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Abstract
This paper is concerned with the Black–Scholes–Barenblatt equation
∂tu + r(x∂xu – u) + G(x2∂xxu) = 0, where G(α) = 1

2 (σ
2 – σ 2)|α| + 1

2 (σ
2 + σ 2)α, α ∈ R.

This equation is usually used for derivative pricing in the financial market with
volatility uncertainty. We discuss a strict comparison theorem for
Black–Scholes–Barenblatt equations, and study strict sub-additivity of their solutions
with respect to terminal conditions.
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1 Introduction
The Black–Scholes–Barenblatt (BSB) equation is a generalization of the Black–Scholes
(BS) partial differential equation (see Black and Scholes [2]), which is used to describe
the extremal of non-arbitrageable prices for derivatives while the underlying asset has
volatility uncertainty within a range (see Avellaneda et al. [1]). This type of fully nonlinear
parabolic equation is of the following form:

∂tu + r(x∂xu – u) + G
(
x2∂xxu

)
= 0, (1.1)

where G is a nondecreasing sublinear function defined on R.
Adapting to [1], we first introduce the outline of derivative pricing in the market with

volatility uncertainty by using the BSB equation. Precisely, we consider the derivative with
maturity date T based on a single liquidly traded stock S, which satisfies the Itô equation

dSt = St(r dt + σt dBt), (1.2)

where B is a 1-dimensional Brownian motion and σ is a non-anticipative function such
that, for strictly positive constants σ and σ ,

0 < σ ≤ σt ≤ σ . (1.3)

For simplicity, we always assume that the riskless interest rate r is zero and S0 = 1. The
results obtained in this paper can be easily generalized to the case for r > 0 and any S0 > 0.
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We denote by P the class of all probability measures on the set of paths {St}0≤t≤T such
that (1.2) holds for some σ satisfying (1.3). Denote the payoff of the derivative at matu-
rity date by ϕ(ST ). If there is no arbitrage opportunity and the assumption on volatility is
correct, then the value of such derivative at time t ∈ [0, T] should lie between the bounds

uϕ(St , t) = sup
P∈P

E
P
t
[
ϕ(ST )

]
(1.4)

and

vϕ(St , t) = inf
P∈P

E
P
t
[
ϕ(ST )

]
, (1.5)

which can be regarded as optimal risk-averse ask and bid prices for the derivative at time t.
As uϕ(St , t) = –v–ϕ(St , t), we only discuss the properties of uϕ in this paper.

In fact, viewing (1.4) and (1.5) as solutions of the stochastic control problems with the
control variable σ , by Krylov [6], we can obtain uϕ by solving the following BSB equation:

⎧
⎨

⎩
∂tuϕ + G(x2∂xxuϕ) = 0, (x, t) ∈R+ × [0, T);

uϕ(x, T) = ϕ(x), x ∈ R+,
(1.6)

where

G(α) :=
1
2
(
σ 2α+ – σ 2α–)

=
1
2
(
σ 2 – σ 2)|α| +

1
2
(
σ 2 + σ 2)α, α ∈R. (1.7)

In particular, if σ = σ = σ , (1.6) becomes the well-known Black–Scholes PDE with r = 0. An
equivalent formulation of the above problem is also discussed in the sublinear expectation
framework introduced by Peng in [7–9]. In this framework, a new type of Brownian mo-
tion with volatility uncertainty in the range of [σ ,σ ] is created. Assume that the dynamics
of S is characterized by a diffusion process driven by G-Brownian motion BG,

dSt = St dBG
t .

By the fully nonlinear Feynman–Kac formula (Theorem 4.5 in Hu et al. [5]), uϕ(x, t) :=
E

G[ϕ(x ST
St

)] defines the unique solution of BSB equation (1.6), where E
G is the sublinear

expectation associated with the G-Brownian motion.
We denote the optimal risk-averse ask price at time 0 defined in (1.4) by a functional

VT : ϕ �→ VT (ϕ). As explained above, VT (ϕ) = uϕ(S0, 0) = uϕ(1, 0). Since the function G(·)
defined by (1.7) is a nondecreasing and sublinear function, we can see that VT (ϕ) ≤ VT (ψ)
if ϕ ≤ ψ and VT (ϕ + ψ) ≤ VT (ϕ) + VT (ψ). In this paper, we are interested in finding con-
ditions on ϕ and ψ such that the following strict properties hold:

VT (ϕ) < VT (ψ), if ϕ ≤ ψ ; (1.8)

VT (ϕ + ψ) < VT (ϕ) + VT (ψ). (1.9)

These properties are meaningful in the non-arbitrage pricing for derivatives and the port-
folio risk-diversification in the market with volatility uncertainty.
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The rest of this paper is organized as follows. In Sect. 2, we give some properties of
solutions of the BSB equations. In Sect. 3, we provide a strict comparison theorem for the
BSB equations and study strict sub-additivity of their solutions with respect to terminal
conditions in Sect. 4.

2 Preliminaries
Since PDE (1.6) is the fully nonlinear partial differential equation of second order, the
classical smooth solution may not exist. The notion of viscosity solution is that it allows
merely continuous functions to be solutions of (1.6), that it provides very general existence
and uniqueness theorems.

Definition 2.1 A viscosity subsolution (resp. supsolution) of (1.6) on (0, T)×R is an upper
(resp. lower) semicontinuous function u such that, for all (t, x) ∈ (0, T)×R, φ ∈ C2((0, T)×
R) such that u(t, x) = φ(t, x) and u < φ (resp. u > φ)on (0, T) ×R \ (t, x), we have

∂tuϕ + G
(
x2∂xxuϕ

) ≥ 0 (resp. ≤ 0).

A viscosity solution of (1.6) on (0, T) × R is a function that is simultaneously a viscosity
subsolution and a viscosity supsolution of (1.6) on (0, T) ×R.

Let Cl,Lip(R+) be the collection of all locally Lipschitz functions ϕ on R+ satisfying

∣
∣ϕ(x) – ϕ(y)

∣
∣ ≤ C

(
1 + |x|m + |y|m)|x – y|, ∀x, y ∈R+,

where C > 0 and m ∈ N depending on ϕ. We have the following solvability result for the
viscosity solution of BSB equation (1.6) (see Theorem 7 in Gozzi and Vargiolu [4]).

Theorem 2.2 For each ϕ ∈ Cl,Lip(R+), BSB equation (1.6) has a unique viscosity solu-
tion uϕ .

For fixed T > 0, we define a functional VT by

VT (ϕ) = uϕ(1, 0), ϕ ∈ Cl,Lip(R+),

where uϕ is the solution of BSB equation (1.6) with terminal condition uϕ(x, T) = ϕ(x). In
fact, VT (ϕ) defines the optimal risk-averse ask price for the European type derivative with
payoff function ϕ(ST ) at its maturity.

Since the function G(·) defined by (1.7) is nondecreasing and sublinear on R with G(0) =
0, we immediately have the following properties for the functional VT .

Proposition 2.3 For T > 0, the functional VT (·) is a sublinear expectation on Cl,Lip(R+),
i.e., ∀ϕ,ψ ∈ Cl,Lip(R+), the following properties hold:

(i) Monotonicity: If ϕ ≥ ψ , then VT (ϕ) ≥ VT (ψ);
(ii) Constant preserving: VT (c) = c for all c ∈R+;

(iii) Sub-additivity: VT (ϕ + ψ) ≤ VT (ϕ) + VT (ψ);
(iv) Positive homogeneity: VT (λϕ) = λVT (ϕ) for all λ ≥ 0.
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The proposition below compares the BSB equation with the BS equation taking the pa-
rameter σ ∈ [σ ,σ ]. Let V σ

T (ϕ) := uσ ,ϕ(1, 0), where uσ ,ϕ denotes the solution of the BS equa-
tion with parameter σ > 0. Recall that if ϕ(x) ≤ ψ(x), ∀x ∈ R+, and if there exists x0 ∈ R+

such that ϕ(x0) < ψ(x0), then

V σ
T (ϕ) < V σ

T (ψ). (2.1)

Proposition 2.4 Let T > 0 and ϕ ∈ Cl,Lip(R+). We have
(i) VT (ϕ) ≥ supσ≤σ≤σ V σ

T (ϕ);
(ii) VT (ϕ) = V σ

T (ϕ) if and only if ϕ is concave;
(iii) VT (ϕ) = V σ

T (ϕ) if and only if ϕ is convex;
(iv) Let σ ∈ (σ ,σ ), then VT (ϕ) = V σ

T (ϕ) if and only if ϕ is linear.

Proof Recall that

G(α) =
1
2
σ 2α+ –

1
2
σ 2α– ≥ 1

2
σ 2α.

By the comparison theorem for parabolic PDEs (see, e.g., Crandall et al. [3]), we know that
uϕ(x, t) ≥ uσ ,ϕ(x, t), ∀(x, t) ∈ R+ × (0, T), then (i) follows by the continuity of uϕ and uσ ,ϕ .

In order to show (ii) to (iv), we first prove that

VT (ϕ) = V σ
T (ϕ) ⇐⇒ uϕ(x, t) = uσ ,ϕ(x, t), ∀(x, t) ∈R+ × (0, T). (2.2)

The necessity is obvious due to the continuity of uϕ and uσ ,ϕ . For the sufficiency, we already
know from the comparison theorem that uϕ(x, t) ≥ uσ ,ϕ(x, t), then we suppose that there
exists (x0, t0) ∈R+ × (0, T) such that uϕ(x0, t0) > uσ ,ϕ(x0, t0). By the strict comparison result
(2.1), we have

VT (ϕ) = Vt0

(
uϕ(·, t0)

) ≥ V σ
t0

(
uϕ(·, t0)

)

> V σ
t0

(
uσ ,ϕ(·, t0)

)
= V σ

T (ϕ),

which is a contradiction.
The right-hand side of (2.2) implies that if VT (ϕ) = V σ

T (ϕ), then the dynamic of BSB
equation (1.6) and of the BS equation with the parameter σ coincides, i.e.,

G
(
x2∂xxuσ ,ϕ(x, t)

)
=

σ 2x2

2
∂xxuσ ,ϕ(x, t), ∀(x, t) ∈R+ × (0, T). (2.3)

To show (ii), first due to the preservation of convexity, we know that ϕ is concave if and
only if ∂xxuσ ,ϕ(x, t) ≤ 0, ∀(x, t) ∈ R+ × (0, T). This is to say: when σ = σ , (2.3) holds for all
(x, t) ∈R+ × (0, T), which is equivalent to VT (ϕ) = V σ

T (ϕ) by (2.2). The convex case (iii) can
be proved similarly.

Now we turn to verify (iv). When σ ∈ (σ ,σ ), it is easy to find that (2.3) holds if and only
if ∂xxuσ ,ϕ(x, t) = 0, ∀(x, t) ∈R+ × (0, T), which is equivalent to that ϕ is linear. �
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3 Strict comparison theorem for BSB equations
In this section, we shall look for conditions such that the strict comparison (1.8) holds.
Recall that 0 < σ < σ in this paper.

Theorem 3.1 Fix T > 0. Let ϕ,ψ ∈ Cl,Lip(R+) such that ϕ(x) ≤ ψ(x) for all x ∈ R+. Then
VT (ϕ) < VT (ψ) if and only if there exists x0 ∈R+ such that ϕ(x0) < ψ(x0).

By Proposition 2.3(iii), we only need to prove that if ϕ(x) ≤ 0 and there exists x0 ∈ R+

such that ϕ(x0) < 0, then VT (ϕ) < 0. In order to prove this property, we first change vari-
ables by taking y = ln x, then (1.6) becomes the following equation:

⎧
⎨

⎩
∂t ũ + G(∂yyũ – ∂yũ) = 0, (y, t) ∈R× [0, T);

ũ(y, T) = ϕ̃(y), y ∈R,
(3.1)

where ũ(y, t) = uϕ(x, t) and ϕ̃(y) = ϕ(x).

Proposition 3.2 Let ϕ ∈ Cl,Lip(R) such that ϕ ≤ 0 and there exists x0 such that ϕ(x0) < 0.
Let ũ be the solution of PDE (3.1) with terminal condition ũ(x, T) = ϕ(x). Then ũ(x, t) < 0
for all (x, t) ∈R× [0, T).

To prove Proposition 3.2, we need the following lemma.

Lemma 3.3 Fix a ∈ R. Let ũm be the solution of PDE (3.1) with the terminal condition
ũm(T , x) = – exp(– mθ |x–a|2

2 ), where θ = T + 1
σ 2 +1 and m ≥ 1. Then, for any (x, t) ∈R×[0, T),

we have

ũm(x, t) ≤ –
(
1 + m(T – t)

)–σ 2θ
exp

(
–

mθ |x – a|2
2(1 + m(T – t))

)
. (3.2)

Proof We denote by ūm the function on the right-hand side of inequality (3.2). By the
comparison theorem, it suffices to show that ūm is the supersolution of PDE (3.1). Indeed,
it is easy to verify that

∂t ūm =
σ 2θm

1 + m(T – t)
ūm –

m2θ |x – a|2
2(1 + m(T – t))2 ūm,

∂xūm = –
mθ (x – a)

1 + m(T – t)
ūm,

∂xxūm = –
mθ

1 + m(T – t)
ūm +

m2θ2|x – a|2
(1 + m(T – t))2 ūm.

Then, for each (t, x) ∈ [0, T) ×R, it is derived from ūm ≤ 0 that

∂t ūm + G
(
∂2

xxūm – ∂xūm
)

=
σ 2θm

1 + m(T – t)
ūm –

m2θ |x – a|2
2(1 + m(T – t))2 ūm

– ūmG
(

mθ

1 + m(T – t)
–

m2θ2|x – a|2
(1 + m(T – t))2 –

mθ (x – a)
1 + m(T – t)

)
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≤ σ 2θm
1 + m(T – t)

ūm –
m2θ |x – a|2

2(1 + m(T – t))2 ūm

– ūmG
(

mθ

1 + m(T – t)
–

m2θ2|x – a|2
(1 + m(T – t))2 +

mθ (|x – a|2 + 1)
1 + m(T – t)

)

≤ σ 2θm
1 + m(T – t)

ūm –
m2θ |x – a|2

2(1 + m(T – t))2 ūm

– ūmG
(

2mθ

1 + m(T – t)

)
– ūmG

(
–

mθ (m(θ – T + t) – 1)|x – a|2
(1 + m(T – t))2

)

=
mθ ūm(x – a)2

2(1 + m(T – t))2

(
σ 2(m(θ – T + t) – 1

)
– m

) ≤ 0.

This completes the proof. �

Now we give the proof of Proposition 3.2, from which we can easily see that Theorem 3.1
holds.

Proof of Proposition 3.2 For 0 < ε < |ϕ(x0)|, there exists δ > 0 such that ϕ(x) ≤ –ε if
|x – x0| < δ. Then we have, for each m ≥ 1,

ϕ(x) ≤ –εe– mθ (x–x0)2
2 + εe– mθδ2

2 ,

where θ = T + 1
σ 2 + 1 as in Lemma 3.3.

By the comparison theorem for PDE (3.1) and Lemma 3.3, we have

ũ(x, t) ≤ –ε
(
1 + m(T – t)

)–σ 2θ e– mθ (x–x0)2
2(1+m(T–t)) + εe– mθδ2

2

≤ –ε
(
1 + m(T – t)

)–σ 2θ e– θ (x–x0)2
2(T–t) + εe– mθδ2

2 .

For fixed (x, t) ∈R× [0, T), we can take m large enough such that

(
1 + m(T – t)

)–σ 2θ e– θ (x–x0)2
2(T–t) > e– mθδ2

2 ,

which implies that ũ(x, t) < 0. �

Corollary 3.4 Fix T > 0. Let ϕ,ψ ∈ Cl,Lip(R+) such that ϕ(x) ≤ ψ(x) for all x ∈ R+. Then
VT (ϕ) = VT (ψ) if and only if uϕ(x, t) = uψ (x, t), ∀(x, t) ∈R+ × (0, T).

Remark 3.5 The strict comparison does not hold if σ = 0. For example, let ϕ = min(x, 1)
and ψ ≡ 1. However, when σ = 0, VT (ϕ) = uϕ(1, 0) = 1 = uψ (1, 0) = VT (ψ).

Remark 3.6 The price VT (ϕ) obtained from BSB equation (1.6) is indeed the least possible
initial cost to risklessly hedge a short position in the derivative security ϕ by self-financing
portfolios. The properties above show that this type of pricing under volatility uncertainty
is arbitrage-free in the sense: if ψ is “substantially” superior to ϕ, i.e., ϕ ≤ ψ and there exists
x0 ∈ R+ such that ϕ(x0) < ψ(x0), then one could not hedge a short position of ψ with the
initial value VT (ϕ). In other words, if two options ϕ and ψ satisfy ϕ ≤ ψ but they have
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the same optimal risk-averse ask price given by (1.6), then they generate the same path of
their “present values”, i.e., uϕ(St , t) = uψ (St , t), ∀t ∈ (0, T).

4 Strict sub-additivity for BSB equations
In the remainder of this paper, we consider the strict sub-additivity (1.9) of the functional
VT .

Theorem 4.1 Fix T > 0. For ϕ,ψ ∈ Cl,Lip(R+), we have

VT (ϕ + ψ) < VT (ϕ) + VT (ψ) (4.1)

if and only if there exists (x0, t0) ∈R+ × (0, T) such that

uϕ+ψ (x0, t0) < uϕ(x0, t0) + uψ (x0, t0). (4.2)

Proof If there exists (x0, t0) ∈ R+ × (0, T) such that (4.2) holds, then by Theorem 3.1 we
have

VT (ϕ + ψ) = Vt0

(
uϕ+ψ (·, t0)

)
< Vt0

(
uϕ(·, t0) + uψ (·, t0)

)

≤ Vt0

(
uϕ(·, t0)

)
+ Vt0

(
uψ (·, t0)

)
= VT (ϕ) + VT (ψ).

If (4.1) holds, which is equivalent to uϕ+ψ (1, 0) < uϕ(1, 0)+uψ (1, 0), then by the continuity
of uϕ+ψ , uϕ , and uψ , there exists (x0, t0) ∈R+ × (0, T) such that (4.2) holds. �

Remark 4.2 The strict inequality (4.1) could be explained as the diversification of volatility
risk in the portfolio of European type derivatives (cf. [1]).

The theorem above shows that the optimal risk-averse ask price of the portfolio “ϕ + ψ”
will be strictly lower than the sum of the individual prices for “ϕ” and “ψ” if the paths
of “present values” uϕ+ψ (St , t), uϕ(St , t), and uψ (St , t) are strictly sub-additive at some time
t0 ∈ (0, T). In practice, (4.2) is very difficult to check, thus we look for sufficient but simpler
conditions for the strict sub-additivity of VT in what follows.

Theorem 4.3 Fix T > 0. For ϕ,ψ ∈ Cl,Lip(R+), if there exists x0 ∈R+ such that

ϕ′′(x0)ψ ′′(x0) < 0, (4.3)

then we have

VT (ϕ + ψ) < VT (ϕ) + VT (ψ).

Proof Without loss of generality we can assume that there exists ε > 0 such that ϕ′′(x0) > ε

and ψ ′′(x0) < –ε.
Since ϕ is twice differentiable at x0, we have

G
(
x2

0ϕ
′′(x0)

)
= lim

δ↓0

uϕ(x0, T – δ) – uϕ(x0, T)
δ

= lim
δ↓0

uϕ(x0, T – δ) – ϕ(x0)
δ

.
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Then, by the definition of the function G, we can deduce that

lim
δ↓0

uϕ(x0, T – δ) + uψ (x0, T – δ) – uϕ+ψ (x0, T – δ)
δ

= G
(
x2

0ϕ
′′(x0)

)
+ G

(
x2

0ψ
′′(x0)

)
– G

(
x2

0
(
ϕ′′(x0) + ψ ′′(x0)

))

≥ (σ 2–σ 2)x2
0ε

2
.

Thus, there exists t0 ∈ (0, T) such that

uϕ(x0, t0) + uψ (x0, t0) – uϕ+ψ (x0, t0) ≥ (σ 2–σ 2)x2
0ε

4
> 0.

Finally, by Theorem 4.1, we have VT (ϕ + ψ) < VT (ϕ) + VT (ψ). �

The following corollary is straightforward.

Corollary 4.4 Fix T > 0. For ϕ,ψ ∈ C2
l,Lip(R+), if VT (ϕ + ψ) = VT (ϕ) + VT (ψ), then we have

ϕ′′(x)ψ ′′(x) ≥ 0, ∀x ∈R+.

Remark 4.5 Unfortunately, the inverse statement of Corollary 4.4 is not true, which means
that (4.3) is merely a sufficient condition. We have the following counterexample: Let
ϕ(x) = (max{x – 2, 0})2 which is convex and ψ(x) = –(min{x – 1, 0})2 which is concave. It is
easy to find that VT (ϕ + ψ) < VT (ϕ) + VT (ψ), but ϕ′′(x)ψ ′′(x) = 0 for all x ∈R+.

Acknowledgements
The authors wish to thank the editor and the reviewers for their useful remarks on our paper.

Funding
Xinpeng Li and Weicheng Xu are supported by NSFC (No. 11601281) and Shandong Province (No. ZR2016AQ11); Yiqing
Lin is supported by NSFC (No. 11801365) and Shanghai Jiao Tong University (No. WF220507103).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors have equally contributed to this work. All authors read and approved the final manuscript.

Author details
1Research Center for Mathematics and Interdisciplinary Sciences and School of Mathematics, Shandong University, Jinan,
China. 2School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, China. 3Department of Finance,
Ocean University of China, Qingdao, China.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 10 December 2018 Accepted: 9 May 2019

References
1. Avellaneda, M., Levy, A., Paras, A.: Pricing and hedging derivative securities in markets with uncertain volatilities. Appl.

Math. Finance 2, 73–88 (1995)
2. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81, 637–659 (1973)
3. Crandall, G.M., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations.

Bull. Am. Math. Soc. 27(1), 1–67 (1992)
4. Gozzi, F., Vargiolu, T.: Superreplication of European multiasset derivatives with bounded stochastic volatility. Math.

Methods Oper. Res. 55(1), 69–91 (2002)



Li et al. Advances in Difference Equations        (2019) 2019:193 Page 9 of 9

5. Hu, M., Ji, S., Peng, S., Song, Y.: Comparison theorem, Feynman–Kac formula and Girsanov transformation for BSDEs
driven by G-Brownian motion. Stoch. Process. Appl. 124, 1170–1195 (2014)

6. Krylov, N.V.: Controlled Diffusion Processes. Springer, New York (1980)
7. Peng, S.: G-Expectation, G-Brownian motion and related stochastic calculus of Itô’s type. In: Stoch. Anal. Appl. The

Abel Symposium, vol. 2, pp. 541–567. Springer, Berlin (2007)
8. Peng, S.: Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation. Stoch. Process.

Appl. 118(12), 2223–2253 (2008)
9. Peng, S.: Nonlinear expectations and stochastic calculus under uncertainty (2010). arXiv:1002.4546v1

http://arxiv.org/abs/arXiv:1002.4546v1

	On properties of solutions to Black-Scholes-Barenblatt equations
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Strict comparison theorem for BSB equations
	Strict sub-additivity for BSB equations
	Acknowledgements
	Funding
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


