesis is to develop improved LS-SVM algorithms
to solve two-point and multi-point boundary value problems of high-order linear and non-
linear ordinary differential equations.

The remainder of this paper is organized as follows. First, Sect. 2 introduces least squares
support vector machines. A brief overview of LS-SVM algorithms for solving ordinary
differential equations is provided, and some definitions are given in Sect. 3. Following, in
Sect. 4, the proposed LS-SVM algorithms for solving two-point boundary value problems
of high-order linear and nonlinear ordinary differential equations and multi-point bound-
ary value problems of high-order linear and nonlinear ordinary differential equations are
discussed. In Sect. 5, we present five numerical examples to exhibit the accuracy and the
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efficiency of our proposed LS-SVM algorithms. Finally, concluding remarks are presented
in Sect. 6.

2 Least squares support vector machines
Consider a given training data set {(xi, yi)|xi ∈ Rn, yi ∈ R}N

i=1 (in this paper n = 1), where
{xi}N

i=1 are input data points and {yi}N
i=1 are the corresponding output data points. One

assumes that the underlying function describing the relation between input points and
output points has the following form:

y(x) = ωTφ(x) + b, (1)

where ω and b are parameters of the model that have to be determined and φ(x) is the
nonlinear feature map which maps an input space into a higher dimensional feature space.
Then, the optimal solution is sought in that space by minimizing the residual between the
model outputs and the measurements [47]. To this end, the LS-SVM model in the primal
is formulated as the following optimization problem [37, 48]:

min
ω,b,ei

J(ω, e) =
1
2
ωTω +

1
2
γ eT e (2)

subject to

yi = ωTφ(xi) + b + ei, i = 1, 2, . . . , N ,

where γ is a positive regularization parameter and ei is the error of the ith input data. The
first term is a regularization term, while the second one minimizes the training errors.

The optimization problem with equality constraints (2) can be solved by using the La-
grange multipliers method

L(ω, b,αi, ei) =
1
2
ωTω +

1
2
γ eT e –

N∑

i=1

αi
[
ωTφ(xi) + b + ei – yi

]
, (3)

where αi (i = 1, 2, . . . , N ) are Lagrange multipliers that can be positive or negative in the
LS-SVM formulation.

According to the KKT conditions, we will obtain

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂L
∂ω

= ω –
∑N

i=1 αiφ(xi) = 0;
∂L
∂b =

∑N
i=1 αi = 0;

∂L
∂ei

= αi – γ ei = 0;
∂L
∂αi

= ωTφ(xi) + b – yi + ei = 0.

(4)

When ω and ei are eliminated from a system of Eq. (4), we obtain the following linear
system:

[
Θij + γ –1E IT

N–1

IN–1 0

][
α

b

]
=

[
y
0

]
, (5)
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where Θij = K(xi, xj) = φ(xi)Tφ(xj) (i, j = 1, 2, . . . , N ) is the ijth entry of the positive definite
kernel matrix; y = [y1, y1, . . . , yN ]T ;α = [α1,α1, . . . ,αN ]T and IN–1 = [1, 1, . . . , 1].

Finally, the LS-SVM model in the dual form can be described as

y(x) =
N∑

i=1

αiK(xi, x) + b. (6)

3 Brief overview of LS-SVM model for solving ODEs and some definitions
In this section, a brief overview of LS-SVM algorithms for solving ordinary differential
equations is provided and some definitions are given.

With regard to the initial value problem of the first-order linear ordinary differential
equation in the following form [42]:

⎧
⎨

⎩

dy
dx = a(x)y(x) + r(x), x ∈ [a, c],

y(a) = A,
(7)

the authors in [42] assume that a general approximate solution is y = ωTφ(x) + b, where ω

and b are the parameters to be solved. Then the interval [a, c] is discretized into a series
of collocation points by using collocation methods [49], and the optimal values of the pa-
rameters ω and b are obtained by solving the optimization problem with constraints, see
[42]. According to the Lagrange multipliers method [50], the optimization problem with
constraints is transformed into the Lagrangian function which is composed of the LS-
SVM cost function and constraints that the approximate solution y = ωTφ(x) + b satisfies
the given first-order linear ordinary differential equation and the initial condition at the
collocation points. The described methodology is applicable for solving other types of dif-
ferential equations including second-order boundary value problems, partial differential
equations, and descriptor systems [42–44].

The feature map φ is not explicitly known in general, so the kernel function will be
introduced. By utilizing Mercer’s theorem [36], the derivative of the kernel function is
defined as [42, 44]

∇n,m
(
K(xi, xj)

)
=

∂n+m(K(u, v))
∂un∂vm

∣∣∣∣
u=xi ,v=xj

= φ(n)(xi)Tφ(m)(xj) = [Θn,m]i,j. (8)

In this paper, the RBF kernel K(u, v) = exp(–(u – v)2/σ 2) is considered as a kernel func-
tion, then we can obtain

∇1,3
(
K(xi, xj)

)
=

∂4(K(u, v))
∂u∂v3

∣∣∣∣
u=xi ,v=xj

= φ(1)(xi)Tφ(3)(xj) = [Θ1,3]i,j

= –
[

12
σ 4 –

12
σ 2

[
2(xi – xj)

σ 2

]2

+
[

2(xi – xj)
σ 2

]4]
K(xi, xj);

∇2,3
(
K(xi, xj)

)
=

∂5(K(u, v))
∂u2∂v3

∣∣∣∣
u=xi ,v=xj

= φ(2)(xi)Tφ(3)(xj) = [Θ2,3]i,j

=
[

60
σ 4 –

20
σ 2

[
2(xi – xj)

σ 2

]2

+
[

2(xi – xj)
σ 2

]4]2(xi – xj)
σ 2 K(xi, xj);
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∇3,3
(
K(xi, xj)

)
=

∂6(K(u, v))
∂u3∂v3

∣∣∣∣
u=xi ,v=xj

= φ(3)(xi)Tφ(3)(xj) = [Θ3,3]i,j

=
[

120
σ 6 –

180
σ 4

[
2(xi – xj)

σ 2

]2

+
30
σ 2

[
2(xi – xj)

σ 2

]4

–
[

2(xi – xj)
σ 2

]6]

× K(xi, xj);

∇3,4
(
K(xi, xj)

)
=

∂7(K(u, v))
∂u3∂v4

∣∣∣∣
u=xi ,v=xj

= φ(3)(xi)Tφ(4)(xj) = [Θ3,4]i,j

=
[

840
σ 6 –

420
σ 4

[
2(xi – xj)

σ 2

]2

+
42
σ 2

[
2(xi – xj)

σ 2

]4

–
[

2(xi – xj)
σ 2

]6]

× 2(xi – xj)
σ 2 K(xi, xj);

∇4,4
(
K(xi, xj)

)
=

∂8(K(u, v))
∂u4∂v4

∣∣∣∣
u=xi ,v=xj

= φ(4)(xi)Tφ(4)(xj) = [Θ4,4]i,j

=
[

1680
σ 8 –

3360
σ 6

[
2(xi – xj)

σ 2

]2

+
840
σ 4

[
2(xi – xj)

σ 2

]4

–
56
σ 2

[
2(xi – xj)

σ 2

]6

+
[

2(xi – xj)
σ 2

]8]
K(xi, xj).

4 Boundary value problems of high-order ordinary differential equations
In this section, we formulate the improved LS-SVM algorithms to the solution of two-
point and multi-point boundary value problems of high-order linear and nonlinear ordi-
nary differential equations.

4.1 Two-point boundary value problems of high-order ordinary differential
equations

The improved LS-SVM algorithms to the solution of two-point boundary value problems
of high-order linear and nonlinear ordinary differential equations are described.

4.1.1 Nonlinear ordinary differential equations for two-point boundary value problems
Two-point boundary value problems of Mth-order nonlinear ordinary differential equa-
tions to be solved can be stated as follows:

dMy
dxM + aM–1(x)

dM–1y
dxM–1 + · · · + a1(x)

dy
dx

= f (x, y), x ∈ [a, c], (9)

subject to boundary conditions y(s)(a) = ps, y(r)(c) = qr , 0 ≤ s ≤ S, 0 ≤ r ≤ R, R = M – 2 – S.
The interval [a, c] is discretized into a series of collocation points Ω = {a = x1 < x2 < · · · <

xN = c}. Assume that a general approximate solution to (9) is y = ωTφ(x) + b. The optimal
values of the parameters ω and b are obtained by the following optimization problem:

min
ω,b,e,ξ ,yi

J(ω, e, ξ ) =
1
2
ωTω +

1
2
γ eT e +

1
2
γ ξTξ (10)
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subject to

ωTφ(M)(xi) +
M–1∑

l=1

ωT al(xi)φ(l)(xi) = f (xi, yi) + ei, i = 2, . . . , N – 1;

yi = ωTφ(xi) + b + ξi, i = 2, . . . , N – 1;

ωTφ(x1) + b = p0;

ωTφ(xN ) + b = q0;

ωTφ(s)(x1) = ps, s = 1, 2, . . . , S;

ωTφ(r)(xN ) = qt , r = 1, 2, . . . , R.

Theorem 1 Given a positive definite kernel function K : R × R → R and a regularization
parameter γ ∈ R+, the solution to (10) is given by the following dual problem:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[Θ̂l,l′ ]N–2 [Θ̂0,l′ ]T
N–2 [Θ̂1

s,l′ ]
T
N–2 [Θ̂N

r,l′ ]
T
N–2 0T

1,N–2 0N–2

[Θ̂0,l′ ]N–2 [Θ̃0,0]N–2 [Θ1
s,0]T

N–2 [ΘN
r,0]T

N–2 IT
1,N–2 –EN–2

[Θ̂1
s,l′ ]N–2 [Θ1

s,0]N–2 [Θ̃s,s′ ]1,1 [Θ̃r,s′ ]T
N ,1 1s 0s,N–2

[Θ̂N
r,l′ ]N–2 [ΘN

r,0]N–2 [Θ̃r,s′ ]N ,1 [Θ̃r,r′ ]N ,N 1r 0r,N–2

01,N–2 I1,N–2 1T
s 1T

r 0 01,N–2

DN–2(y) EN–2 0T
s,N–2 0T

r,N–2 0T
1,N–2 0N–2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α

η

β

λ

b

y

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fN–2(x, y)

0T
1,N–2

p

q

0

0T
1,N–2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

where [Θ̂l,l′ ]N–2 = [Θ̃M,M]N–2 + Dal [Θ l,M]N–2 + [ΘM,l′ ]N–2DT
al′ + Dal [Θ l,l′ ]N–2DT

al′ + γ –1E;
[ΘM,l′ ]N–2 = [[Θ̃M,1]N–2, [Θ̃M,2]N–2, . . . , [Θ̃M,M–1]N–2]; [Θ l,M]N–2 = [[Θ̃1,M]N–2; [Θ̃2,M]N–2;
. . . ; [Θ̃M–1,M]N–2]; Dal = [Da1 , Da2 , . . . , DaM–1 ]; [Θ l,l′ ]N–2 = [Θ̃1:M–1,1:M–1]N–2; Dal′ = [Da1 ,
Da2 , . . . , DaM–1 ]; [Θ̃0,0]N–2 = [Θ0,0]2:N–1,2:N–1 + γ –1E; l, l′ = 1, 2, . . . , M – 1; α = [α2,α3, . . . ,
αN–1]T ; Dal′ = diag(al′ (t2), al′ (t3), . . . , al′ (tN )); Dal = diag(al(t2), al(t3), . . . , al(tN ));
[Θ̂0,l′ ]N–2 = [Θ̃0,M]N–2 + [Θ0,l′ ]N–2DT

al′ ; I1,N–2 = [1, 1, . . . , 1]; β = [β0,β1, . . . ,βS]T ; [Θ0,l′ ]N–2 =
[[Θ̃0,1]N–2, [Θ̃0,2]N–2, . . . , [Θ̃0,M–1]N–2]; η = [η2,η3, . . . ,ηN–1]T ; [Θ̂1

s,l′ ]N–2 = [Θ̃1
0:S,M]N–2 +

[Θ1
0:S,l′ ]N–2DT

al′ ; [Θ̂N
r,l′ ]N–2 = [Θ̃N

0:R,M]N–2 + [ΘN
0:R,l′ ]N–2DT

al′ ; [Θ1
0:S,l′ ]N–2 = [[Θ̃1

0:S,1]N–2,

[Θ̃1
0:S,2]N–2, . . . , [Θ̃1

0:S,M–1]N–2]; q = [q0, q1, q2, . . . , qR]T ; [ΘN
0:R,l′ ]N–2 = [[Θ̃N

0:R,1]N–2, [Θ̃N
0:R,2]N–2,

. . . , [Θ̃N
0:R,M–1]N–2]; λ = [λ0,λ1,λ2, . . . ,λR]T ; [Θ1

s,0]N–2 = [Θ̃1
0:S,0]N–2; [ΘN

r,0]N–2 = [Θ̃N
0:R,0]N–2;

y = [y2, y3, . . . , yN–1]; 0s,N–2 = 0S+1,N–2; [Θ̃s,s′ ]1,1 = [Θ0:S,0:S]1,1; [Θ̃r,s′ ]N ,1 = [Θ0:R,0:S]N ,1;
[Θ̃r,r′ ]N ,N = [Θ0:R,0:R]N ,N ; fN–2(x, y) = [f (x2, y2), f (x3, y3), . . . , f (xN–1, yN–1)]T ; p = [p0, p1, p2,
. . . , pS]T ; ∂f (x,y)

∂y = [ ∂f (x,y)
∂y |x=x2,y=y2 , ∂f (x,y)

∂y |x=x3,y=y3 , . . . , ∂f (x,y))
∂y |x=xN–1,y=yN–1 ]; DN–2(y) =

diag( ∂f (x,y)
∂y ); 1r = [1; 0; . . . ; 0]R+1,1; 1s = [1; 0; . . . ; 0]S+1,1; 0r,N–2 = 0R+1,N–2; where [Θ̃m,n]N–2 =



Lu et al. Advances in Difference Equations        (2019) 2019:195 Page 7 of 22

[Θm,n]2:N–1,2:N–1, [Θ̃1
0:S,n]N–2 = [[Θ0:S,n]1,2, [Θ0:S,n]1,3, . . . , [Θ0:S,n]1,N–1] and [Θ̃N

0:R,n]N–2 =
[[Θ0:R,n]N ,2, [Θ0:R,n]N ,3, . . . , [Θ0:R,n]N ,N–1], m, n = 0, 1, . . . , M.

Proof Consider the Lagrangian function of the optimization problem (10):

L(ω, yi,αi,ηi,β0,βs,λ0,λr , b, ei, ξi)

=
1
2
ωTω +

1
2
γ eT e +

1
2
γ ξTξ

–
N–1∑

i=2

αi

[
ωTφ(M)(xi) +

M–1∑

l=1

ωT al(xi)φ(l)(xi) – f (xi, yi) – ei

]

–
N–1∑

i=2

ηi
(
ωTφ(xi) + b + ξi – yi

)
– β0

(
ωTφ(x1) + b – p0

)
–

S∑

s=1

βs
(
ωTφ(s)(x1) – ps

)

– λ0
(
ωTφ(xN ) + b – q0

)
–

M–2–S∑

r=1

λr
(
ωTφ(r)(xN ) – qr

)
. (12)

Then the KKT optimality conditions are given by

∂L
∂ω

= ω –
N–1∑

i=2

αi

[
φ(M)(xi) +

M–1∑

l=1

al(xi)φ(l)(xi)

]
–

N–1∑

i=2

ηiφ(xi) – β0φ(x1)

–
S∑

s=1

βsφ
(s)(x1) – λ0φ(xN ) –

M–2–S∑

r=1

λrφ
(r)(xN ) = 0;

∂L
∂αi

= ωT

[
φ(M)(xi) +

M–1∑

l=1

al(xi)φ(l)(xi)

]
– f (xi, yi) – ei = 0, i = 2, 3, . . . , N – 1;

∂L
∂ηi

= ωTφ(xi) + b + ξi – yi = 0, i = 2, 3, . . . , N – 1;

∂L
∂β0

= ωTφ(x1) + b – p0 = 0;

∂L
∂βs

= ωTφ(s)(x1) – ps = 0, s = 1, 2, . . . , S;

∂L
∂λ0

= ωTφ(xN ) + b – q0 = 0;

∂L
∂λr

= ωTφ(r)(xN ) – qr = 0, r = 1, 2, . . . , M – 2 – S;

∂L
∂b

= –
N–1∑

i=2

ηi – β0 – λ0 = 0;

∂L
∂yi

= ηi + αi
∂f (xi, yi)

∂yi
= 0, i = 2, 3, . . . , N – 1;

∂L
∂ei

= αi + γ ei = 0, i = 2, 3, . . . , N – 1;

∂L
∂ξi

= –ηi + γ ξi = 0, i = 2, 3, . . . , N – 1.

(13)

Finally, rewriting the above system in matrix form will result in (11). �
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System (11) is solved by Newton’s method. Therefore, the LS-SVM model in the dual
form becomes

ŷ(x) = b +
N–1∑

i=2

αi

[
∇M,0

(
K(xi, x)

)
+

M–1∑

l=1

al(xi)∇l,0
(
K(xi, x)

)
]

+
N–1∑

i=2

ηi∇0,0
(
K(xi, x)

)
+ β0∇0,0

(
K(x1, x)

)
+

S∑

s=1

βs∇s,0
(
K(x1, x)

)

+ λ0∇0,0
(
K(xN , x)

)
+

M–2–S∑

r=1

λr∇r,0
(
K(xN , x)

)
. (14)

4.1.2 Linear ordinary differential equations for two-point boundary value problems
Two-point boundary value problems of Mth-order linear ordinary differential equations
to be solved can be stated as follows:

dMy
dxM + aM–1(x)

dM–1y
dxM–1 + · · · + a1(x)

dy
dx

+ a0(x)y = r(x), x ∈ [a, c], (15)

subject to boundary conditions y(s)(a) = ps, y(r)(c) = qr , 0 ≤ s ≤ S, 0 ≤ r ≤ R, R = M – 2 – S.
Assume that a general approximate solution to (15) is y = ωTφ(x) + b. To obtain the op-

timal values of the parameters ω and b, collocation methods which discretize the interval
[a, c] into a series of collocation points Ω = {a = x1 < x2 < · · · < xN = c} can be used. There-
fore, these parameters are obtained by solving the following optimization problem:

min
ω,b,ei

J(ω, e) =
1
2
ωTω +

1
2
γ eT e (16)

subject to

ωTφ(M)(xi) +
M–1∑

l=0

ωT al(xi)φ(l)(xi) + a0(xi)b = r(xi) + ei, i = 2, . . . , N – 1;

ωTφ(x1) + b = p0;

ωTφ(xN ) + b = q0;

ωTφ(s)(x1) = ps, s = 1, 2, . . . , S;

ωTφ(r)(xN ) = qt , r = 1, 2, . . . , R.

Theorem 2 Given a positive definite kernel function K : R × R → R and a regularization
parameter γ ∈ R+, the solution to (16) is obtained by the following dual problem:

⎡

⎢⎢⎢⎢⎢⎣

[Θ̂l,l′ ]N–2 [Θ̂1
s,l′ ]

T
N–2 [Θ̂N

r,l′ ]
T
N–2 AT

[Θ̂1
s,l′ ]N–2 [Θ̃s,s′ ]1,1 [Θ̃r,s′ ]T

N ,1 1s

[Θ̂N
r,l′ ]N–2 [Θ̃r,s′ ]N ,1 [Θ̃r,r′ ]N ,N 1r

A 1T
s 1T

r 0

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

α

β

λ

b

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

r(x)

p

q

0

⎤

⎥⎥⎥⎥⎥⎦
(17)

where [Θ̂l,l′ ]N–2 = [Θ̃M,M]N–2 + Dal [Θ l,M]N–2 + [ΘM,l′ ]N–2DT
al′ + Dal [Θ l,l′ ]N–2DT

al′ + γ –1E;
[ΘM,l′ ]N–2 = [[Θ̃M,0]N–2, [Θ̃M,1]N–2, . . . , [Θ̃M,M–1]N–2]; Dal′ = [Da0 , Da1 , . . . , DaM–1 ];
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[Θ l,M]N–2 = [[Θ̃0,M]N–2; [Θ̃1,M]N–2; . . . ; [Θ̃M–1,M]N–2]; Dal = [Da0 , Da1 , . . . , DaM–1 ];
[Θ l,l′ ]N–2 = [Θ̃0:M–1,0:M–1]N–2; Dal′ = diag(al′ (t2), al′ (t3), . . . , al′ (tN–1)); l, l′ = 0, 1, . . . ,
M – 1; Dal = diag(al(t2), al(t3), . . . , al(tN–1)); p = [p0, p1, p2, . . . , pS]T ; q = [q0, q1, q2, . . . , qR]T ;
[Θ̂1

s,l′ ]N–2 = [Θ̃1
0:S,M]N–2 + [Θ1

0:S,l′ ]N–2DT
al′ ; [Θ̂N

r,l′ ]N–2 = [Θ̃N
0:R,M]N–2 + [ΘN

0:R,l′ ]N–2DT
al′ ;

[Θ1
0:S,l′ ]N–2 = [[Θ̃1

0:S,0]N–2, [Θ̃1
0:S,1]N–2, . . . , [Θ̃1

0:S,M–1]N–2]; 1s = [1; 0; . . . ; 0]S+1,1; [ΘN
0:R,l′ ]N–2 =

[[Θ̃N
0:R,0]N–2, [Θ̃N

0:R,1]N–2, . . . , [Θ̃N
0:R,M–1]N–2]; α = [α2,α3, . . . ,αN–1]T ; [Θ̃s,s′ ]1,1 = [Θ0:S,0:S]1,1;

[Θ̃r,s′ ]N ,1 = [Θ0:R,0:S]N ,1; [Θ̃r,r′ ]N ,N = [Θ0:R,0:R]N ,N ; β = [β0,β1,β2, . . . ,βS]T ; λ = [λ0,λ1,λ2, . . . ,
λR]T ; 1r = [1; 0; . . . ; 0]R+1,1; A = [a0(x2), a0(x3), . . . , a0(xN–1)]; r(x) = [r(x2), r(x3), . . . ,
r(xN–1)]T .

Proof We construct the Lagrangian function of the optimization problem (16):

L(ω,αi,β0,βs,λ0,λr , b, ei)

=
1
2
ωTω +

1
2
γ eT e

–
N–1∑

i=2

αi

[
ωTφ(M)(xi) +

M–1∑

l=0

ωT al(xi)φ(l)(xi) + a0(xi)b – r(xi) – ei

]

– β0
(
ωTφ(x1) + b – p0

)
–

S∑

s=1

βs
(
ωTφ(s)(x1) – ps

)
– λ0

(
ωTφ(xN ) + b – q0

)

–
M–2–S∑

r=1

λr
(
ωTφ(r)(xN ) – qr

)
. (18)

The conditions for optimality are as follows:

∂L
∂ω

= ω –
N–1∑

i=2

αi

[
φ(M)(xi) +

M–1∑

l=0

al(xi)φ(l)(xi)

]
– β0φ(x1) –

S∑

s=1

βsφ
(s)(x1)

– λ0φ(xN ) –
M–2–S∑

r=1

λrφ
(r)(xN ) = 0;

∂L
∂αi

= ωT

[
φ(M)(xi) +

M–1∑

l=0

al(xi)φ(l)(xi)

]
+ a0(xi)b – r(xi) – ei = 0, i = 2, 3, . . . , N – 1;

∂L
∂β0

= ωTφ(x1) + b – p0 = 0;

∂L
∂βs

= ωTφ(s)(x1) – ps = 0, s = 1, 2, . . . , S;

∂L
∂λ0

= ωTφ(xN ) + b – q0 = 0;

∂L
∂λr

= ωTφ(r)(xN ) – qr = 0, r = 1, 2, . . . , M – 2 – S;

∂L
∂b

= –
N–1∑

i=2

a0(xi)αi – β0 – λ0 = 0;

∂L
∂ei

= αi + γ ei = 0, i = 2, 3, . . . , N – 1.

(19)

Finally, rewriting the above system in matrix form will result in (17). �
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The linear system (17), which consists of unknowns (α,β ,λ, b), is solved. The LS-SVM
model in the dual form becomes

ŷ(x) =
N–1∑

i=2

αi

[
∇M,0

(
K(xi, x)

)
+

M–1∑

l=0

al(xi)∇l,0
(
K(xi, x)

)
]

+ β0∇0,0
(
K(x1, x)

)
+

S∑

s=1

βs∇s,0
(
K(x1, x)

)

+ λ0∇0,0
(
K(xN , x)

)
+

R∑

r=1

λr∇r,0
(
K(xN , x)

)
+ b. (20)

4.2 Multi-point boundary value problems of high-order ordinary differential
equations

The improved LS-SVM algorithms to the solution of multi-point boundary value prob-
lems of high-order linear and nonlinear ordinary differential equations are described.

4.2.1 Nonlinear ordinary differential equations for multi-point boundary value problems
Consider the following Mth-order nonlinear ordinary differential equations for multi-
point boundary value problems [15]:

dMy
dxM + aM–1(x)

dM–1y
dxM–1 + · · · + a1(x)

dy
dx

= f (x, y), x ∈ [a, c], (21)

subject to y(q0)(a) = s0, y(qj)(xpj ) = sj, y(qM–1)(c) = sM–1, xpj ∈ [a, c], pj ∈ Z, j = 1, 2, . . . , M – 2,
0 ≤ q0, q1, . . . , qM–1 ≤ M – 1.

The interval [a, c] is discretized into a series of collocation points Ω = {a = xp0 = x1 <
x2 < · · · < xp1 < · · · < xp2 < · · · < xpM–2 < · · · < xpM–1 = xN = c}. Assume that the approximate
solution to (21) is y = ωTφ(x) + b, the primal optimization problem is described as follows:

min
ω,b,ei ,ξ ,yi

J(ω, e, ξ ) =
1
2
ωTω +

1
2
γ eT e +

1
2
γ ξTξ (22)

subject to

ωT

[
φ(M)(xi) +

M–1∑

l=1

al(xi)φ(l)(xi)

]
= f (xi, yi) + ei, i = 1, 2, . . . , N – M;

yi = ωTφ(xi) + b + ξi, i = 1, 2, . . . , N – M;

ωTφ(q0)(x1) + b(q0) = s0;

ωTφ(qj)(xpj ) + b(qj) = sj, j = 1, 2, . . . , M – 2;

ωTφ(qM–1)(xN ) + b(qM–1) = sM–1.

Theorem 3 Given a positive definite kernel function K : R × R → R and a regular-
ization parameter γ ∈ R+, the solution to (22) is obtained by the following dual prob-
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lem:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

[Θ̂l,l′ ]N–M [Θ̂0,l′ ]T
N–M [Θ̂qj ,l′ ]

T
M,N–M 0T

1,N–M 0N–M

[Θ̂0,l′ ]N–M [Θ̃0,0]N–M [Θ̃qj ,0]T
M,N–M IT

1,N–M –EN–M

[Θ̂qj ,l′ ]M,N–M [Θ̃qj ,0]M,N–M [Θ̃qj ,qj′ ]pj ,pj′ BT 0M,N–M

01,N–M I1,N–M B 0 01,N–M

DN–M(y) EN–M 0T
M,N–M 0T

1,N–M 0N–M

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

α

η

β

b

y

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

fN–M(x, y)

0T
1,N–M

s

0

0T
1,N–M

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (23)

where [Θ̂l,l′ ]N–M = [Θ̃M,M]N–M + Dal [Θ l,M]N–M + [ΘM,l′ ]N–MDT
al′ + Dal [Θ l,l′ ]N–MDT

al′ +
γ –1E; [ΘM,l′ ]N–M = [[Θ̃M,1]N–M, [Θ̃M,2]N–M, . . . , [Θ̃M,M–1]N–M]; [Θ l,M]N–M = [[Θ̃1,M]N–M;
[Θ̃2,M]N–M; . . . ; [Θ̃M–1,M]N–M]; Dal′ = [Da1 , Da2 , . . . , DaM–1 ]; Dal = [Da1 , Da2 , . . . , DaM–1 ];
[Θ l,l′ ]N–M = [Θ̃1:M–1,1:M–1]N–M ; α = [α2, . . . ,αp1–1,αp1+1, . . . ,αN–1]T ; [Θ̃0,0]N–M =
[Θ0,0]1:N–M,1:N–M + γ –1E; l, l′ = 1, 2, . . . , M – 1; Dal = diag(al(x2), . . . , al(xp1–1),
al(xp1+1), . . . , al(xN–1)); B = [χb0 ,χb1 , . . . ,χbM–1 ]; Dal′ = diag(al′ (x2), . . . , al′ (xp1–1),
al′ (xp1+1), . . . , al′ (xN–1)); [Θ̂0,l′ ]N–M = [Θ̃0,M]N–M + [Θ0,l′ ]N–MDT

al′ ; s = [s0, s1, s2, . . . , sM–1]T ;
[Θ0,l′ ]N–M = [[Θ̃0,1]N–M, [Θ̃0,2]N–M, . . . , [Θ̃0,M–1]N–M]; y = [y2, . . . , yP1–1, yP1+1, . . . , yN–1]T ;
[Θ̂qj ,l′ ]M,N–M = [Θ̃q0:qM–1,M]M,N–M + [Θq0:qM–1,l′ ]M,N–MDT

al′ ; β = [β0,β1,β2, . . . ,βM–1]T ;
[Θq0:qM–1,l′ ]M,N–M = [[Θ̃q0:qM–1,1]M,N–M, [Θ̃q0:qM–1,2]M,N–M, . . . , [Θ̃q0:qM–1,M–1]M,N–M];
[Θ̃qj ,0]M,N–M = [Θq0:qM–1,0]M,N–M ; η = [η2, . . . ,ηp1–1,ηp1+1, . . . ,ηN–1]T ; [Θ̃qj ,qj′ ]pj ,pj′ =
[Θq0:qM–1,q0:qM–1 ]p0:pM–1,p0:pM–1 ; DN–M(y) = diag( ∂f (x,y)

∂y ); fN–M(x, y) = [f (x2, y2), . . . ,
f (xp1–1, yp1–1), f (xp1+1, yp1+1), . . . , f (xN–1, yN–1)]T ; ∂f (x,y)

∂y = [ ∂f (x,y)
∂y |x=x2y=y2

, . . . , ∂f (x,y)
∂y |x=xp1–1

y=yp1–1
,

∂f (x,y)
∂y |x=xp1+1

y=yp1+1
, . . . , ∂f (x,y))

∂y |x=xN–1y=yN–1
], where [Θ̃m,n]N–M = [Θm,n]1:N–M,1:N–M; [Θ̃q0:qM–1,m]M,N–M =

[Θq0:qM–1,m]p0:pM–1,1:N–M ; m, n = 0, 1, . . . , M – 1.

Proof The Lagrangian function of the constrained optimization problem (22) is intro-
duced as follows:

L(ω, yi,αi,ηi,βj, b, ei, ξi)

=
1
2
ωTω +

1
2
γ eT e +

1
2
γ ξTξ

–
N–M∑

i=1

αi

[
ωTφ(M)(xi) +

M–1∑

l=1

ωT al(xi)φ(l)(xi) – f (xi, yi) – ei

]

–
N–M∑

i=1

ηi
(
ωTφ(xi) + b + ξi – yi

)
–

M–1∑

j=0

βj
(
ωTφ(qj)(xpj ) + b(qj) – sj

)
. (24)
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The conditions for optimality

∂L
∂ω

= ω –
N–M∑

i=1

αi

[
φ(M)(xi) +

M–1∑

l=1

al(xi)φ(l)(xi))

]
–

N–M∑

i=1

ηiφ(xi) –
M–1∑

j=0

βjφ
(qj)(xpj ) = 0;

∂L
∂αi

= ωT

(
φ(M)(xi) +

M–1∑

l=1

al(xi)φ(l)(xi)

)
– f (xi, yi) – ei = 0, i = 1, 2, . . . , N – M;

∂L
∂ηi

= ωTφ(xi) + b + ξi – yi = 0, i = 1, 2, . . . , N – M;

∂L
∂ξi

= –ηi + γ ξi = 0, i = 1, 2, . . . , N – M;

∂L
∂ei

= αi + γ ei = 0, i = 1, 2, . . . , N – M;

∂L
∂βj

= ωTφ(qj)(xpj ) + b(qj) – sj = 0, j = 0, 1, . . . , M – 1;

∂L
∂b

= –
N–M∑

i=1

ηi –
M–1∑

j=0

βjχbj = 0, χbj =

⎧
⎨

⎩
1, qj = 0;

0, qj = 1, 2, . . . , M – 1;

∂L
∂yi

= ηi + αi
∂f (xi, yi)

∂yi
= 0

(25)

can be written as a system in matrix form (23), after eliminating parameters ω and ei. �

System (23), which consists of 3N – 2M + 1 equations with unknowns (α,η,β , b, y), is
solved by Newton’s method. The LS-SVM model in the dual form becomes

ŷ(x) =
N–M∑

i=1

αi

[
∇M,0

(
K(xi, x)

)
+

M–1∑

l=1

al(xi)∇l,0
(
K(xi, x)

)
]

+
N–M∑

i=1

ηi∇0,0
(
K(xi, x)

)
+

M–1∑

j=0

βj∇qj ,0
(
K(xpj , x)

)
+ b. (26)

4.2.2 Linear ordinary differential equations for multi-point boundary value problems
Consider the following Mth-order linear ordinary differential equations for multi-point
boundary value problems:

dMy
dxM + aM–1(x)

dM–1y
dxM–1 + · · · + a1(x)

dy
dx

+ a0(x)y = r(x), x ∈ [a, c], (27)

subject to y(q0)(a) = s0, y(qj)(xpj ) = sj, y(qM–1)(c) = sM–1, xpj ∈ [a, c], pj ∈ Z, j = 1, 2, . . . , M – 2,
0 ≤ q0, q1, . . . , qM–1 ≤ M – 1.

The interval [a, c] is discretized into a series of collocation points Ω = {a = xp0 = x1 <
x2 < · · · < xp1 < · · · < xp2 < · · · < xpM–2 < · · · < xpM–1 = xN = c}. Suppose that the approximate
solution to (27) is y = ωTφ(x) + b, the original optimal problem is described as follows:

min
ω,b,ei

J(ω, e) =
1
2
ωTω +

1
2
γ eT e (28)
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subject to

ωT

[
φ(M)(xi) +

M–1∑

l=0

al(xi)φ(l)(xi) + a0(xi)b

]
= r(xi) + ei,

i = 2, 3, . . . , p1 – 1, p1 + 1, . . . , N – 1;

ωTφ(q0)(x1) + b(q0) = s0;

ωTφ(qj)(xpj ) + b(qj) = sj, j = 1, 2, . . . , M – 2;

ωTφ(qM–1)(xN ) + b(qM–1) = sM–1.

Theorem 4 Given a positive definite kernel function K : R × R → R and a regularization
parameter γ ∈ R+, the solution to (28) is obtained by the following dual problem:

⎡

⎢⎢⎣

[Θ̂l,l′ ]N–M [Θ̂qj ,l′ ]T
M,N–M AT

[Θ̂qj ,l′ ]M,N–M [Θ̃qj ,qj′ ]pj ,pj′ BT

A B 0

⎤

⎥⎥⎦

⎡

⎢⎢⎣

α

β

b

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

r(x)

s

0

⎤

⎥⎥⎦ , (29)

where [Θ̂l,l′ ]N–M = [Θ̃M,M]N–M + Dal [Θ l,M]N–M + [ΘM,l′ ]N–MDT
al′ + Dal [Θ l,l′ ]N–MDT

al′ +
γ –1E; [ΘM,l′ ]N–M = [[Θ̃M,0]N–M, [Θ̃M,1]N–M, . . . , [Θ̃M,M–1]N–M]; Dal′ = [Da0 , Da1 , . . . , DaM–1 ];
Dal = [Da0 , Da1 , . . . , DaM–1 ]; [Θ l,l′ ]N–M = [Θ̃0:M–1,0:M–1]N–M ; [Θ l,M]N–M = [[Θ̃0,M]N–M;
[Θ̃1,M]N–M; . . . ; [Θ̃M–1,M]N–M]; Dal′ = diag(al′ (x2), . . . , al′ (xp1–1), al′ (xp1+1), . . . , al′ (xN–1));
s = [s0, s1, s2, . . . , sM–1]T ; Dal = diag(al(x2), . . . , al(xp1–1), al(xp1+1), . . . , al(xN–1)); l, l′ = 0, 1,
. . . , M – 1; [Θ̂qj ,l′ ]M,N–M = [Θ̃qj ,M]M,N–M + [Θqj ,l′ ]M,N–MDT

al′ ; β = [β0,β1,β2, . . . ,βM–1]T ;
[Θqj ,l′ ]M,N–M = [[Θ̃qj ,0]M,N–M, [Θ̃qj ,1]M,N–M, . . . , [Θ̃qj ,M–1]M,N–M]; [Θ̃qj ,l′ ]M,N–M =
[Θqj ,l′ ]p0:pM–1,1:N–M ; [Θ̃qj ,qj′ ]pj ,pj′ = [Θq0:qM–1,q0:qM–1 ]p0:pM–1,p0:pM–1 ; A = [al(x2), . . . , al(xp1–1),
al(xp1+1), . . . , al(xN–1)]; α = [α2, . . . ,αxp1–1 ,αxp1+1 , . . . ,αN–1]T ; B = [χb0 ,χb1 , . . . ,χbM–1 ]; r(x) =
[r(x2), . . . , r(xp1–1), r(xp1+1), . . . , r(xN–1)]T .

Proof The Lagrangian function of the optimization problem (28) becomes

L(ω,αi,βj, b, ei)

=
1
2
ωTω +

1
2
γ eT e

–
N–M∑

i=1

αi

[
ωTφ(M)(xi) +

M–1∑

l=0

ωT al(xi)φ(l)(xi) + a0(xi)b – r(xi) – ei

]

–
M–1∑

j=0

βj
(
ωTφ(qj)(xpj ) + b(qj) – sj

)
. (30)

Setting the partial derivatives of the Lagrangian function to zero, we will obtain

∂L
∂ω

= ω –
N–M∑

i=1

αi

(
φ(M)(xi) +

M–1∑

l=0

al(xi)φ(l)(xi)

)
–

M–1∑

j=0

βjφ
(qj)(xpj ) = 0;

∂L
∂αi

= ωT

(
φ(M)(xi) +

M–1∑

l=0

al(xi)φ(l)(xi)

)
+ a0(xi)b – r(xi) – ei = 0, i = 1, 2, . . . , N – M;
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∂L
∂ei

= αi + γ ei = 0, i = 1, 2, . . . , N – M; (31)

∂L
∂βj

= ωTφ(qj)(xpj ) + b(qj) – sj = 0, j = 0, 1, . . . , M – 1;

∂L
∂b

= –
N–M∑

i=1

a0(xi)αi –
M–1∑

j=0

βjχbj = 0, χbj =

⎧
⎨

⎩
1, qj = 0;

0, qj = 1, 2, . . . , M – 1.

Finally, rewriting system (31) in matrix form will result in (29). �

System (29) with unknowns (α,β , b) is solved. The LS-SVM model in the dual form
becomes

ŷ(x) =
N–M∑

i=1

αi

[
∇M,0

(
K(xi, x)

)
+

M–1∑

l=0

al(xi)∇l,0
(
K(xi, x)

)
]

+
M–1∑

j=0

βj∇qj ,0
(
K(xpj , x)

)
+ b. (32)

5 Numerical experiments
In this section, some numerical experiments are performed in order to demonstrate the
reliability and powerfulness of the improved LS-SVM algorithms. The algorithms are ap-
plied to third-order, fourth-order linear and nonlinear ordinary differential equations with
two-point boundary conditions and to third-order, fourth-order linear and nonlinear or-
dinary differential equations with multi-point boundary conditions.

In our experiments, the performance of the proposed LS-SVM algorithms is directly
related to the choice of the regularization parameter γ and the kernel parameter σ . The
larger the regularization parameter γ is, the smaller the error ei is, but when γ is a quite
large value, the system of equations will be ill-conditioning. Therefore, the chosen value
for γ was 1010. The validation set is obtained to be the set of midpoints Z = {zi|zi = (xi +
xi+1)/2, i = 1, . . . , N – 1}, where {xi}N

i=1 are training points [42]. The optimal parameter σ

that results in minimum root mean squared error (RMSE) on the validation set is selected
and used for evaluating the LS-SVM model on the test set. The RMSE is defined as follows:

RMSE =

√√√√ 1
M

M∑

i=1

[
y(zi) – ŷ(zi)

]2. (33)

5.1 Example 1
Consider the fourth-order nonlinear ordinary differential equation [51]:

d4y
dx4 = –

x2

1 + y2 – 72
(
1 – 5x + 5x2) +

x2

1 + (x – x2)6 , x ∈ [0, 1], (34)

subject to two-point boundary conditions y(0) = 0, y′(0) = 0, y(1) = 0, y′(1) = 0. The analytic
solution is y = x3(1 – x)3.

We train the proposed LS-SVM algorithm for 11 equidistant points in the given interval
[0, 1]. The exact solution and the approximate solution via our proposed LS-SVM algo-
rithm are shown in Fig. 1(a). Furthermore, the error between the analytic solution and
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Figure 1 Two-point BVP of fourth-order nonlinear ODE (Example 1)

Table 1 Comparison between the exact solution and the LS-SVM solution (Example 1)

x Exact solution LS-SVM solution Absolute error

0.0000 0.000000000000 0.000000000217 2.1737e–10
0.0915 0.000574431275 0.000574468625 3.7350e–08
0.1518 0.002134568612 0.002134627307 5.8695e–08
0.2410 0.006120352774 0.006120441263 8.8489e–08
0.3604 0.012248409908 0.012248522843 1.1293e–07
0.5000 0.015625000000 0.015625106969 1.0697e–07
0.6395 0.012252859500 0.012252970047 1.1055e–07
0.7590 0.006120352774 0.006120442154 8.9380e–08
0.8482 0.002134568612 0.002134628711 6.0099e–08
0.9084 0.000576126428 0.000576167078 4.0650e–08
1.0000 0.000000000000 0.000000000129 1.2915e–10

the approximate solution is plotted in Fig. 1(b). In spite of using fewer points, we can see
that the proposed LS-SVM algorithm could have a much better performance in terms of
accuracy. The mean squared error is 6.5732 × 10–15 and the maximum absolute error is
approximately 1.1063 × 10–7.

Table 1 lists the results of the exact solution and the approximate solution via our pro-
posed LS-SVM algorithm for 11 testing points at unequal intervals in the domain [0, 1].
The absolute errors are shown in Table 1, in which we can see that the maximum absolute
error is approximately 1.1293 × 10–7.

Figure 2 shows the logarithmic relation between the kernel bandwidth and the RMSE in
Example 1. The red circle indicates the location of selected kernel bandwidth.

5.2 Example 2
Let us consider the fourth-order linear ordinary differential equation [34]:

d4y
dx4 = 120x, x ∈ [–1, 1], (35)

subject to two-point boundary conditions y(–1) = 1, y′(–1) = 5, y(1) = 3, y′(1) = 5. The
analytic solution is y = x5 + 2.

The proposed LS-SVM model has been trained with 11 equidistant points in the given
interval [–1, 1]. Figure 3(a) shows comparison between the exact solution and the approx-
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Figure 2 The logarithmic relation between σ and
RMSE (Example 1)

Figure 3 Two-point BVP of fourth-order linear ODE (Example 2)

imate solution via our proposed LS-SVM algorithm, and Fig. 3(b) depicts the error plot
between the analytic solution and the approximate solution. From the obtained results, we
can see that the mean squared error is 6.5835 × 10–12 and the maximum absolute error
is approximately 3.7390 × 10–6. The error obtained by the proposed LS-SVM algorithm
remains low for the training points.

Finally, the test results of the exact solution and the approximate solution via our pro-
posed LS-SVM algorithm for 11 equidistant points in the domain [–1, 1] are listed in Ta-
ble 2. The absolute errors are shown in Table 2, in which we can see that the maximum
absolute error is approximately 3.7071 × 10–6. It is clear that the proposed LS-SVM algo-
rithm has a better performance in terms of accuracy.

5.3 Example 3
Consider the fourth-order linear ordinary differential equation [52]:

d4y
dx4 + y(x) =

((
π

2

)4

+ 1
)

cos

(
π

2
x
)

, x ∈ [–1, 1], (36)

subject to two-point boundary conditions y(–1) = 0, y′(–1) = π/2, y(1) = 0, y′(1) = –π/2.
The analytic solution is y = cos(πx/2).
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Table 2 Comparison between the exact solution and the LS-SVM solution (Example 2)

x Exact solution LS-SVM solution Absolute error

–1.000 1.000000000000 0.999999999445 5.5479e–10
–0.815 1.640426196740 1.640428927360 2.7306e–06
–0.630 1.900756345700 1.900760018292 3.6726e–06
–0.445 1.982549814222 1.982553400148 3.5859e–06
–0.260 1.998811862400 1.998814089420 2.2270e–06
–0.075 1.999997626953 1.999998222454 5.9550e–07
0.1100 2.000016105100 2.000015225700 8.7940e–07
0.2950 2.002234138434 2.002231597236 2.5412e–06
0.4800 2.025480396800 2.025476689675 3.7071e–06
0.6650 2.130049362166 2.130045793200 3.5690e–06
0.8500 2.443705312500 2.443702978729 2.3338e–06

Figure 4 Two-point BVP of fourth-order linear ODE (Example 3)

The proposed LS-SVM algorithm for two-point boundary value problems of high-order
linear ordinary differential equation has been trained with 11 equidistant points in the
given interval [–1, 1]. Comparison between the exact solution and the approximate solu-
tion via our proposed LS-SVM algorithm is depicted in Fig. 4(a). Plot of the error function
is cited in Fig. 4(b), from which we can see that the mean squared error is 2.6426 × 10–18

and the maximum absolute error is approximately 2.5670×10–9. The accuracy of the error
obtained by the proposed LS-SVM algorithm is O(10–9). The results reveal that the pro-
posed LS-SVM algorithm has higher accuracy, although we only choose 11 equidistant
points for training process.

Finally, Table 3 incorporates results of the exact solution and the approximate solution
via our proposed LS-SVM algorithm for 11 testing points at unequal intervals in the do-
main [–1, 1]. The absolute errors are shown in Table 3, in which we can see that the max-
imum absolute error is approximately 2.5543 × 10–9.

5.4 Example 4
Consider the third-order nonlinear ordinary differential equation [15]:

d3y
dx3 = –y2 – cos(x) + sin2(x), x ∈ [0, 1], (37)
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Table 3 Comparison between the exact solution and the LS-SVM solution (Example 3)

x Exact solution LS-SVM solution Absolute error

–1.000 0.000000000000000 0.000000000007191 7.19075e–12
–0.815 0.286524552727799 0.286524553452789 7.24991e–10
–0.630 0.549022817998132 0.549022819226559 1.22843e–09
–0.445 0.765483213493088 0.765483215882123 2.38904e–09
–0.260 0.917754625683981 0.917754628118062 2.43408e–09
–0.075 0.993068456954926 0.993068458430696 1.47577e–09
0.1100 0.985109326154774 0.985109327779211 1.62444e–09
0.2950 0.894544639838025 0.894544642393205 2.55518e–09
0.4800 0.728968627421412 0.728968629629382 2.20797e–09
0.6650 0.502265533143373 0.502265534200269 1.05690e–09
0.8500 0.233445363855905 0.233445364490761 6.34856e–10

Figure 5 Multi-point BVP of third-order nonlinear ODE (Example 4)

subject to multi-point boundary conditions y′(0) = 1, y( 1
2 ) = sin( 1

2 ), y′(1) = cos(1). The an-
alytic solution is y = sin(x).

When 11 equidistant points in the interval [0, 1] are used for training, the results are
depicted in Fig. 5(a). Figure 5(b) shows the errors between the exact solution and the ap-
proximate solution obtained by the proposed LS-SVM algorithm. From the obtained re-
sults, although training was performed just for 11 equidistant points in the domain [0, 1],
the mean squared error is approximately 4.3564×10–7. The proposed LS-SVM algorithm
obtains a satisfactory result for multi-point boundary value problems of third-order non-
linear ordinary differential equation.

Finally, Table 4 tabulates results of the exact solution and the approximate solution via
our proposed LS-SVM algorithm for 11 testing points at unequal intervals in the domain
[0, 1]. The absolute errors are shown in Table 4, in which we can see that the mean squared
error is approximately 4.9717 × 10–7.

5.5 Example 5
Consider the fourth-order linear ordinary differential equation:

d4y
dx4 +

dy
dx

= 4x3 + 24, x ∈ [0, 1], (38)
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Table 4 Comparison between the exact solution and the LS-SVM solution (Example 4)

x Exact solution LS-SVM solution Absolute error

0.0000 0.000000000 0.000766592 7.6659e–04
0.0915 0.091372377 0.090633366 7.3901e–04
0.1518 0.151217677 0.150527278 6.9040e–04
0.2410 0.238673845 0.238098672 5.7517e–04
0.3604 0.352648564 0.352301106 3.4746e–04
0.5000 0.479425539 0.479425539 6.2766e–13
0.6395 0.596794319 0.597180775 3.8646e–04
0.7590 0.688196265 0.688892884 6.9662e–04
0.8482 0.750091219 0.750973103 8.8188e–04
0.9084 0.788520736 0.789490968 9.7023e–04
1.0000 0.841470985 0.842497209 0.1026e–04

Figure 6 Multi-point BVP of third-order linear ODE (Example 5)

subject to multi-point boundary conditions y(0) = 0, y′′′(0.25) = 6, y′′(0.5) = 3, y(1) = 1. The
analytic solution is y = x4.

When 21 equidistant points in the interval [0, 1] are used for training, the approximate
solution obtained by the proposed LS-SVM algorithm is compared with the exact solution
in Fig. 6(a), and the error is plotted in Fig. 6(b). From which, the mean squared error is
approximately 2.2915 × 10–10. The proposed LS-SVM algorithm can obtain the desired
accuracy, although the training was performed using just a small part points in the domain
[0, 1].

The test results of the exact solution and the approximate solution via our proposed
LS-SVM algorithm for 20 equidistant points in the domain [0, 1] are listed in Table 5, and
the absolute error is also calculated in Table 5. We can see that the mean squared error is
approximately 2.3557 × 10–10 and the maximum absolute error is approximately 2.7702 ×
10–5. The improved LS-SVM algorithm has a good performance for solving multi-point
boundary value problems of fourth-order linear ordinary differential equations.

6 Conclusion
In this paper, the improved LS-SVM algorithms have been developed for solving two-point
and multi-point boundary value problems of high-order linear and nonlinear ordinary dif-
ferential equations. Accuracy of the improved LS-SVM algorithms has been checked by
solving a fourth-order nonlinear ordinary differential equation with two-point boundary
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Table 5 Comparison between exact solution and LS-SVM solution (Example 5)

x Exact solution LS-SVM solution x Exact solution LS-SVM solution

0.000 0.000000000000 0.000000000000 0.525 0.075969140625 0.075975418091
0.075 0.000031640625 0.000044822693 0.575 0.109312890625 0.109313011169
0.125 0.000244140625 0.000263214111 0.625 0.152587890625 0.152583122253
0.175 0.000937890625 0.000963211060 0.675 0.207594140625 0.207587242126
0.225 0.002562890625 0.002589225769 0.725 0.276281640625 0.276272773743
0.275 0.005719140625 0.005746841431 0.775 0.360750390625 0.360743522644
0.325 0.011156640625 0.011182785034 0.825 0.463250390625 0.463246345520
0.375 0.019775390625 0.019799232483 0.875 0.586181640625 0.586181640625
0.425 0.032625390625 0.032644271851 0.925 0.732094140625 0.732098579407
0.475 0.050906640625 0.050920486450 1.000 1.000000000000 1.000000000000

conditions, two fourth-order linear ordinary differential equations with two-point bound-
ary conditions, a three-order nonlinear ordinary differential equation with multi-point
boundary conditions, and a fourth-order linear ordinary differential equation with multi-
point boundary conditions. The results obtained by the improved LS-SVM algorithms
are compared with the exact solution. It has been noted that our proposed LS-SVM algo-
rithms can solve two-point and multi-point boundary value problems of high-order lin-
ear and nonlinear ordinary differential equations with higher accuracy in the tables and
graphs. So the improved LS-SVM algorithms in the use of the two-point and multi-point
boundary value problems are found to be efficient and straightforward.
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