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Abstract
In this paper, we consider a predator-prey model with prey impulsive diffusion and
dispersal delay. By utilizing the dynamical properties of a single-species model with
diffusion and dispersal delay between two patches and the comparison principle of
impulsive differential equations, we establish the sufficient conditions on the global
attractivity of predator-extinction periodic solution and the permanence of species
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1 Introduction
Ecosystems are characterized by the interaction between different species and natural en-
vironment. One of the important types of interaction, which has effect on population dy-
namics, is predation. Thus, predator-prey models have been the focus of ecological sci-
ence since the early days of this discipline [1]. Since the great work of Lotka (in 1925) and
Volterra (in 1926), modeling predator-prey interaction has been one of the central themes
in mathematical ecology [2, 3].

Owing to severe competition, natural enemy, or deterioration of the patch environment,
the migration phenomena of biological species can often occur between heterogeneous
spatial environments and patches. More recently, increasing attention has been paid to the
dynamics of a large number of mathematical models with diffusion, and many nice results
have been obtained. The persistence and extinction for ordinary differential equation and
delayed differential equation models were investigated in [4–6]. Global stability of periodic
solution for the model with diffusion was studied in [7–12]. Particularly, the predator-
prey system with the prey dispersal was also studied in [13–17]. Regretfully, in all of the
above population dispersing systems, they always assumed that the dispersal occurs at
every time. For example, Zhang and Teng investigated the following periodic predator-
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prey Lotka–Volterra type system with prey dispersal in n patches in [14]:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ1(t) = x1(t)[a1(t) – b1(t)x1(t) – c(t)y(t)]

+
∑n

j=1 d1j(t)(xj(t) – x1(t)),

ẋi(t) = xi(t)[ai(t) – bi(t)xi(t)] +
∑n

j=1 dij(t)(xj(t) – xi(t)),

ẏ(t) = y(t)[–e(t) + f (t)x1(t)], i = 2, 3, . . . , n,

(1.1)

where e(t) denotes the death rate of the predator, dij(t) (i, j ∈ I, i �= j) represents the dispersal
rate of the prey species from the ith patch to the jth patch. Sufficient conditions on the
boundedness, permanence, and existence of a positive periodic solution for system (1.1)
are established.

Actually, many man-made factors (e.g., drought, hunting, harvesting, breeding, fire, etc.)
always lead to rapid increase or decrease of population number at some transitory time
slots. These short-term perturbations were often assumed to be in the form of impulses.
For example, birds often migrate between patches in winter to find suitable environments.
Impulsive differential equations [18] have attracted the interest of researchers, and many
important studies have been performed [19–23].

It is well known that time delay is quite common for a natural population. Therefore, it
is necessary to take the effect of time delay into account in forming a biologically mean-
ingful mathematical model. Recently, many impulsive predator-prey models with disper-
sion and time delay have been investigated in [24–28]. For example in [24], Li and Zhang
proposed and studied the following delayed predator-prey system with impulsive diffu-
sion:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = x1(t)[r1 – a1x1(t)] – βx1(t)y(t),

ẋ2(t) = –r2x2(t), t �= nT ,

ẏ(t) = y(t)[–d1 + kβx1(t – τ1) – a2y(t – τ2)],

�x1(t) = d21x2(t) – d12x1(t),

�x2(t) = d12x1(t) – d21x2(t)], t = nT ,

�y(t) = 0,

(1.2)

with the initial conditions

x1(s) = φ1(s), x2(s) = φ2(s),

y(s) = φ3(s), τ = max{τ1, τ2},
φ =

(
φ1(s),φ2(s),φ3(s)

)T ∈ C
(
[–τ , 0], R3

+
)
, φi(0) > 0, i = 1, 2, 3.

In system (1.2), they assumed that the ecosystem was composed of two isolated patches
and the breeding area was damaged in patch 2. By using comparison theorem of impul-
sive differential equation and some analysis techniques, they got the global attractivity of
predator-extinction periodic solution and permanence of the system.
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Many single species models with impulsive diffusion and dispersal delay have been in-
vestigated, too. In [20], the authors studied a single species model with symmetric bidi-
rectional impulsive diffusion and dispersal delay:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ṅ1(t) = r1N1(t) ln k1
N1(t) ,

Ṅ2(t) = r2N2(t) ln k2
N2(t) ,

t �= nT ,

�N1(t) = d1[N2(t – τ0) – N1(t)],

�N2(t) = d2[N1(t – τ0) – N2(t)],
t = nT ,

(1.3)

where ri (i = 1, 2) stands for the intrinsic growth rate of the population Ni, and di represents
the dispersal rate in the ith patch. τ0 is the time delay, that is, a period of time of species Ni

disperse between patches (τ0 < T ). Sufficient criteria were obtained for the permanence,
existence, uniqueness, and global stability of positive periodic solutions by using discrete
dynamical system theory.

Motivated by the above analysis, in this paper, based on system (1.3), we consider a
predator-prey model with prey symmetric bidirectional impulsive diffusion and disper-
sal delay between two patches:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṅ1(t) = r1N1(t) ln k1
N1(t) ,

Ṅ2(t) = N2(t)[r2 ln k2
N2(t) – c1y(t)], t �= nT ,

ẏ(t) = y(t)[–r3 + c2N2(t – τ1) – c3y(t – τ2)],

�N1(t) = d1[N2(t – τ0) – N1(t)],

�N2(t) = d2[N1(t – τ0) – N2(t)], t = nT , n = 1, 2, . . . ,

�y(t) = 0,

(1.4)

with the initial conditions

N1(s) = φ1(s), N2(s) = φ2(s),

y(s) = φ3(s), τ = max{τ0, τ1, τ2},
φ =

(
φ1(s),φ2(s),φ3(s)

)T ∈ C
(
[–τ , 0], R3

+
)
, φi(0) > 0, i = 1, 2, 3,

where Ni(t) (i = 1, 2) denotes the density of the prey species in the ith patch at time t; y(t)
denotes the density of the predator species at time t. Predator species is confined to the
second patch while the prey species can disperse between two patches. τ0 is a positive
constant (τ0 < T ), which represents the time for the species to disperse between patches.
τ1 ≥ 0 is a constant delay due to the gestation of the predator. The term –c3y(t – τ2) is the
negative feedback of predator crowding. We will use methods similar to those of [24] to
analyze our predator-prey model with prey symmetric bidirectional impulsive diffusion
and dispersal delay.
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2 Preliminaries
Firstly, for simplicity and convenience, we let x1 = N1

k1
, x2 = N2

k2
, k = k2

k1
, then system (1.4)

can be written as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = r1x1(t) ln 1
x1(t) ,

ẋ2(t) = x2(t)[r2 ln 1
x2(t) – c1y(t)], t �= nT ,

ẏ(t) = y(t)[–r3 + k2c2x2(t – τ1) – c3y(t – τ2)],

�x1(t) = d1[kx2(t – τ0) – x1(t)],

�x2(t) = d2[ 1
k x1(t – τ0) – x2(t)], t = nT , n = 1, 2, . . . .

�y(t) = 0,

(2.1)

Next, we discuss the dynamical behaviors of the following single species model:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

v̇1(t) = r1v1(t) ln 1
v1(t) ,

v̇2(t) = r2v2(t) ln 1
v2(t) ,

t �= nT ,

�v1(t) = d1[kv2(t – τ0) – v1(t)],

�v2(t) = d2[ 1
k v1(t – τ0) – v2(t)],

t = nT .

(2.2)

We introduce the following assumptions for system (2.2):
(H1) 0 < d1 + d2 < 1,
(H2) b1 + b2 + d1 ≤ 1,
(H3) 1 – bi ≤ (1 – bieriτ0 )e(r1+r2)τ0 , i = 1, 2,

where bi = e–riT .

Lemma 2.1 ([20]) Suppose that assumptions (H1)–(H3) hold, then system (2.2) has a
unique globally attractive positive T-periodic solution (v∗

1(t), v∗
2(t)), that is,

lim
t→∞

(
v1(t), v2(t)

)
=

(
v∗

1(t), v∗
2(t)

)
.

Next, we consider the following system:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

v̇1α(t) = r1v1α(t) ln 1
v1α (t) ,

v̇2α(t) = v2α(t)[r2 ln 1
v2α (t) – α],

t �= nT ,

�v1α(t) = d1[kv2α(t – τ0) – v1α(t)],

�v2α(t) = d2[ 1
k v1α(t – τ0) – v2α(t)],

t = nT ,

(2.3)

where α is a positive constant.
Let u1(t) = v1α(t), u2(t) = e

α
r2 v2α(t), then system (2.3) is transformed into the following

form:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u̇1(t) = r1u1(t) ln 1
u1(t) ,

u̇2(t) = r2u2(t) ln 1
u2(t) ,

t �= nT ,

�u1(t) = d1[k∗u2(t – τ0) – u1(t)],

�u2(t) = d2[ 1
k∗ u1(t – τ0) – u2(t)],

t = nT ,

(2.4)

where k∗ = ke– α
r2 .
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Therefore system (2.3) has the following result as system (2.2).

Lemma 2.2 Suppose that assumptions (H1)–(H3) hold, then system (2.3) has a unique
globally attractive positive T-periodic solution (v∗

1α(t), v∗
2α(t)), that is,

lim
t→∞

(
v1α(t), v2α(t)

)
=

(
v∗

1α(t), v∗
2α(t)

)
.

Definition 2.1 For any positive solution (x1(t), x2(t), y(t)) of system (2.1), if there are pos-
itive constants m and M such that

m ≤ xi(t) ≤ M, m ≤ y(t) ≤ M, i = 1, 2, as t → ∞,

then system (2.1) is said to be permanent.

Lemma 2.3 ([29]) Assume that for y(t) > 0, t ≥ 0, it holds that

ẏ(t) ≤ y(t)
(
a – by(t – τ )

)
(2.5)

with initial conditions, y(s) = φ(s) ≥ 0 for s ∈ [–τ , 0], where a, b are positive constants. Then

lim sup
t→+∞

y(t) ≤ aeaτ

b
. (2.6)

3 Main results
Theorem 3.1 Suppose that assumptions (H1)–(H3) hold. If

(H4) k2c2 mint∈[0,T] v∗
2(t) > r3,

then system (2.1) is permanent.

Proof We first prove the ultimate boundedness of all positive solutions of system (2.1). Let
(x1(t), x2(t), y(t)) be any positive solution of system (2.1). Then we obtain

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ1(t) = r1x1(t) ln 1
x1(t) ,

ẋ2(t) ≤ r2x2(t) ln 1
x2(t) ,

t �= nT ,

�x1(t) = d1[kx2(t – τ0) – x1(t)],

�x2(t) = d2[ 1
k x1(t – τ0) – x2(t)],

t = nT ,

(3.1)

for all t > τ0. Consider the auxiliary system (2.2). From Lemma 2.1 and the comparison
theorem of impulsive differential equations, we have that, for any constant ε > 0 small
enough, there is T0 > 0 such that

xi(t) ≤ vi(t) < v∗
i (t) + ε ≤ max

t∈[0,T]
v∗

i (t) + ε � Mi, i = 1, 2, (3.2)

for all t ≥ T0. Hence, from the third equation of (2.1) and (3.2), we have

ẏ(t) ≤ y(t)
[
–r3 + k2c2M2 – c3y(t – τ2)

]
, t ≥ T0 + τ .



Wan and Jiang Advances in Difference Equations        (2019) 2019:191 Page 6 of 11

By Lemma 2.3, we can obtain

y(t) ≤ –r3 + k2c2M2

c3
e(–r3+c2k2M2)τ2 � M3, t ≥ T0 + τ , (3.3)

where –r3 + k2c2M2 > 0 can be easily obtained by (H4). Take M = max{M1, M2, M3}, then
xi(t) ≤ M, y(t) ≤ M, i = 1, 2, t ≥ T0 + τ .

The proof of the permanence of species x is simple. In fact, let (x1(t), x2(t), y(t)) be any
positive solution of system (2.1), then from systems (2.1) and (3.3) we obtain

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ1(t) = r1x1(t) ln 1
x1(t) ,

ẋ2(t) ≥ x2(t)[r2 ln 1
x2(t) – α],

t �= nT ,

�x1(t) = d1[kx2(t – τ0) – x1(t)],

�x2(t) = d2[ 1
k x1(t – τ0) – x2(t)],

t = nT ,

(3.4)

where α = c1M3. Consider the auxiliary system (2.3). From Lemma 2.2 and the comparison
theorem of impulsive differential equations, we obtain that, for above ε > 0, there exist
T1 ≥ T0 + τ such that

xi(t) ≥ viα(t) > v∗
iα(t) – ε ≥ min

t∈[0,T]
v∗

iα(t) – ε � mi, i = 1, 2. (3.5)

This shows that species xi (i = 1, 2) are permanent in system (2.1).
Now, in system (2.1) we prove the permanence of species y. From assumption (H4), we

take a constant ε0 > 0 small enough such that

δ � k2c2

(
min

t∈[0,T]
v∗

2(t) – ε0

)
– c3ε0 – r3 > 0. (3.6)

For any constant α > 0, according to assumptions (H1)–(H3), we have that system (2.3)
has a unique globally attractive positive T-periodic solution (v∗

1α(t), v∗
2α(t)). Since system

(2.3) is periodic, we obtain that (v∗
1α(t), v∗

2α(t)) is globally uniformly attractive. Hence, for
above ε0 and M, there is a constant T∗ = T∗(ε0, M) > 0 such that, for any initial value
(t0, v1α(t0), v2α(t0)) with t0 ≥ 0 and 0 < viα(t0) ≤ M (i = 1, 2), we have

∣
∣viα(t) – v∗

iα(t)
∣
∣ <

ε0

2
for all t ≥ t0 + T∗. (3.7)

Therefore, we further have

viα(t) > v∗
iα(t) –

ε0

2
for all t ≥ t0 + T∗. (3.8)

By the continuity of solutions with respect to parameters, there is α0 ∈ (0, ε0) such that

∣
∣v∗

iα0 (t) – v∗
i (t)

∣
∣ <

ε0

2
for all t ∈ R. (3.9)

We further have

v∗
iα0 (t) ≥ v∗

i (t) –
ε0

2
, t ≥ 0. (3.10)
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Let ε1 = min{ α0
c1

, ε0}. There are three cases as follows for species y(t).
Case 1. For all t ≥ T2, there is a constant T2 ≥ T1 such that y(t) ≤ ε1.
Case 2. For all t ≥ T2, there is a constant T2 ≥ T1 such that y(t) ≥ ε1.
Case 3. There is an interval sequence {[sk , tk]} with T1 ≤ s1 < t1 < s2 < t2 < · · · < sk <

tk < · · · and limk→∞ sk = ∞ such that y(t) ≤ ε1 for all t ∈ ⋃∞
k=1[sk , tk], y(t) ≥ ε1 for all

t /∈ ⋃∞
k=1(sk , tk), and y(sk) = y(tk) = ε1.

For Case 1, from system (2.1), we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ1(t) = r1x1(t) ln 1
x1(t) ,

ẋ2(t) ≥ x2(t)[r2 ln 1
x2(t) – α0],

t �= nT ,

�x1(t) = d1[kx2(t – τ0) – x1(t)],

�x2(t) = d2[ 1
k x1(t – τ0) – x2(t)],

t = nT .

(3.11)

Consider the auxiliary system (2.3). From Lemma 2.2, (3.8), (3.10), and the comparison
theorem of impulsive differential equations, we have that

xi(t) ≥ viα0 (t) > v∗
iα0 (t) –

ε0

2
≥ v∗

i (t) – ε0 ≥ min
t∈[0,T]

v∗
i (t) – ε0, i = 1, 2, t ≥ T1 + T∗. (3.12)

Consider the third equation of system (2.1), we further obtain

ẏ(t) ≥ y(t)
[
–r3 + k2c2

(
min

t∈[0,T]
v∗

2(t) – ε0

)
– c3ε0

]
, t ≥ T1 + T∗ + τ . (3.13)

For any t = T2 + n1T , we choose an integer n1 ≥ 0, where T2 = T1 + T∗ + τ , and integrate
(3.13) from T2 to t, then from (3.6) we have

y(t) ≥ y(T2) exp
{[

–r3 + k2c2

(
min

t∈[0,T]
v∗

2(t) – ε0

)
– c3ε0)

]
(t – T2)

}

= y(T2)en1Tδ . (3.14)

We have y(t) → ∞ as n1 → ∞, which leads to a contradiction.
We now consider Case 3. For any t ≥ T1, when t ∈ ⋃∞

k=1[sk , tk], then t ∈ [sk , tk] for some k.
Assume tk – sk ≤ T∗. Since for any t ∈ [sk , tk]

ẏ(t) ≥ y(t)(–r3 – c3ε0), (3.15)

then we obtain

y(t) ≥ y(sk) exp
{

–(r3 + c3ε0)T∗}

= ε1 exp
{

–(r3 + c3ε0)T∗}

� m∗. (3.16)

Assume tk – sk ≥ T∗. For any t ∈ [sk , tk], if t ≤ sk + T∗, then according to the above dis-
cussion on the case of tk – sk ≤ T∗, we obtain inequality (3.16). Particularly, we have
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y(sk + T∗) ≥ m∗. Since y(t) ≤ ε1 for all t ∈ [sk , tk], then according to the discussion on
Case 1, we have inequality (3.13). For any t ∈ [sk + T∗, tk], we choose an integer n2 ≥ 0
such that t ∈ [sk + T∗ + n2T , sk + T∗ + (n2 + 1)T). Then integrating (3.13) from sk + T∗ to t,
we obtain

y(t) ≥ y
(
sk + T∗) exp

{∫ t

sk +T∗

[
–r3 + k2c2

(
min

t∈[0,T]
v∗

2(t) – ε0

)
– c3ε0)

]
dt

}

≥ m∗ exp

{∫ sk +T∗+n2T

sk +T∗

[
–r3 + k2c2

(
min

t∈[0,T]
v∗

2(t) – ε0

)
– c3ε0)

]
dt

+
∫ t

sk +T∗+n2T

[
–r3 + k2c2

(
min

t∈[0,T]
v∗

2(t) – ε0

)
– c3ε0)

]
dt

}

≥ m∗ exp

{∫ t

sk +T∗+n2T

[
–r3 + k2c2

(
min

t∈[0,T]
v∗

2(t) – ε0

)
– c3ε0)

]
dt

}

≥ m∗ exp
{

–(r3 + c3ε0)T
}

= ε1 exp
{

–(r3 + c3ε0)
(
T + T∗)}

� m3. (3.17)

From the above discussion, we obtain

y(t) ≥ m3 for all t ∈
∞⋃

k=1

[sk , tk]. (3.18)

For any t /∈ ⋃∞
k=1(sk , tk), we obviously have

y(t) ≥ ε1 > m3 for all t ≥ T1. (3.19)

Hence, for Case 3 we finally have

y(t) ≥ m3 for all t ≥ T1. (3.20)

Lastly, we consider Case 2. Since y(t) ≥ ε1 for any t ≥ T2, we obtain

y(t) ≥ m3 for all t ≥ T2. (3.21)

Therefore, we finally have

y(t) ≥ m3 for all t ≥ T2. (3.22)

Take m = min{m1, m2, m3}, then xi(t) ≥ m (i = 1, 2), y(t) ≥ m hold as t → +∞. This com-
pletes the proof. �

For system (2.1), if we let y(t) ≡ 0, then system (2.1) degenerates into system (2.2).
From Lemma 2.1 we know that system (2.2) has a unique globally attractive positive T-
periodic solution (v∗

1(t), v∗
2(t)). Therefore, system (2.1) has a nonnegative T-periodic solu-

tion (v∗
1(t), v∗

2(t), 0).
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Next, we present conditions to ensure the global attractivity of a nonnegative T-periodic
solution (v∗

1(t), v∗
2(t), 0) of system (2.1).

Theorem 3.2 Suppose that assumptions (H1)–(H3) hold. If
(H5) k2c2 maxt∈[0,T] v∗

2(t) ≤ r3,
then system (2.1) admits a predator-extinction periodic solution, which is globally attrac-
tive.

Proof From Theorem 3.1, for any ε > 0 small enough, we have

xi(t) ≤ vi(t) < v∗
i (t) + ε ≤ max

t∈[0,T]
v∗

i (t) + ε, i = 1, 2, t ≥ T0. (3.23)

According to assumption (H5), for any η1 > 0, there is η0 ∈ (ε,η1) such that

σ � k2c2

(
max

t∈[0,T]
v∗

2(t) + η0

)
– c3η1 – r3 < 0. (3.24)

From the third equation of system (2.1) and (3.23), we have

ẏ(t) ≤ y(t)
[
–r3 + k2c2

(
max

t∈[0,T]
v∗

2(t) + η0

)
– c3y(t – τ2)

]
, t ≥ T0 + τ . (3.25)

Assume y(t) ≥ η1 for all t > T0. From (3.25) we obtain

ẏ(t) ≤ y(t)
[
–r3 + k2c2

(
max

t∈[0,T]
v∗

2(t) + η0

)
– c3η1

]
, t ≥ T0 + τ . (3.26)

For any t ≥ T0 + τ , we choose an integer n3 ≥ 0 such that t ∈ [n3T + T0 + τ , (n3 + 1)T +
T0 + τ ). Then integrating (3.26) from T0 + τ to t, we have

y(t) ≤ y(T0 + τ ) exp

{∫ t

T0+τ

[
–r3 + k2c2

(
max

t∈[0,T]
v∗

2(t) + η0

)
– c3η1)

]
dt

}

≤ y(T0 + τ ) exp

{∫ n3T+T0+τ

T0+τ

[
–r3 + k2c2

(
max

t∈[0,T]
v∗

2(t) + η0

)
– c3η1)

]
dt

+
∫ (n3+1)T+T0+τ

n3T+T0+τ

[
–r3 + k2c2

(
max

t∈[0,T]
v∗

2(t) + η0

)
– c3η1)

]
dt

}

≤ y(T0 + τ ) exp{n3Tσ + λT}, (3.27)

where λ = k2c2(maxt∈[0,T] v∗
2(t)+η0). Since n3 → ∞ and σ < 0, then y(t) → 0 as t → ∞. This

leads to a contradiction. Hence, there is t1 > T0 such that y(t) ≤ η1. Since y(t) is continuous
for all t ≥ 0, if further exists t3 > t1 such that y(t3) > η1eλT , then there is t2 ∈ (t1, t3) such that
y(t2) = η1 and y(t) > η1 for any t ∈ (t2, t3]. When t ∈ [t2, t3], we can easy find that inequality
(3.26) holds. Further, we choose an integer n4 ≥ 0 such that t3 ∈ [t2 + n4T , t2 + (n4 + 1)T).
Integrating (3.26) from t2 to t3, we obtain

y(t) ≤ y(t2) exp

{∫ t3

t2

[
–r3 + k2c2

(
max

t∈[0,T]
v∗

2(t) + η0

)
– c3η1)

]
dt

}

= y(t2) exp

{∫ t2+n4T

t2

[
–r3 + k2c2

(
max

t∈[0,T]
v∗

2(t) + η0

)
– c3η1)

]
dt
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+
∫ t3

t2+n4T

[
–r3 + k2c2

(
max

t∈[0,T]
v∗

2(t) + η0

)
– c3η1)

]
dt

}

≤ η1eλT , (3.28)

which is a contradiction. So, we finally have

y(t) ≤ η1eλT for any t > T0. (3.29)

Since η1 is arbitrary and λ is a constant, from (3.29) we have

lim
t→∞ y(t) = 0. (3.30)

Therefore, for any ε2 ≥ 0 small enough, there is T3 > T0 such that 0 < y(t) < ε2, t > T3.
For the second equation of system (2.1), we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ1(t) = r1x1(t) ln 1
x1(t) ,

ẋ2(t) ≥ x2(t)[r2 ln 1
x2(t) – α1],

t �= nT ,

�x1(t) = d1[kx2(t – τ0) – x1(t)],

�x2(t) = d2[ 1
k x1(t – τ0) – x2(t)],

t = nT ,

(3.31)

where α1 = c1ε2. Consider the auxiliary system (2.3). From Lemma 2.2 and the comparison
theorem of impulsive differential equations, we obtain that, for above ε, there is T4 > 0 such
that

xi(t) ≥ viα1 (t) > v∗
iα1 (t) –

ε0

2
≥ v∗

i (t) – ε0, i = 1, 2, t ≥ T4. (3.32)

Combining (3.23), (3.30), and (3.32), we have

xi(t) → v∗
i (t), y(t) → 0, i = 1, 2, t → ∞. (3.33)

That is, system (2.1) admits a predator-extinction periodic solution, which is globally at-
tractive. The proof of Theorem 3.2 is completed. �

Remark 3.1 In this paper, we have proposed a predator-prey model with prey impulsive
diffusion and dispersal delay. By using the comparison theorem of impulsive differential
equation and other analysis methods, we have established a set of easily verifiable suf-
ficient conditions on the global attractivity of the predator-extinction periodic solution
and the permanence of species. The highlight of this paper is that we considered the prey
with impulsive diffusion and dispersal delay. However, we only discussed the case of the
predator-prey model with prey impulsive diffusion in two patches. For this model with
prey impulsive diffusion in multiple patches, the results that can be obtained are still im-
portant and interesting open problems.
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