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Abstract
We investigate oscillation of second-order half-linear variable delay damped dynamic
equations

[
a(t)

∣
∣x�(t)

∣
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]�
+ b(t)

∣
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∣
∣λ–1x�(t) + p(t)

∣
∣x(δ(t))

∣
∣λ–1x(δ(t)) = 0

on a time scale T. By using the generalized Riccati transformation and the inequality
technique, we establish some new oscillation criteria for the equations under the
condition

∫ ∞

t0

[
a–1(s)e–b/a(s, t0)

]1/λ
�s <∞.

These results deal with some cases not covered by existing results in the literature.
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1 Introduction
In this paper, we are concerned with the oscillatory behavior of a second-order half-linear
damped dynamic equation

[
a(t)

∣
∣x�(t)

∣
∣λ–1x�(t)

]� +b(t)
∣
∣x�(t)

∣
∣λ–1x�(t)+p(t)

∣
∣x

(
δ(t)

)∣∣λ–1x
(
δ(t)

)
= 0, t ∈ T, (1.1)

where t ≥ t0, t0 > 0, and λ > 0 are constants. For completeness, we recall the following
concepts related to the notion of time scales. A time scale T is an arbitrary nonempty
closed subset of the real numbers R. On the time scale T we define the forward and the
backward jump operators by

σ (t) = inf{s ∈ T : s > t} and ρ(t) = sup{s ∈ T : s < t}.

A point t ∈ T is said to be left-dense if ρ(t) = t, right-dense if σ (t) = t, left-scattered
if ρ(t) < t, and right-scattered if σ (t) > t. The graininess μ of the time scale is defined by
μ(t) = σ (t)–t. For a function f : T →R, the (delta) derivative is defined by f �(t) = f (σ (t))–f (t)

σ (t)–t
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if f is continuous at t and t is right-scattered. If t is right-dense, then the derivative is
defined by f �(t) = lim

s→t+
f (t)–f (s)

t–s , provided this limit exists. A function f : T →R is said to be
rd-continuous if it is continuous at each right-dense point and if there exists a finite left
limit at all left-dense points. The set of rd-continuous functions f : T → R is denoted by
Crd(T,R). The derivative f � of f and the shift f σ of f are related by the formula f σ = f +μf �

where f σ = f ◦ σ .
Throughout, we assume the following hypotheses:
(H1): T is an arbitrary time scale (i.e., a nonempty closed subset of the real numbers R)

which is unbounded above (i.e., supT = ∞), and t0 ∈ T with t0 > 0, we define a time scale
interval of the form [t0,∞)T by [t0,∞)T = [t0,∞) ∩T.

(H2): the delay function δ : T → T is strictly increasing and differentiable, and δ(t) ≤
t, lim

t→∞ δ(t) = ∞, δ(T) = T.
(H3): a, b, p ∈ Crd(T, (0,∞)) (i.e., a, b, p are positive rd-continuous functions) and –b/a ∈

	+.
By a solution of (1.1) we mean a nontrivial real-valued function x ∈ Crd([Tx,∞)T,R),

where Tx ∈ [t0,∞)T, which has the property that a(t)|x�(t)|λ–1x�(t) ∈ C1
rd([Tx,∞)T,R)

and satisfies (1.1) for t ∈ [Tx,∞)T. The solutions vanishing in some neighborhood of in-
finity will be excluded from our consideration. A solution x of (1.1) is said to be oscillatory
if it is neither eventually positive nor eventually negative; otherwise, it is nonoscillatory.
Equation (1.1) is called oscillatory if all its solutions oscillate.

Recently, there has been an increasing interest in studying oscillatory behavior of solu-
tions to various classes of dynamic equations on time scales, we refer the reader to [1–23]
and the references cited therein. In particular, oscillation of dynamic equations with damp-
ing attracted significant attention of researchers due to the fact that such equations arise in
many real life problems, see [1–5, 9, 12, 13, 16, 17, 20, 22]. For instance, Zhang et al. [1–3,
5] considered the second-order damped dynamic equation (1.1) under the conditions

∫ ∞

t0

[
a–1(s)e–b/a(s, t0)

]1/λ
�s = ∞ (1.2)

and
∫ ∞

t0

[
a–1(s)e–b/a(s, t0)

]1/λ
�s < ∞, (1.3)

respectively, and established many sufficient conditions for oscillation of (1.1). The main
result is as follows.

Theorem 1.1 (see [1], Theorem 4.1) Assume (H1)–(H3) and (1.2). If there exists a positive
and differentiable function ϕ : T →R such that

lim sup
t→∞

∫ t

t0

ϕ(s)
[

p(s) –
a(δ(s))

(λ + 1)λ+1(δ�(s))λ

∣∣∣
∣
ϕ�(s)
ϕ(s)

–
b(s)
a(s)

∣∣∣
∣

λ+1]
�s = ∞, (1.4)

then Eq. (1.1) is oscillatory on [t0,∞)T.

From this Theorem 1.1 and its proof, one can obtain various types of Kamenev-type
oscillation criteria (such as Theorem 4.2 in [1], etc.) and different classes of Philos-type
oscillation criteria for Eq. (1.1) under condition (1.2) (see [2, 3, 5]).
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Theorem 1.2 (see [1], Theorem 4.3) Assume (H1)–(H3), (1.3), and (1.4). If

∫ ∞

t0

[
1

a(t)

∫ t

t0

e–b/a
(
t,σ (s)

)
p(s)�s

]1/λ

�t = ∞, (1.5)

then every solution x(t) of Eq. (1.1) is either oscillatory or satisfies lim
t→∞ x(t) = 0.

Obviously, under the case (1.3), Theorem 1.2 (the other results are the same, for example,
Theorem 4.3 and Theorem 4.4 in [2], Theorem 3.5 in [9], etc.) cannot ensure that the
solution x(t) of Eq. (1.1) is oscillatory. We can see that, in applications, it is inconvenient
that every solution x(t) of Eq. (1.1) oscillates or converges to zero, since we do not know
under what conditions separately the solutions oscillate or converge to zero.

On the above basis, in [3] and [5], the authors discussed oscillatory criteria of Eq. (1.1),
got the result that every solution of Eq. (1.1) oscillates, and improved the results in [1, 2,
9]. One of the results they provided is as follows.

Theorem 1.3 (see [5], Theorem 4.3) Assume (H1)–(H3), (1.3), and (1.4). If for every t1 ∈
[t0,∞)T,

∫ ∞

t1

[
1

a(t)

∫ t

t1

e–b/a
(
t,σ (s)

)
θλ(s)p(s)�s

]1/λ

�t = ∞, (1.6)

where θ (t) =
∫ ∞

t a–1/λ(s)�s, then Eq. (1.1) is oscillatory on [t0,∞)T.

Using the same method, one can deduce from Theorem 1.3 a great number of oscillation
criteria for Eq. (1.1) (see [3, 5]).

On the other hand, it is well known that the Euler differential equation

(
t2x′(t)

)′ + p0x(t) = 0, t ≥ 1, (1.7)

is oscillatory if p0 > 1/4. However, Theorem 1.3 cannot be applied in (1.7) due to
∫ ∞

1 t–2 ln t dt < ∞. One can easily see that the recent results (such as the results in [3,
4, 6–8, 12–21], etc.) cannot be applied in (1.7).

The purpose of this article is to obtain new criteria for the oscillation of (1.1) under
condition (1.3) which promote some existing results.

2 Main results
Lemma 2.1 ([6]) Assume that x(t) is delta-differentiable and eventually positive or even-
tually negative, then

(
xλ(t)

)� = λx�(t)
∫ 1

0

[
hx

(
σ (t)

)
+ (1 – h)x(t)

]λ–1 dh.

Lemma 2.2 (Yang’s inequality [17]) Let A > 0, B > 0, and p > 0 be constants, then AB ≤
Ap

p + Bq

q for 1
p + 1

q = 1.

Lemma 2.3 ([21]) Let λ ≥ 1 be a quotient of two odd numbers, then

X1+ 1
λ – (X – Y )1+ 1

λ ≤ Y
1
λ

[(
1 +

1
λ

)
X –

1
λ

Y
]

, XY ≥ 0.
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Theorem 2.1 Assume (H1)–(H3), (1.3), and (1.4). If

lim sup
t→∞

∫ t

t0

[
p(s)θλ

(
σ (s)

)
–

a(s)θλ(λ+1)(s)
(λ + 1)λ+1θλ2 (σ (s))

(
θ (s)
θλ(s)

+
b(s)
a(s)

)λ+1]
�s = ∞, (2.1)

where

θ (t) =
∫ ∞

t

[
a–1(s)e–b/a(s, t0)

]1/λ
�s,

θ (t) =

⎧
⎨

⎩
λθλ–1(t)[a–1(t)e–b/a(t, t0)]1/λ, λ ≥ 1,

λθλ–1(σ (t))[a–1(t)e–b/a(t, t0)]
1
λ , 0 < λ < 1,

then Eq. (1.1) is oscillatory on [t0,∞)T.

Proof Let x(t) be a nonoscillatory solution of Eq. (1.1). Without loss of generality, we may
assume that there exists t1 ∈ [t0,∞)T such that x(t) > 0, x(δ(t)) > 0(t ∈ [t1,∞)T). Then, from
(1.1), we have for t ∈ [t1,∞)T

[
a(t)

∣∣x�(t)
∣∣λ–1x�(t)

]� + b(t)
∣∣x�(t)

∣∣λ–1x�(t) = –p(t)xλ
(
δ(t)

)
< 0. (2.2)

Proceeding as in the proof of Lemma 3.5 in [1], we get that a(t)|x�(t)|λ–1x�(t)
e–b/a(t,t0) (t ∈ [t1,∞)T)

is decreasing and x�(t) is either eventually positive or eventually negative. Therefore, we
shall distinguish the following two cases:

(I) x�(t) > 0, t ∈ [t1,∞)T; (II) x�(t) < 0, t ∈ [t1,∞)T.
Case (I): x�(t) > 0, t ∈ [t1,∞)T. As in the proof of [1], Theorem 4.1, one can obtain a

contradiction to (1.4).
Case (II): x�(t) < 0, t ∈ [t1,∞)T. Let

w(t) =
a(t)|x�(t)|λ–1x�(t)

|x(t)|λ–1x(t)
=

a(t)(–x�(t))λ–1x�(t)
xλ(t)

, t ∈ [t1,∞)T, (2.3)

then w(t) < 0(t ∈ [t1,∞)T). Since a(t)|x�(t)|λ–1x�(t)
e–b/a(t,t0) = a(t)(–x�(t))λ–1x�(t)

e–b/a(t,t0) (t ∈ [t1,∞)T) is decreas-
ing, and therefore, for all s ∈ [t,∞)T, we have

a(s)(–x�(s))λ–1x�(s)
e–b/a(s, t0)

≤ a(t)(–x�(t))λ–1x�(t)
e–b/a(t, t0)

, (2.4)

hence,

x�(s) ≤
(

e–b/a(s, t0)
e–b/a(t, t0)

)1/λ a1/λ(t)x�(t)
a1/λ(s)

.

It follows that

x(u) ≤ x(t) +
a1/λ(t)x�(t)

[e–b/a(t, t0)]1/λ

∫ u

t

[
a–1(s)e–b/a(s, t0)

]1/λ
�s.

Let u → ∞, we find that

x(t) +
a1/λ(t)x�(t)

[e–b/a(t, t0)]1/λ θ (t) ≥ 0. (2.5)
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In view of 0 < e–b/a(t, t0) ≤ 1 and x�(t) < 0, we see that x(t) + a1/λ(t)x�(t)θ (t) ≥ 0, it follows

–1 ≤ a1/λ(t)x�(t)
x(t)

θ (t) ≤ 0. (2.6)

By virtue of (2.3) and (2.6), we conclude that

–1 ≤ w(t)θλ(t) ≤ 0. (2.7)

By Lemma 2.1 and x�(t) < 0, it is not difficult to find that

⎧
⎨

⎩
(xλ(t))� ≤ λxλ–1(σ (t))x�(t), λ ≥ 1,

(xλ(t))� ≤ λxλ–1(t)x�(t), 0 < λ < 1.
(2.8)

If 0 < λ < 1, in view of (2.8), (2.2), and x�(t) < 0, from (2.3), we then get

w�(t) =
[a(t)|x�(t)|λ–1x�(t)]�

xλ(σ (t))
–

a(t)(–x�(t))λ–1x�(t)(xλ(t))�

xλ(t)xλ(σ (t))

≤ –
p(t)xλ(δ(t)) + b(t)|x�(t)|λ–1x�(t)

xλ(σ (t))
–

a(t)(–x�(t))λ–1x�(t)λxλ–1(t)x�(t)
xλ(t)xλ(σ (t))

≤ –p(t) –
b(t)xλ(t)

a(t)xλ(σ (t))
a(t)|x�(t)|λ–1x�(t)

xλ(t)
–

λa(t)(–x�(t))λ–1(x�(t))2

xλ+1(t)

= –p(t) +
b(t)xλ(t)

a(t)xλ(σ (t))
(
–w(t)

)
–

λ

a1/λ(t)
(
–w(t)

) λ+1
λ . (2.9)

If λ ≥ 1, in view of (2.8) and x�(t) < 0, similarly, we can obtain (2.9).
Using θ�(t) = –[a–1(t)e–b/a(t, t0)]1/λ and (2.5), we have

(
x(t)
θ (t)

)�

=
x�(t)θ (t) + x(t)[a–1(t)e–b/a(t, t0)]1/λ

θ (t)θ (σ (t))

≥
x�(t)θ (t) – a1/λ(t)x�(t)

[e–b/a(t,t0)]1/λ θ (t)[a–1(t)e–b/a(t, t0)]1/λ

θ (t)θ (σ (t))
= 0.

Consequently, the function x(t)
θ (t) is non-decreasing, and therefore,

x(t)
x(σ (t))

≤ θ (t)
θ (σ (t))

. (2.10)

Substituting (2.10) into (2.9), we obtain

w�(t) ≤ –p(t) +
b(t)θλ(t)

a(t)θλ(σ (t))
(
–w(t)

)
–

λ

a1/λ(t)
(
–w(t)

) λ+1
λ . (2.11)

By Lemma 2.1 and θ�(t) < 0, it is easy to show that

[
θλ(t)

]� ≥
⎧
⎨

⎩
–λθλ–1(t)[a–1(t)e–b/a(t, t0)]1/λ, λ ≥ 1,

–λθλ–1(σ (t))[a–1(t)e–b/a(t, t0)]
1
λ , 0 < λ < 1.

(2.12)
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That is,

[
θλ(t)

]� ≥ –θ (t). (2.13)

Multiplying (2.11) by θλ(σ (t)) and then integrating from t1 to t, and using the integration
by parts formula on time scales, (2.13), and Lemma 2.2, we are led to

∫ t

t1

p(s)θλ
(
σ (s)

)
�s

≤ –
∫ t

t1

θλ
(
σ (s)

)
w�(s)�s

+
∫ t

t1

θλ
(
σ (s)

)[b(s)θλ(s)(–w(s))
a(s)θλ(σ (s))

–
λ(–w(s)) λ+1

λ

a1/λ(s)

]
�s

= θλ(t1)w(t1) – θλ(t)w(t) +
∫ t

t1

[
θλ(s)

]�w(s)�s

+
∫ t

t1

θλ
(
σ (s)

)
[

b(s)θλ(s)(–w(s))
a(s)θλ(σ (s))

–
λ(–w(s))

λ+1
λ

a1/λ(s)

]
�s

≤ θλ(t1)w(t1) – θλ(t)w(t)

+
∫ t

t1

[(
θ (s) +

b(s)θλ(s)
a(s)

)(
–w(s)

)
–

λθλ(σ (s))
a1/λ(s)

(
–w(s)

) λ+1
λ

]
�s.

Now let

p =
λ + 1

λ
, q = λ + 1

and

A =
(λ + 1)

λ
λ+1 θ

λ2
λ+1 (σ (s))

a
1

λ+1 (s)

(
–w(s)

)
, B =

a
1

λ+1 (s)θλ(s)

(λ + 1)
λ

λ+1 θ
λ2
λ+1 (σ (s))

(
θ (s)
θλ(s)

+
b(s)
a(s)

)
.

Using the inequality (see Lemma 2.2)

AB –
Ap

p
≤ Bq

q
,

we find

(
θ (s) +

b(s)θλ(s)
a(s)

)(
–w(s)

)
–

λθλ(σ (s))
a1/λ(s)

(
–w(s)

) λ+1
λ

≤ a(s)θλ(λ+1)(s)
(λ + 1)λ+1θλ2 (σ (s))

(
θ (s)
θλ(s)

+
b(s)
a(s)

)λ+1

.

Hence, we obtain

∫ t

t1

p(s)θλ
(
σ (s)

)
�s
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≤ θλ(t1)w(t1) – θλ(t)w(t) +
∫ t

t1

a(s)θλ(λ+1)(s)
(λ + 1)λ+1θλ2 (σ (s))

(
θ (s)
θλ(s)

+
b(s)
a(s)

)λ+1

�s. (2.14)

By virtue of (2.7) and (2.14), we conclude that

∫ t

t1

[
p(s)θλ

(
σ (s)

)
–

a(s)θλ(λ+1)(s)
(λ + 1)λ+1θλ2 (σ (s))

(
θ (s)
θλ(s)

+
b(s)
a(s)

)λ+1]
�s ≤ θλ(t1)w(t1) + 1,

taking the limsup as t → ∞, then we get a contradiction to condition (2.1). The proof is
complete. �

Theorem 2.2 Assume (H1)–(H3), (1.3), (1.4), and λ ≥ 1 is a quotient of two odd numbers.
Suppose further that there exist two functions ψ , ξ ∈ C1(T, (0,∞)) with ξ (t) ≥ 1

θλ(t)a(t) such
that

lim sup
t→∞

∫ t

t0

θλ
(
σ (s)

)
[
ψ

(
σ (s)

)
Φ(s) –

a(s)ψλ+1(s)|Θ(s) – λ(e–b/a(s,t0))1/λ

θ (σ (s))a1/λ(s) |λ+1

(λ + 1)λ+1ψλ(σ (s))

]
�s

= ∞, (2.15)

where the function θ (t) is defined as in Theorem 2.1,

Φ(t) = p(t) –
[
ξ (t)a(t)

]� –
b(t)

a(t)θλ(σ (t))
+ a(t)ξ

λ+1
λ (t),

Θ(t) =
ψ�(t)
ψ(t)

+
(λ + 1)ψ(σ (t))ξ

1
λ (t)

ψ(t)
,

then Eq. (1.1) is oscillatory on [t0,∞)T.

Proof Let x(t) be a nonoscillatory solution of Eq. (1.1), say, x(t) > 0 and x(δ(t)) > 0 for all
t ∈ [t1,∞)T for some t1 ∈ [t0,∞)T. Similar to the proof of Theorem 2.1, we consider two
cases. Assume first that x�(t) > 0 for t ∈ [t1,∞)T, by (1.4), this case is not true. Assume
now that x�(t) < 0 for t ∈ [t1,∞)T, we proceed as in the proof of Theorem 2.1 to obtain
(2.6) for t ∈ [t1,∞)T. Then, by (2.6), we are led to

xλ(t) ≥ a(t)
(
–x�(t)

)λ
θλ(t),

which yields

(
x�(t)

)λ +
xλ(t)

a(t)θλ(t)
≥ 0, t ∈ [t1,∞)T. (2.16)

We introduce a generalized Riccati transformation

v(t) = ψ(t)
[

a(t)|x�(t)|λ–1x�(t)
xλ(t)

+ ξ (t)a(t)
]

= ψ(t)
[

a(t)(x�(t))λ

xλ(t)
+ ξ (t)a(t)

]
, t ∈ [t1, +∞)T. (2.17)
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Then, it is not hard to see that v(t) ≥ 0(t ∈ [t1, +∞)T) due to (2.16) and the definition of
ξ (t). In view of (2.2), the first formula of (2.8), (2.16), and x�(t) < 0, respectively, it follows
from (2.17) that

v�(t) = ψ�(t)
[

a(t)(x�(t))λ

xλ(t)
+ ξ (t)a(t)

]
+ ψ

(
σ (t)

)
[

a(t)(x�(t))λ

xλ(t)
+ ξ (t)a(t)

]�

=
ψ�(t)
ψ(t)

v(t) + ψ
(
σ (t)

){[
ξ (t)a(t)

]� +
[a(t)(x�(t))λ]�

xλ(σ (t))
–

a(t)(x�(t))λ[xλ(t)]�

xλ(t)xλ(σ (t))

}

≤ ψ�(t)
ψ(t)

v(t) + ψ
(
σ (t)

)
{
[
ξ (t)a(t)

]� –
p(t)xλ(δ(t)) + b(t)(x�(t))λ

xλ(σ (t))

–
λa(t)(x�(t))λx�(t)

xλ(t)x(σ (t))

}

≤ ψ�(t)
ψ(t)

v(t) + ψ
(
σ (t)

){[
ξ (t)a(t)

]� – p(t) –
b(t)(x�(t))λ

xλ(σ (t))
–

λa(t)(x�(t))λ+1

xλ+1(t)

}

≤ ψ�(t)
ψ(t)

v(t) + ψ
(
σ (t)

)
{
[
ξ (t)a(t)

]� – p(t) +
b(t)xλ(t)

xλ(σ (t))a(t)θλ(t)

–
λ

a
1
λ (t)

(
v(t)
ψ(t)

– ξ (t)a(t)
) λ+1

λ
}

. (2.18)

By Lemma 2.3,

(X – Y )1+ 1
λ ≥ X1+ 1

λ +
1
λ

Y 1+ 1
λ –

(
1 +

1
λ

)
XY

1
λ ,

where λ ≥ 1 is a quotient of two odd numbers, XY ≥ 0. Let X = v(t)
ψ(t) , Y = ξ (t)a(t), then we

have

(
v(t)
ψ(t)

– ξ (t)a(t)
) λ+1

λ ≥ v
λ+1
λ (t)

ψ
λ+1
λ (t)

+
1
λ

[
ξ (t)a(t)

] λ+1
λ –

(
1 +

1
λ

)
[ξ (t)a(t)] 1

λ

ψ(t)
v(t). (2.19)

In view of (2.10), (2.19), the definition of Φ(t) and Θ(t), it follows from (2.18) that

v�(t) ≤ ψ�(t)
ψ(t)

v(t) + ψ
(
σ (t)

){[
ξ (t)a(t)

]� – p(t) +
b(t)

θλ(t)a(t)
θλ(t)

θλ(σ (t))

–
λ

a
1
λ (t)ψ

λ+1
λ (t)

v
λ+1
λ (t) – a(t)ξ

λ+1
λ (t) +

(λ + 1)ξ
1
λ (t)

ψ(t)
v(t)

}

= –ψ
(
σ (t)

)
Φ(t) + Θ(t)v(t) –

λψ(σ (t))

a
1
λ (t)ψ λ+1

λ (t)
v

λ+1
λ (t). (2.20)

Using the integration by parts formula on time scales, (2.13), and Lemma 2.2, it follows
now from (2.20) that

∫ t

t1

θλ
(
σ (s)

)
ψ

(
σ (s)

)
Φ(s)�s

≤ –
∫ t

t1

θλ
(
σ (s)

)
v�(s)�s +

∫ t

t1

θλ
(
σ (s)

)[
Θ(s)v(s) –

λψ(σ (s))v
λ+1
λ (s)

a
1
λ (s)ψ

λ+1
λ (s)

]
�s
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= –θλ(t)v(t) + θλ(t1)v(t1) +
∫ t

t1

[
θλ(s)

]�v(s)�s

+
∫ t

t1

θλ
(
σ (s)

)
[
Θ(s)v(s) –

λψ(σ (s))v
λ+1
λ (s)

a
1
λ (s)ψ

λ+1
λ (s)

]
�s

≤ θλ(t1)v(t1) +
∫ t

t1

θλ
(
σ (s)

)[(
Θ(s) –

λ(e–b/a(s, t0))1/λ

θ (σ (s))a1/λ(s)

)
v(s)

–
λψ(σ (s))v λ+1

λ (s)

a
1
λ (s)ψ

λ+1
λ (s)

]
�s. (2.21)

Now let

p =
λ + 1

λ
, q = λ + 1

and

A =
(λ + 1)

λ
λ+1 ψ

λ
λ+1 (σ (s))

a
1

λ+1 (s)ψ(s)
v(s), B =

a
1

λ+1 (s)ψ(s)

(λ + 1)
λ

λ+1 ψ
λ

λ+1 (σ (s))

∣∣
∣∣Θ(s) –

λ(e–b/a(s, t0))1/λ

θ (σ (s))a1/λ(s)

∣∣
∣∣.

Using the inequality (see Lemma 2.2)

AB –
Ap

p
≤ Bq

q
,

we have

(
Θ(s) –

λ(e–b/a(s, t0))
1
λ

θ (σ (s))a
1
λ (s)

)
v(s) –

λψ(σ (s))v
λ+1
λ (s)

a
1
λ (s)ψ

λ+1
λ (s)

≤ a(s)ψλ+1(s)
(λ + 1)λ+1ψλ(σ (s))

∣∣∣
∣Θ(s) –

λ(e–b/a(s, t0))
1
λ

θ (σ (s))a
1
λ (s)

∣∣∣
∣

λ+1

.

By virtue of (2.21) and the above inequality, we conclude that

∫ t

t1

θλ
(
σ (s)

)
ψ

(
σ (s)

)
Φ(s)�s

≤ θλ(t1)v(t1) +
∫ t

t1

θλ
(
σ (s)

)[ a(s)ψλ+1(s)
(λ + 1)λ+1ψλ(σ (s))

∣∣
∣∣Θ(s) –

λ(e–b/a(s, t0))1/λ

θ (σ (s))a1/λ(s)

∣∣
∣∣

λ+1]
�s;

consequently,

∫ t

t1

θλ
(
σ (s)

)
[
ψ

(
σ (s)

)
Φ(s) –

a(s)ψλ+1(s)
(λ + 1)λ+1ψλ(σ (s))

∣
∣∣
∣Θ(s) –

λ(e–b/a(s, t0))1/λ

θ (σ (s))a1/λ(s)

∣
∣∣
∣

λ+1]
�s

≤ θλ(t1)v(t1),

which leads to a contradiction with (2.15). The proof is complete. �
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Example 2.1 Consider the second-order Euler differential equation (1.7), i.e.,

(
t2x′(t)

)′ + p0x(t) = 0, t ≥ 1,

here p0 > 0 is a constant. Let a(t) = t2, b(t) = 0, P(t) = p0, δ(t) = t,λ = 1, t0 = 1, clearly, con-
ditions (H1)–(H3) and (1.3) are satisfied. Since T = R, we see that

θ (t) =
∫ +∞

t

[
a–1(s)e–b/a(s, t0)

]1/λ
�s =

∫ +∞

t
s–2 ds =

1
t

,

and

θ (t) = λθλ–1(t)
[
a–1(t)e–b/a(t, t0)

]1/λ = t–2, π (t) = 1, Ψ (t) = p0.

Now, pick ϕ(t) = 1, then

lim sup
t→∞

∫ t

t0

ϕ(s)
[

p(s) –
a(δ(s))

(λ + 1)λ+1(δ�(s))λ

∣
∣∣∣
ϕ�(s)
ϕ(s)

–
b(s)
a(s)

∣
∣∣∣

λ+1]
�s = lim sup

t→∞

∫ t

1
p0 ds = ∞,

and

lim sup
t→∞

∫ t

t0

[
p(s)θλ

(
σ (s)

)
–

a(s)θλ(λ+1)(s)
(λ + 1)λ+1θλ2 (σ (s))

(
θ (s)
θλ(s)

+
b(s)
a(s)

)λ+1]
�s

=
(

p0 –
1
4

)
lim sup

t→∞

∫ t

1

1
s

ds = ∞,

provided that p0 > 1/4. Therefore, by Theorem 2.1, the Euler equation (1.7) is oscillatory
when p0 > 1/4. This conclusion is sharp.

Remark 2.1 Application of Theorem 1.2 or the corresponding result in [1, 2, 9] implies
that the every solution x(t) of the Euler equation (1.7) is either oscillatory or satisfies
limt→∞ x(t) = 0. The results in [3, 5] cannot be applied in (1.7) due to

∫ ∞
1 t–2 ln t dt < ∞.

One can easily find that the results in [4, 7, 8, 12–23] cannot be applied in (1.7).

Example 2.2 Consider the second-order dynamic equation

[
t2x�(t)

]� + p0
2t – 1

t
x
(

t
2

)
= 0, t ∈ T = 2z, t ≥ 2, (2.22)

where p0 > 0 is a constant. Obviously, conditions (H1)–(H3) and (1.3) are satisfied, and we
see that

θ (t) =
∫ ∞

t
s–2�s = lim

u→∞
u–1 – t–1

t–1 – 1
=

1
t – 1

, θ (t) =
1
t2 .

Now, pick ϕ(t) = 1, then we have

lim sup
t→∞

∫ t

t0

ϕ(s)
[

p(s) –
a(δ(s))

(λ + 1)λ+1(δ�(s))λ

∣∣
∣∣
ϕ�(s)
ϕ(s)

–
b(s)
a(s)

∣∣
∣∣

λ+1]
�s
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= p0 lim sup
t→∞

∫ t

2

2s – 1
s

�s = ∞,

and

lim sup
t→∞

∫ t

t0

[
p(s)θλ

(
σ (s)

)
–

a(s)θλ(λ+1)(s)
(λ + 1)λ+1θλ2 (σ (s))

(
θ (s)
θλ(s)

+
b(s)
a(s)

)λ+1]
�s

= lim sup
t→∞

∫ t

2

[(
p0 –

1
2

)
1
s

+
1

4s2

]
�s = ∞,

provided that p0 > 1/2. Therefore, by Theorem 2.1, equation (2.2) is oscillatory when p0 >
1/2.

Remark 2.2 One can easily find that the results in [1–5, 7–23] cannot be applied in (2.22).
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