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Abstract
A class of stochastic Runge–Kutta–Nyström (SRKN) methods for the strong
approximation of second-order stochastic differential equations (SDEs) are proposed.
The conditions for strong convergence global order 1.0 are given. The symplectic
conditions for a given SRKN method to solve second-order stochastic Hamiltonian
systems with multiplicative noise are derived. Meanwhile, this paper also proves that
the stochastic symplectic Runge–Kutta–Nyström (SSRKN) methods conserve the
quadratic invariants of underlying SDEs. Some low-stage SSRKN methods with strong
global order 1.0 are obtained by using the order and symplectic conditions. Then the
methods are applied to three numerical experiments to verify our theoretical analysis
and show the efficiency of the SSRKN methods over long-time simulation.
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1 Introduction
Stochastic differential equations (SDEs) have been widely used in many fields such as bi-
ology, economics, physics and finance (see, e.g., [1–3]) when modeling dynamical phe-
nomenon with random perturbation. Generally, it is difficult to find explicit solutions of
SDEs analytically, so the construction of efficient numerical methods is of great signif-
icance. Many effective and reliable numerical methods have been designed for SDEs in
recent years, for example [4–14].

For some SDEs with specific properties, most general numerical methods may be inap-
propriate, especially in the case of preservation of geometric structures over long time for
the stochastic Hamiltonian systems

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dp = –( ∂H(p,q)
∂q )T dt – ( ∂H̃(p,q)

∂q )T ◦ dB(t), t ∈ [0, T],

dq = ( ∂H(p,q)
∂p )T dt + ( ∂H̃(p,q)

∂p )T ◦ dB(t), t ∈ [0, T],

p(0) = p0 ∈R
d,

q(0) = q0 ∈R
d,

(1.1)
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which are given in the Stratonovich sense, where H(p, q) and H̃(p, q) are two sufficiently
smooth functions, B(t) is a standard one-dimensional Brownian motion defined on the
complete probability space (Ω ,F ,P) with a filtration {Ft}t∈[0,T] satisfying the usual con-
ditions. The solution of (1.1) is a phase flow almost surely. A good study of its properties
can be found in [15]. Consider the differential two-form

ω2 = dp ∧ dq = dp1 ∧ dq1 + dp2 ∧ dq2 + · · · + dpd ∧ dqd. (1.2)

It turns out that the phase flows of (1.1) preserve the symplectic structure [16], i.e.,

dp(t) ∧ dq(t) = dp0 ∧ dq0, ∀t ∈ [0, T]. (1.3)

Motivated by this, it is natural to search for numerical methods that inherit this property.
A numerical method with approximation (Pn, Qn) is symplectic provided

dPn+1 ∧ dQn+1 = dPn ∧ dQn. (1.4)

Second-order stochastic Hamiltonian systems driven by Gaussian noises are significant
in scientific applications [17], which can describe the classical Hamiltonian systems per-
turbed by random forces. In [18], the authors construct stochastic symplectic Runge–
Kutta methods of mean-square order 2.0 for second-order stochastic Hamiltonian sys-
tems with additive noise by means of colored rooted tree theory. Much work has been
done on designing stochastic symplectic Runge–Kutta methods and stochastic symplec-
tic partitioned Runge–Kutta methods to solve stochastic Hamiltonian systems in recent
years [19, 20], which could be viewed as a stochastic generalization of the determinis-
tic Runge–Kutta methods. Considering the importance of deterministic Runge–Kutta–
Nyström (RKN) methods in solving second-order ordinary differential equations, this pa-
per focuses on the extension of RKN methods to d-dimensional second-order SDEs with
multiplicative noise

⎧
⎨

⎩

ÿ(t) – f (y(t)) – g(y(t)) ◦ ξ (t) = 0, t ∈ [0, T],

y(0) = y0 ∈R
d, ẏ(0) = z0 ∈R

d,
(1.5)

where ξ (t) is a scalar white noise process. Here f (y), g(y) : Rd �→ R
d are both Borel mea-

surable. Throughout this work, we use the usual notation “◦” to interpret (1.5) in the
Stratonovich sense.

The remainder of this paper is organized as follows. Section 2 discusses the order condi-
tions of stochastic Runge–Kutta–Nyström (SRKN) methods. In Sect. 3, the SRKN meth-
ods are applied to solve second-order stochastic Hamiltonian systems with multiplica-
tive noise and symplectic conditions of the SRKN methods are discussed. Section 4 is de-
voted to discussing the conservation of quadratic invariants of the underlying SDEs under
the SRKN discretization. In Sect. 5, as an application of the main results, some low-stage
stochastic symplectic Runge–Kutta–Nyström (SSRKN) methods with strong global order
1.0 are constructed. Finally, numerical experiments are presented in Sect. 6.
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2 The SRKN methods and their order conditions
The second-order SDE (1.5) describes the position of a particle subject to deterministic
forcing f (y) and random forcing ξ (t) [21]. By introducing a new variable z(t) = ẏ(t), (1.5)
can be written as a pair of first-order Stratonovich type SDEs for y(t) and z(t), the position
and velocity variables:

⎧
⎪⎪⎨

⎪⎪⎩

dy(t) = z(t) dt, t ∈ [0, T],

dz(t) = f (y(t)) dt + g(y(t)) ◦ dB(t), t ∈ [0, T],

y(0) = y0 ∈R
d, z(0) = z0 ∈R

d.

(2.1)

Given a step size h > 0, a stochastic partitioned Runge–Kutta method [20] is applied
to compute the approximation (Yn, Zn) ≈ (y(tn), z(tn)) of (2.1), where tn = nh, by setting
(Y0, Z0) = (y0, z0) and forming

yi = Yn + h
s∑

j=1

āijzj, i = 1, 2, . . . , s,

zi = Zn + h
s∑

j=1

âijf (yj) + Jn

s∑

j=1

b̂ijg(yj), i = 1, 2, . . . , s,

Yn+1 = Yn + h
s∑

i=1

ᾱizi,

Zn+1 = Zn + h
s∑

i=1

α̃if (yi) + Jn

s∑

i=1

β̃ig(yi),

where Jn = B(tn+1) – B(tn) are independent N(0, h)-distributed Gaussian random variables.
Inserting the formula for zi into the others, we get

yi = Yn + h
s∑

j=1

āijZn + h2
s∑

j,k=1

āijâjk f (yk) + Jnh
s∑

j,k=1

āijb̂jkg(yk), i = 1, 2, . . . , s,

Yn+1 = Yn + h
s∑

i=1

ᾱiZn + h2
s∑

i,j=1

ᾱiâijf (yj) + Jnh
s∑

i,j=1

ᾱib̂ijg(yj),

Zn+1 = Zn + h
s∑

i=1

α̃if (yi) + Jn

s∑

i=1

β̃ig(yi).

Then we obtain the following definition:

γi =
s∑

j=1

āij, aij =
s∑

k=1

āikâkj, bij =
s∑

k=1

āikb̂kj,

s∑

i=1

ᾱi = 1, αi =
s∑

j=1

ᾱjâji, βi =
s∑

j=1

ᾱjb̂ji.
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Definition 2.1 Let γi, aij, bij, αi, βi, α̃i and β̃i be real coefficients, i, j = 1, 2, . . . , s. A SRKN
method for solving (2.1) is given by

yi = Yn + hγiZn + h2
s∑

j=1

aijf (yj) + Jnh
s∑

j=1

bijg(yj), i = 1, 2, . . . , s, (2.2)

Yn+1 = Yn + hZn + h2
s∑

i=1

αif (yi) + Jnh
s∑

i=1

βig(yi), (2.3)

Zn+1 = Zn + h
s∑

i=1

α̃if (yi) + Jn

s∑

i=1

β̃ig(yi). (2.4)

It is convenient to display the coefficients occurring in (2.2)–(2.4) in the following form,
known as a Butcher tableau:

γ A B

αT βT

α̃T β̃T

(2.5)

where

A =

⎛

⎜
⎜
⎜
⎝

a11 · · · a1s

a21 · · · a2s

· · · · · · · · ·
as1 · · · ass

⎞

⎟
⎟
⎟
⎠

, B =

⎛

⎜
⎜
⎜
⎝

b11 · · · b1s

b21 · · · b2s

· · · · · · · · ·
bs1 · · · bss

⎞

⎟
⎟
⎟
⎠

,

γ T = (γ1, . . . ,γs), αT = (α1, . . . ,αs), α̃T = (α̃1, . . . , α̃s),

βT = (β1, . . . ,βs), β̃T = (β̃1, . . . , β̃s).

To check the order conditions of the SRKN methods (2.2)–(2.4), one has to com-
pare the expansion of the one-step solutions generated by the SRKN methods with the
Stratonovich–Taylor expansion of the exact solution to Eq. (2.1). For simplicity of nota-
tions, we focus on d = 1 and the extension to multi-dimensional case (d > 1) is a similar
work.

By Taylor expansion, one shows

f (yi) = f (Yn) + f ′(Yn)

[

hγiZn + h2
s∑

j=1

aijf (yj) + Jnh
s∑

j=1

bijg(yj)

]

+ · · ·

= f (Yn) + hγif ′(Yn)Zn + h2
s∑

j=1

aijf ′(Yn)f (Yn)

+ Jnh
s∑

j=1

bijf ′(Yn)g(Yn) + · · · (2.6)

and

g(yi) = g(Yn) + g ′(Yn)

[

hγiZn + h2
s∑

j=1

aijf (yj) + Jnh
s∑

j=1

bijg(yj)

]

+ · · ·
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= g(Yn) + hγig ′(Yn)Zn + h2
s∑

j=1

aijg ′(Yn)f (Yn)

+ Jnh
s∑

j=1

bijg ′(Yn)g(Yn) + · · · . (2.7)

Substituting (2.6) and (2.7) into (2.3) and (2.4) yields

Yn+1 = Yn + hZn + h2
s∑

i=1

αif (yi) + Jnh
s∑

i=1

βig(yi)

= Yn + hZn + h2
s∑

i=1

αif (Yn) + Jnh
s∑

i=1

βig(Yn) + · · ·

= Yn + hZn + R1 (2.8)

and

Zn+1 = Zn + h
s∑

i=1

α̃if (yi) + Jn

s∑

i=1

β̃ig(yi)

= Zn + h
s∑

i=1

α̃if (Yn) + Jn

s∑

i=1

β̃ig(Yn) + Jnh
s∑

i=1

β̃iγig ′(Yn)Zn + · · ·

= Zn + h
s∑

i=1

α̃if (Yn) + Jn

s∑

i=1

β̃ig(Yn) + R2, (2.9)

where R1 and R2 is the remainder terms to (2.8) and (2.9), respectively, and |ER1| = O(h2),
E|R1|2 = O(h3), |ER2| = O(h2), E|R2|2 = O(h3).

Assuming (y(tn), z(tn)) = (Yn, Zn) and using the Stratonovich–Taylor expansion, we de-
rive

y(tn+1) = Yn + hZn + R3, (2.10)

where

R3 = f (Yn)
∫ tn+1

tn

∫ s

tn

dτ ds + g(Yn)
∫ tn+1

tn

∫ s

tn

◦dB(τ ) ds + · · ·

with |ER3| = O(h2) and E|R3|2 = O(h3).
Similar to the proof of (2.10), we conclude that

z(tn+1) = Zn + hf (Yn) + Jng(Yn) + R4 (2.11)

with |ER4| = O(h2) and E|R4|2 = O(h3).
As an application of Theorem 1.1 in [22], together with (2.8), (2.9), (2.10) and (2.11), we

can easily establish the following theorem.
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Theorem 2.2 Assume that the necessary coefficients of Stratonovich–Taylor expansion of
(2.1) are globally Lipschitz and satisfy the linear growth condition, and

s∑

i=1

α̃i = 1,
s∑

i=1

β̃i = 1. (2.12)

Then the SRKN methods (2.2)–(2.4) converge to the true solution of (2.1) with the strong
global order 1.0.

3 Symplectic conditions of the SRKN methods
In this section, we assume that there exist two sufficiently smooth real-valued functions
V (y) and H̃(y) such that ∂V (y)/∂y = f (y) and ∂H̃(y)/∂y = –g(y). Then (2.1) is a stochas-
tic Hamiltonian system determined by two sufficiently smooth real-valued functions
H(y, z) = zTz/2 – V (y) and H̃(y) over the phase space R

2d . Here, y0, z0, y, z, (∂H(y, z)/∂y)T,
(∂H(y, z)/∂z)T, (∂H̃(y)/∂y)T are d-dimensional column vectors with components yi

0, zi
0,

yi, zi, ∂H(y, z)/∂yi, ∂H(y, z)/∂zi, ∂H̃(y)/∂yi, i = 1, 2, . . . , d. Let T = +∞. It is shown that the
phase flows of (2.1) possess the property of preserving symplectic structure, i.e.,

dy(t) ∧ dz(t) = dy0 ∧ dz0, ∀t ≥ 0.

So it is natural to require that the SRKN method (2.2)–(2.4) inherits this property

dYn+1 ∧ dZn+1 = dYn ∧ dZn, ∀n ≥ 0.

Now we discuss the symplectic property of the SRKN method (2.2)–(2.4).

Theorem 3.1 Assume that the coefficients γi, aij, bij, αi, βi, α̃i and β̃i of (2.2)–(2.4) satisfy
the conditions

αi = α̃i(1 – γi), i = 1, 2, . . . , s,

βi = β̃i(1 – γi), i = 1, 2, . . . , s,

α̃i(αj – aij) = α̃j(αi – aji), i, j = 1, 2, . . . , s,

β̃i(αj – aij) = α̃j(βi – bji), i, j = 1, 2, . . . , s,

β̃i(βj – bij) = β̃j(βi – bji), i, j = 1, 2, . . . , s.

(3.1)

Then the SRKN method (2.2)–(2.4) is symplectic when applied to solve stochastic Hamilto-
nian systems (2.1) with H(y, z) and H̃(y).

Proof Introduce the temporary notations fi = f (yi), gi = g(yi). Differentiating (2.3) and
(2.4), we obtain

dYn+1 = dYn + h dZn + h2
s∑

i=1

αi dfi + Jnh
s∑

i=1

βi dgi,

dZn+1 = dZn + h
s∑

i=1

α̃i dfi + Jn

s∑

i=1

β̃i dgi.

(3.2)
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Then, by a straightforward computation, we have

dYn+1 ∧ dZn+1

= dYn ∧ dZn + h
s∑

i=1

α̃i dYn ∧ dfi + Jn

s∑

i=1

β̃i dYn ∧ dgi

+ h2
s∑

i=1

α̃i dZn ∧ dfi + Jnh
s∑

i=1

β̃i dZn ∧ dgi

+ h2
s∑

i=1

αi dfi ∧ dZn + h3
s∑

i,j=1

αiα̃j dfi ∧ dfj

+ Jnh2
s∑

i,j=1

αiβ̃j dfi ∧ dgj + Jnh
s∑

i=1

βi dgi ∧ dZn

+ Jnh2
s∑

i,j=1

βiα̃j dgi ∧ dfj + J2
n h

s∑

i,j=1

βiβ̃j dgi ∧ dgj. (3.3)

For i = 1, 2, . . . , s, differentiating (2.2), we know

dYn = dyi – hγi dZn – h2
s∑

j=1

aij dfj – Jnh
s∑

j=1

bij dgj. (3.4)

Note that for any i = 1, 2, . . . , s

dYn ∧ dfi = dyi ∧ dfi – hγi dZn ∧ dfi – h2
s∑

j=1

aij dfj ∧ dfi

– Jnh
s∑

j=1

bij dgj ∧ dfi,

dYn ∧ dgi = dyi ∧ dgi – hγi dZn ∧ dgi – h2
s∑

j=1

aij dfj ∧ dgi

– Jnh
s∑

j=1

bij dgj ∧ dgi.

(3.5)

Substituting (3.5) into (3.3) yields

dYn+1 ∧ dZn+1

= dYn ∧ dZn + h
s∑

i=1

α̃i

(

dyi ∧ dfi – hγi dZn ∧ dfi – h2
s∑

j=1

aij dfj ∧ dfi

– Jnh
s∑

j=1

bij dgj ∧ dfi

)

+ Jn

s∑

i=1

β̃i

(

dyi ∧ dgi – hγi dZn ∧ dgi

– h2
s∑

j=1

aij dfj ∧ dgi – Jnh
s∑

j=1

bij dgj ∧ dgi

)

+ h2
s∑

i=1

α̃i dZn ∧ dfi
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+ Jnh
s∑

i=1

β̃i dZn ∧ dgi + h2
s∑

i=1

αi dfi ∧ dZn + h3
s∑

i,j=1

αiα̃j dfi ∧ dfj

+ Jnh2
s∑

i,j=1

αiβ̃j dfi ∧ dgj + Jnh
s∑

i=1

βi dgi ∧ dZn + Jnh2
s∑

i,j=1

βiα̃j dgi ∧ dfj

+ J2
n h

s∑

i,j=1

βiβ̃j dgi ∧ dgj

= dYn ∧ dZn + h
s∑

i=1

α̃i dyi ∧ dfi + Jn

s∑

i=1

β̃i dyi ∧ dgi

+ h2
s∑

i=1

(α̃i – α̃iγi – αi) dZn ∧ dfi + Jnh
s∑

i=1

(β̃i – β̃iγi – βi) dZn ∧ dgi

+ Jnh2
s∑

i.j=1

(
α̃j(βi – bji) – β̃i(αj – aij)

)
dgi ∧ dfj

+ h3
∑

i<j

(
α̃j(αi – aji) – α̃i(αj – aij)

)
dfi ∧ dfj

+ J2
n h

s∑

i<j

(
β̃j(βi – bji) – β̃i(βj – bij)

)
dgi ∧ dgj. (3.6)

By virtue of the sufficiently smooth property of H(y, z), we have

∂f k
i

∂yj
i

–
∂f j

i

∂yk
i

= 0,
∂gk

i

∂yj
i

–
∂gj

i

∂yk
i

= 0, k, j = 1, 2, . . . , d.

It is easy to check that

dyi ∧ dfi =
d∑

k=1

dyk
i ∧ df k

i =
d∑

k=1

dyk
i ∧

d∑

j=1

∂f k
i

∂yj
i

dyj
i

=
d∑

k,j=1

∂f k
i

∂yj
i

dyk
i ∧ dyj

i =
∑

k<j

∂f k
i

∂yj
i

dyk
i ∧ dyj

i +
d∑

k>j

∂f k
i

∂yj
i

dyk
i ∧ dyj

i

=
∑

k<j

∂f k
i

∂yj
i

dyk
i ∧ dyj

i –
d∑

k>j

∂f k
i

∂yj
i

dyj
i ∧ dyk

i

=
∑

k<j

∂f k
i

∂yj
i

dyk
i ∧ dyj

i –
d∑

j>k

∂f j
i

∂yk
i

dyk
i ∧ dyj

i

=
∑

k<j

(
∂f k

i

∂yj
i

–
∂f j

i

∂yk
i

)

dyk
i ∧ dyj

i = 0. (3.7)

Similar to the proof of (3.7), we can deduce that

dyi ∧ dgi = 0. (3.8)
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Inserting (3.1), (3.7) and (3.8) into (3.6), we see that

dYn+1 ∧ dZn+1 = dYn ∧ dZn.

The proof is completed. �

In Sect. 5, we will give some concrete SRKN methods satisfying condition (3.1) for s =
1, 2.

Remark 3.2 If the coefficients of (2.2)–(2.4) satisfy

bij = βi = β̃i = 0, i, j = 1, 2, . . . , s,

then the SRKN methods reduce to a deterministic RKN method, and the symplectic con-
ditions (3.1) reduce to the symplectic conditions for deterministic RKN methods [23],

αi = α̃i(1 – γi), α̃i(αj – aij) = α̃j(αi – aji), i, j = 1, 2, . . . , s.

4 The preservation of the quadratic invariants
Quadratic invariants often appear in applications, for example, the conservation law of
angular momentum in N-body systems. It is natural to search for numerical methods that
preserve quadratic invariants. Many numerical experiments show that such numerical
methods not only produce an improved qualitative behavior, but also allow for a more
accurate long-time numerical simulation in comparison with general-purpose ones. Let
T = +∞.

Theorem 4.1 Let D be a d × d skew-symmetric matrix such that

yTDf (y) = yTDg(y) = 0

holds for any y ∈ R
d . Then system (2.1) possess a quadratic invariant Q(y, z) = yTDz, i.e.,

Q(y(t), z(t)) = Q(y0, z0).

Proof By applying the Stratonovich chain rule we have

dQ(y(t), z(t))
dt

= yT(t)Dż(t) +
(
Dz(t)

)Tẏ(t)

= yT(t)D
(
f
(
y(t)

)
+ g

(
y(t)

) ◦ Ḃ(t)
)

+ z(t)TDTz(t)

= yT(t)Df
(
y(t)

)
+ yT(t)Dg

(
y(t)

) ◦ Ḃ(t) – z(t)TDz(t)

= 0.

The proof is complete. �

Theorem 4.2 Let (Yn, Zn)(n = 1, 2, . . .) be the numerical solutions to (2.1) produced by the
SRKN method (2.2)–(2.4). Assume that the conditions of Theorem 4.1 are satisfied. If the
symplectic conditions (3.1) hold, then the SRKN methods preserve the quadratic invariant
Q(y, z) of (2.1), i.e., Q(Yn+1, Zn+1) = Q(Yn, Zn).
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Proof By straightforward calculation, we obtain

Y T
n+1DZn+1

=

[

Yn + hZn + h2
s∑

i=1

αif (yi) + Jnh
s∑

i=1

βig(yi)

]T

D

[

Zn + h
s∑

i=1

α̃if (yi)

+ Jn

s∑

i=1

β̃ig(yi)

]

= Y T
n DZn + h

s∑

i=1

α̃iY T
n Df (yi) + Jn

s∑

i=1

β̃iY T
n Dg(yi) + hZT

n DZn

+ h2
s∑

i=1

α̃iZT
n Df (yi) + Jnh

s∑

i=1

β̃iZT
n Dg(yi) + h2

s∑

i=1

αif (yi)TDZn

+ h3
s∑

i,j=1

αiα̃jf (yi)TDf (yj) + Jnh2
s∑

i,j=1

αiβ̃jf (yi)TDg(yj)

+ Jnh
s∑

i=1

βig(yi)TDZn + Jnh2
s∑

i,j=1

βiα̃jg(yi)TDf (yj)

+ J2
n h

s∑

i,j=1

βiβ̃jg(yi)TDg(yj).

Inserting (2.2) into the above equation yields

Y T
n+1DZn+1

= Y T
n DZn + h

s∑

i=1

α̃iyT
i Df (yi) – h2

s∑

i=1

α̃iγiZT
n Df (yi)

– h3
s∑

i,j=1

α̃iaijf (yj)TDf (yi) – Jnh2
s∑

i,j=1

α̃ibijg(yj)TDf (yi)

+ Jn

s∑

i=1

β̃iyT
i Dg(yi) – Jnh

s∑

i=1

β̃iγiZT
n Dg(yi)

– Jnh2
s∑

i,j=1

β̃iaijf (yj)TDg(yi) – J2
n h

s∑

i,j=1

β̃ibijg(yj)TDg(yi) + hZT
n DZn

+ h2
s∑

i=1

α̃iZT
n Df (yi) + Jnh

s∑

i=1

β̃iZT
n Dg(yi) + h2

s∑

i=1

αif (yi)TDZn

+ h3
s∑

i,j=1

αiα̃jf (yi)TDf (yj) + Jnh2
s∑

i,j=1

αiβ̃jf (yi)TDg(yj)

+ Jnh
s∑

i=1

βig(yi)TDZn + Jnh2
s∑

i,j=1

βiα̃jg(yi)TDf (yj)

+ J2
n h

s∑

i,j=1

βiβ̃jg(yi)TDg(yj).
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By the symplectic conditions (3.1),

Y T
n+1DZn+1

= Y T
n DZn + hZT

n DZn + h
s∑

i=1

α̃iyT
i Df (yi) + Jn

s∑

i=1

β̃iyT
i Dg(yi)

+ h2
s∑

i=1

(α̃i – α̃iγi – αi)ZT
n Df (yi)

+ h3
s∑

i<j

[
α̃j(αi – aji) – α̃i(αj – aij)

]
f (yi)TDf (yj)

+ Jnh
s∑

i=1

(β̃i – β̃iγi – βi)ZT
n Dg(yi)

+ Jnh2
s∑

i,j=1

[
α̃j(βi – bji) – β̃i(αj – aij)

]
g(yi)TDf (yj)

+ J2
n h

s∑

i<j

[
β̃j(βi – bji) – β̃i(βj – bij)

]
g(yi)TDg(yj)

= Y T
n DZn

is derived, which completes the proof. �

5 Some low-stage SSRKN methods
As an application of our main results, both the order conditions (2.12) and symplectic
conditions (3.1) are used to construct low-stage SSRKN methods in this section.

5.1 One-stage SSRKN methods
Consider one-stage SRKN methods

γ1 a11 b11

α1 β1

α̃1 β̃1

, (5.1)

substituting the coefficients of (5.1) into (2.12) and (3.1), a family of one-stage SSRKN
methods with strong global order 1.0 is given by

γ1 a11 a11

1 – γ1 1 – γ1

1 1

,
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where a11 and γ1 are free parameters. If we choose a11 = 0.5 and γ1 = 0.5, then the above
SSRKN method reduces to

0.5 0.5 0.5

0.5 0.5

1 1

. (5.2)

5.2 Two-stage explicit SSRKN methods
For solving (2.1), a class of two-stage explicit SRKN methods is given by

γ1 0 0 0 0
γ2 a21 0 b21 0

α1 α2 β1 β2

α̃1 α̃2 β̃1 β̃2

. (5.3)

According to the order conditions (2.12) and Theorem 3.1, a family of two-stage explicit
SSRKN methods with strong global order 1.0 is given by

γ1 0 0 0 0
γ2 α̃1(γ2 – γ1) 0 β̃1(γ2 – γ1) 0

α̃1(1 – γ1) (1 – α̃1)(1 – γ2) β̃1(1 – γ1) (1 – β̃1)(1 – γ2)

α̃1 1 – α̃1 β̃1 1 – β̃1

, (5.4)

where γ1, γ2, α̃1 and β̃1 are free parameters. If we choose γ1 = 1/4, γ2 = 3/4, α̃1 = 1/2 and
β̃1 = 1/2, then method (5.4) reduces to

1/4 0 0 0 0
3/4 1/4 0 1/4 0

3/8 1/8 3/8 1/8

1/2 1/2 1/2 1/2

. (5.5)

6 Numerical experiments
In this section, the superiority of our symplectic integrators is illustrated by some nu-
merical examples. To compare our symplectic integrators with non-symplectic ones, two
non-symplectic SRKN methods with strong global order 1.0 are given by

0.5 0 0.5

0 0.5

1 1

(6.1)

and

1/2 0 0 0 0
1/2 1/2 0 1/2 0

1/2 1/2 1/2 1/2

1/4 3/4 1/2 1/2

. (6.2)
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Table 1 The endpoint sample average errors with different methods for solving (6.3)

h 2–6 2–5 2–4 2–3 2–2

Euler–Maruyama method 0.006045 0.012637 0.026067 0.055347 0.114554
Method (6.1) 0.005849 0.011716 0.023938 0.050019 0.100891
Method (5.2) 0.002994 0.005797 0.012258 0.025294 0.050416
Method (5.5) 0.002999 0.005796 0.012323 0.024972 0.049639

6.1 Linear stochastic oscillator with additive noise
Here we perform computations for linear stochastic oscillator with additive noise [19],
which is defined by H(y, z) = (y2 + z2)/2 and H̃(y, z) = σy, where σ is the noise intensity.
We also have the following form:

⎧
⎪⎪⎨

⎪⎪⎩

dy(t) = z(t) dt, t ∈ [0, T],

dz(t) = –y(t) dt – σ dB(t), t ∈ [0, T],

y(0) = y0 ∈R, z(0) = z0 ∈R.

(6.3)

Since (6.3) is a SDE with additive noise, its Itô and Stratonovich form are identical. We
consider it as a SDE of Stratonovich type. In addition, (6.3) possesses linear growth second
moment, i.e.,

E
(
y2(t) + z2(t)

)
= y2

0 + z2
0 + σ 2t.

Firstly, the convergence of the numerical methods we proposed will be tested. We sim-
ulate them at terminal time T = 1, with σ = 1, z0 = 0, y0 = 1 in system (6.3). 1000 different
discretized Brownian paths over [0,1] will be computed with step size 2–14. For each path,
Euler–Maruyama method, method (6.1), method (5.2), method (5.5) are applied with five
different step sizes: h = 2–2, 2–3, 2–4, 2–5, 2–6. To simulate the exact solution of (6.3), we just
use the Euler–Maruyama method with h = 2–14 as the reference solution. We present the
sample average errors, i.e.,

∑1000
i=1

√|YN (ωi) – y(T ,ωi)|2 + |ZN (ωi) – z(T ,ωi)|2
1000

at the terminal time T = 1 in Table 1. Figure 1 shows the results of Table 1 in a log–log
plot.

Then we want to check their ability of preserving the linear growth property of the sec-
ond moment by numerical tests. The second moment E(Y 2

n +Z2
n) of the numerical solution

is approximated by taking sample average of 1000 sample trajectories, i.e.,

∑1000
i=1 (|Yn(ωi)|2 + |Zn(ωi)|2)

1000
.

Figure 2 shows the linear growth property of second moment of the numerical solutions
produced by the Euler–Maruyama method, method (6.1), method (5.2) and method (5.5)
with fixed step size h = 0.1, σ = 1 and T = 500, respectively, and the slope of the reference
line is 1.

From the point of view of geometry, the symplecticity of the system (6.3) is equivalent
to the preservation of the area of the triangle in the phase space along the flow of (6.3),



Ma et al. Advances in Difference Equations        (2019) 2019:192 Page 14 of 18

Figure 1 The convergence rates of Euler–Maruyama method, method (6.1), method (5.2) and method (5.5)
for solving (6.3)

Figure 2 Linear growth property of second moment for Eq. (6.3)

which means Sn = S0, where Sn denotes the area of the triangle at time tn, namely, value
Sn/S0 should remain at 1 along the exact flow of (6.3). Let σ = 1 and points for the initial
triangle be (0, 0), (1, 0), (1, 1), the Euler–Maruyama method, method (6.1), method (5.2),
method (5.5) are applied to solve (6.3) with h = 0.1 and T = 100. The evolution of the
quantity Sn/S0 along the numerical solutions is illustrated in Fig. 3. The changes of the
triangles along the numerical solutions are displayed in Fig. 4. From Fig. 3 and Fig. 4, it
is easy to see that method (5.2) and method (5.5) can preserve the symplecticity of (6.3)
exactly, while the Euler–Maruyama method and method (6.1) cannot.
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Figure 3 Evolution of the quantity Sn/S0 along the numerical solutions produced by Euler–Maruyama
method, method (6.1), method (5.2) and method (5.5) for Eq. (6.3)

Figure 4 Evolution of the numerical triangles arising from Euler–Maruyama method, method (6.1), method
(5.2) and method (5.5) for Eq. (6.3)
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Figure 5 Simulation of a sample trajectory of Eq. (6.4)

6.2 Synchrotron oscillations of particles in storage rings
The second-order stochastic Hamiltonian system defined by H(p, q) = – cos(q) + p2/2 and
H̃(p, q) = σ sin(q), where σ is the noise intensity, can be written in the following form [20]:

⎧
⎪⎪⎨

⎪⎪⎩

dq(t) = p(t) dt, t ∈ [0, T],

dp(t) = – sin(q(t)) dt – σ cos(q(t)) ◦ dB(t), t ∈ [0, T],

p(0) = p0 ∈R, q(0) = q0 ∈R.

(6.4)

System (6.4) is used to simulate synchrotron oscillations of a particle in a storage ring. We
consider it as a SDE of Stratonovich type. The phase flow of (6.4) preserves the symplectic
structure (1.3). Choose the coefficients of Eq. (6.4) as σ = 0.2, p0 = 1, q0 = 1 and T = 200.
Figure 5 exhibits numerical solutions of a sample phase trajectory of (6.4) simulated by the
Euler–Maruyama method, method (6.1), method (5.2) and method (5.5) with fixed step
size h = 0.02, respectively.

The plots show the SSRKN methods (5.2) and (5.5) can keep the vibration of the original
stochastic system, but other two non-symplectic methods do not have this property.

6.3 Stochastic Kepler problem
In order to test the SSRKN methods of preserving the quadratic invariants of original
SDEs, we consider stochastic Kepler problem defined by

H(q1, q2, p1, p2) =
1
2
(
p2

1 + p2
2
)

–
1

√
q2

1 + q2
2

, H̃(q1, q2, p1, p2) = –
1

√
q2

1 + q2
2

,
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Figure 6 The preservation of the quadratic invariant L of (6.5) with a sample trajectory

which can be written in the following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dq1(t) = p1(t) dt, t ∈ [0, T],

dq2(t) = p2(t) dt, t ∈ [0, T],

dp1(t) = – q1(t)
(q2

1(t)+q2
2(t))3/2 dt – q1(t)

(q2
1(t)+q2

2(t))3/2 ◦ dB(t), t ∈ [0, T],

dp2(t) = – q2(t)
(q2

1(t)+q2
2(t))3/2 dt – q2(t)

(q2
1(t)+q2

2(t))3/2 ◦ dB(t), t ∈ [0, T],

q1(0) = q10 ∈R, q2(0) = q20 ∈ R,

p1(0) = p10 ∈R, p2(0) = p20 ∈R.

(6.5)

According to Theorem 4.1, (6.5) possesses a quadratic invariant

L(q1, q2, p1, p2) = p2q1 – q2p1.

Due to Theorem 4.2, the quadratic invariant will be conserved by the SSRKN methods.
So, we use two-stage explicit symplectic method (5.5) and non-symplectic method (6.2)
to check the ability of preserving quadratic invariant. As an initial condition we choose

q10 = 1 – e, q20 = 0, p10 = 0, p20 =
√

1 + e
1 – e

,

where we set e = 0.6. Consequently, L0 = L(q10, q20, p10, p20) = 0.8. Fix the step size h = 0.05.
Figure 6 shows that numerical solution created by method (5.5) preserve the quadratic in-
variant L of (6.5) exactly, while the non-symplectic method (6.2) does not have this prop-
erty.

All of these numerical experiments demonstrate the superior behavior of our SSRKN
methods in long-time simulations compared to some non-symplectic numerical methods.

7 Conclusions
This paper presents the extension of deterministic RKN methods [23] to the stochastic
counterpart. For general autonomous d-dimensional second-order SDEs in the
Stratonovich sense, a class of SRKN methods is proposed. The order conditions of strong
global order 1.0 are obtained. The symplectic conditions of the SRKN methods for solv-
ing second-order stochastic Hamiltonian systems with multiplicative noise are given. It
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is proved that the SSRKN methods can preserve the quadratic invariants of underlying
stochastic systems. A class of one-stage SSRKN methods and two-stage explicit SSRKN
methods with strong global order 1.0 are constructed based on our main results. Numer-
ical experiments are given to verify the results of our theoretical analysis and show that
the methods are valid in a long-time numerical simulation of SDEs.
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