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Abstract
Recently, extended r-central factorial numbers of the second kind and extended
r-central Bell polynomials were introduced and various results of them were
investigated. The purpose of this paper is to further derive properties, recurrence
relations and identities related to these numbers and polynomials using umbral
calculus techniques. Especially, we will represent the extended r-central Bell
polynomials in terms of quite a few families of well-known special polynomials.
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1 Introduction and preliminaries
In [5], the extended r-central factorial numbers of the second kind and the extended r-
central Bell polynomials were introduced and various properties and identities related to
these numbers and polynomials were investigated by means of generating functions. The
extended r-central factorial numbers of the second kind are an extended version of the
central factorial numbers of the second kind and also a central analogue of the r-Stirling
numbers of the second kind (see [2, 7, 10, 11, 14, 15, 17, 22]). The extended r-central Bell
polynomials are an extended version of the central Bell polynomials and also a central
analogue of r-Bell polynomials (see [3, 8, 11, 12, 15, 18]).

Here we study the extended r-central factorial numbers of the second kind and the ex-
tended r-central Bell polynomials by making use of umbral calculus techniques. In partic-
ular, we represent the extended r-central Bell polynomials in terms of many well-known
special polynomials. Here the special polynomials are Bernoulli polynomials, Euler poly-
nomials, falling factorial polynomials, Abel polynomials, ordered Bell polynomials, La-
guerre polynomials, Daehee polynomials, Hermite polynomials, polynomials closely re-
lated to the reverse Bessel polynomials and studied by Carlitz, and Bernoulli polynomials
of the second kind. The necessary facts about umbral calculus will be briefly reviewed in
the next section.

The central factorials x[n] (n ≥ 0) are given by (see [1, 4–6, 10, 12, 20])

x[0] = 1, x[n] = x
(

x +
n
2

– 1
)(

x +
n
2

– 2
)

· · ·
(

x –
n
2

+ 1
)

(n ≥ 1). (1.1)
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For nonnegative integers n, k, with n ≥ k, the central factorial numbers of the second
kind T(n, k) are given by the coefficients in the expansion (see [1, 4–6, 10, 12, 20])

xn =
n∑

k=0

T(n, k)x[k]. (1.2)

It is well known that T(2n, 2n – 2k) enumerates the number of ways to pace k rooks on a
3 D-triangle board of size (n – 1) (see [1, 16]). The central factorial numbers of the second
kind T(n, k) are given by the generating function

1
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t
2 – e– t

2
)k =

∞∑
n=k

T(n, k)
tn

n!
. (1.3)

From (1.3), we can easily deduce that they are explicitly given by
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)
(–1)i
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)n
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k∑
i=0

(
k
i

)
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(
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)n

. (1.4)

Thus (1.4) yields

T(n, k) = 0, if n �≡ k (mod 2), (1.5)

and that

T(n, k) =
1
k!

�k
(

–
k
2

)n

=
1
k!

δk0n, (1.6)

where �k(– k
2 )n = �kxn|x=– k

2
, �f (x) = f (x + 1) – f (x) is the forward difference operator,

δk0n = δkxn|x=0, and δf (x) = f (x + 1
2 ) – f (x – 1

2 ) is the central difference operator.
For these results, one may refer to [19, 20].
Let r be any nonnegative integer. The central factorial numbers of the second kind

T(n, k) were generalized to the extended r-central factorial numbers of the second kind
Tr(n + r, k + r) (see [5]). For nonnegative integers n, k, with n ≥ k, Tr(n + r, k + r) are given
by the coefficients in the expansion

(x + r)n =
n∑

k=0

Tr(n + r, k + r)x[k]. (1.7)

The extended r-central factorial numbers of the second kind, Tr(n + r, k + r), are also
given by the generating function

1
k!

ert(e
t
2 – e– t

2
)k =

∞∑
n=k

Tr(n + r, k + r)
tn

n!
. (1.8)
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An explicit expression for Tr(n + r, k + r) can be deduced from (1.8) as follows:

Tr(n + r, k + r) =
1
k!

k∑
l=0

(
k
l

)
(–1)k–l

(
r + l –

k
2

)n

=
1
k!

δkrn, (1.9)

where δkrn = δkxn|x=r , and by induction we can show

δkf (x) =
k∑

l=0

(
k
l

)
(–1)k–lf

(
x + l –

k
2

)
. (1.10)

For some details on these, one may refer to [4, 5, 20]. The central Bell polynomials B(c)
n (x)

are defined by (see [5, 10, 12, 13])

ex(e
t
2 –e– t

2 ) =
∞∑

n=0

B(c)
n (x)

tn

n!
. (1.11)

Then it is immediate from (1.11) that

B(c)
n (x) =

n∑
k=0

T(n, k)xk , (1.12)

and that (see [12])

B(c)
n (x) =

n∑
k=0

n∑
l=k

(
n
l

)
S2(l, k)

(
–

k
2

)n–k

xk , (1.13)

where S2(l, k) are the Stirling numbers of the second kind, given by

1
k!

(
et – 1

)k =
∞∑

n=k

S2(n, k)
tn

n!
. (1.14)

Further, the central Bell polynomials are given by the following Dobinski-like formula
(see [12]):

B(c)
n (x) =

∞∑
l=0

∞∑
j=0

(
l + j

j

)
(–1)j 1

(l + j)!

(
l
2

–
j
2

)n

xl+j. (1.15)

On the other hand, the extended r-central Bell polynomials B(c,r)
n (x) are defined by (see [5,

6, 21])

ertex(e
t
2 –e– t

2 ) =
∞∑

n=0

B(c,r)
n (x)

tn

n!
. (1.16)

Then it is easy from (1.16) that

B(c,r)
n (x) =

n∑
k=0

Tr(n + r, k + r)xk , (1.17)
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and that (see [5])

B(c,r)
n (x) =

n∑
k=0

n∑
l=k

(
n
l

)
S2(l, k)

(
r –

k
2

)n–k

xk . (1.18)

In addition, the extended r-central Bell polynomials are given by the following Dobinski-
like formula:

B(c,r)
n (x) =

∞∑
l=0

∞∑
j=0

(
l + j

j

)
(–1)j 1

(l + j)!

(
l
2

–
j
2

+ r
)n

xl+j, (1.19)

which can be observed immediately from the proof of Theorem 2.3 in [12].

2 Quick review of umbral calculus
Here we will briefly recall some of the basic facts about umbral calculus. The reader is
advised to refer to [20] for a complete treatment. Let C be the field of complex numbers,
and let F be the algebra of all formal power series in the variable t with the coefficients
in C:

F =

{
f (t) =

∞∑
k=0

ak
tk

k!

∣∣∣ak ∈ C

}
.

Let P = C[x] denote the ring of polynomials in x with the coefficients in C, and let P∗ be the
vector space of all linear functionals on P. For L ∈ P

∗ and p(x) ∈ P, the notation 〈L|p(x)〉
will be used for the action of the linear functional L on p(x).

For f (t) =
∑∞

k=0 ak
tk

k! ∈ F, the linear functional 〈f (t)|·〉 on P is defined by

〈
f (t)|xn〉 = an (n ≥ 0). (2.1)

In particular, from (2.2) we see that

〈
tk|xn〉 = n!δn,k (n, k ≥ 0), (2.2)

where δn,k is the Kronecker symbol.
For L ∈ P

∗, let fL(t) =
∑∞

k=0〈L|xk〉 tk

k! ∈ F. Then we note that 〈fL(t)|xn〉 = 〈L|xn〉, and the
map L → fL(t) is a vector space isomorphism from P

∗ to F. Henceforth, F denotes both the
algebra of all formal power series in t and the vector space of all linear functionals on P.
Thus an element f (t) of F will be thought of as both a formal power series and a linear
functional on P. F is called the umbral algebra, the study of which the umbral calculus is.

The order o(f (t)) of 0 �= f (t) ∈ F is the smallest integer k such that the coefficient of tk

does not vanish. In particular, for 0 �= f (t) ∈ F it is called an invertible series if o(f (t)) = 0
and a delta series if o(f (t)) = 1. Let f (t), g(t) ∈ F, with o(g(t)) = 0, o(f (t)) = 1. Then there
exists a unique sequence of polynomials sn(x)(deg sn(x) = n) such that

〈
g(t)f (t)k|sn(x)

〉
= n!δn,k , for n, k ≥ 0. (2.3)
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Such a sequence is called the Sheffer sequence for the Sheffer pair (g(t), f (t)), which we
denote by sn(x) ∼ (g(t), f (t)). Then sn(x) ∼ (g(t), f (t)) if and only if

1
g(f̄ (t))

exf̄ (t) =
∞∑

n=0

sn(x)
tn

n!
, (2.4)

where f̄ (t) is the compositional inverse of f (t) satisfying f (f̄ (t)) = f̄ (f (t)) = t.

tkp(x) = p(k)(x), eytp(x) = p(x + y),
〈
eyt|p(x)

〉
= p(y). (2.5)

Let sn(x) ∼ (g(t), f (t)). Then we have the following: The Sheffer identity is given by

sn(x + y) =
n∑

k=0

(
n
k

)
sk(x)pn–k(y), (2.6)

where pn(x) = g(t)sn(x) ∼ (1, f (t)). Then the conjugate representation says that

sn(x) =
n∑

k=0

1
k!

〈
g
(
f̄ (t)

)–1 f̄ (t)k|xn〉xk . (2.7)

We also have the recurrence formula

sn+1(x) =
(

x –
g ′(t)
g(t)

)
1

f ′(t)
sn(x), (2.8)

f (t)sn(x) = nsn–1(x) (n ≥ 0), (2.9)

xsn(x) =
n∑

k=0

(
n
k

)〈
g
(
f̄ (t)

)–1g ′(f̄ (t)
)|xn–k 〉sk(x)

+
n+1∑
k=1

(
n

k – 1

)〈
f ′(f̄ (t)

)|xn–k+1〉sk(x). (2.10)

The derivative of sn(x) is given by

d
dx

sn(x) =
n–1∑
k=0

(
n
k

)〈
f̄ (t)|xn–k 〉sk(x) (n ≥ 1). (2.11)

Assume that sn(x) ∼ (g(t), f (t)), rn(x) ∼ (h(t), l(t)). Then sn(x) =
∑n

k=0 cn,krk(x), where

cn,k =
1
k!

〈
h(f̄ (t))
g(f̄ (t))

l
(
f̄ (t)

)k
∣∣∣xn

〉
. (2.12)

Let pn(x) ∼ (1, f (t)), qn(x) ∼ (1, l(t)). Then the transfer formula says that

qn(x) = x
(

f (t)
l(t)

)n

x–1pn(x) (n ≥ 1). (2.13)

Finally, for h(t) ∈ F, p(x) ∈ P,

〈
h(t)|xp(x)

〉
=

〈
∂th(t)|p(x)

〉
. (2.14)
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3 Main results
Here we will derive some properties, identities and recurrence relations for the extended r-
central Bell polynomials by making use of umbral calculus techniques and the formulas in
Sect. 2. In addition, we will express those polynomials as linear combinations of quite a few
well-known special polynomials. Here the special polynomials are Bernoulli polynomi-
als, Euler polynomials, falling factorial polynomials, Abel polynomials, ordered Bell poly-
nomials, Laguerre polynomials, Daehee polynomials, Hermite polynomials, polynomials
closely related to the reverse Bessel polynomials and studied by Carlitz, and Bernoulli
polynomials of the second kind.

We first note from (1.16) and (2.4) that

B(c,r)
n (x) ∼

((
t +

√
t2 + 4
2

)–2r

, log

(
t +

√
t2 + 4
2

)2)

=
(
g(t), f (t)

)
. (3.1)

Using (2.14) for n ≥ 1, we have

B(c,r)
n (y) =

〈 ∞∑
m=0

B(c,r)
m (y)

tm

m!

∣∣∣∣xn

〉

=
〈
ertey(e

t
2 –e– t

2 )|xn〉

=
〈
∂t

(
ertey(e

t
2 –e– t

2 ))|xn–1〉

=
〈
rertey(e

t
2 –e– t

2 )|xn–1〉 +
〈
ertey(e

t
2 –e– t

2 ) 1
2

y
(
e

t
2 + e– t

2
)∣∣∣xn–1

〉

= r
〈
ertey(e

t
2 –e– t

2 )|xn–1〉 +
1
2

y
〈
e

t
2 |ertey(e

t
2 –e– t

2 )xn–1〉

+
1
2

y
〈
e– t

2 |ertey(e
t
2 –e– t

2 )xn–1〉

= rB(c,r)
n–1(y) +

1
2

y

〈
e

t
2

∣∣∣∣
∞∑

m=0

B(c,r)
m (y)

tm

m!
xn–1

〉

+
1
2

y

〈
e– t

2

∣∣∣∣
∞∑

m=0

B(c,r)
m (y)

tm

m!
xn–1

〉

= rB(c,r)
n–1(y) +

1
2

y
n–1∑
m=0

1
m!

B(c,r)
m (y)(n – 1)m

〈
e

t
2 |xn–1–m〉

+
1
2

y
n–1∑
m=0

1
m!

B(c,r)
m (y)(n – 1)m

〈
e– t

2 |xn–1–m〉

= rB(c,r)
n–1(y) +

1
2

y
n–1∑
m=0

(
n – 1

m

)
B(c,r)

m (y)
(

1
2

)n–1–m(
1 + (–1)n–1–m)

= rB(c,r)
n–1(y) + y

∑
0≤m≤n–1,n�≡m(mod 2)

(
n – 1

m

)
B(c,r)

m (y)
(

1
2

)n–1–m

. (3.2)

Thus by replacing n by n + 1, we obtained the following theorem.
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Theorem 3.1 For any nonnegative integer n, we have

B(c,r)
n+1(x) = rB(c,r)

n (x) + x
∑

0≤m≤n,n≡m(mod 2)

(
n
m

)
B(c,r)

m (x)
(

1
2

)n–m

. (3.3)

For n ≥ 1 and from (2.11), we get

d
dx

B(c,r)
n (x) =

n–1∑
k=0

(
n
k

)〈
e

t
2 – e– t

2 |xn–k 〉B(c,r)
k (x)

=
n–1∑
k=0

(
n
k

)(
1
2

)n–k(
1 – (–1)n–k)B(c,k)

k (x)

=
∑

0≤k≤n–1,n�≡k(mod 2)

(
n
k

)(
1
2

)n–1–k

B(c,r)
k (x).

Again, by replacing n by n + 1, we have shown the next result.

Theorem 3.2 For any nonnegative integer n, we have the following expression

d
dx

B(c,r)
n+1(x) =

∑
0≤k≤n,n≡k(mod 2)

(
n + 1

k

)(
1
2

)n–k

B(c,r)
k (x). (3.4)

From (3.2), we first observe that

f ′(t) =
2√

t2 + 4
,

g ′(t)
g(t)

=
–2r√
t2 + 4

. (3.5)

Then, by using (2.8) and (2.9), we obtain

B(c,r)
n+1(x) =

(
x +

2r√
t2 + 4

)√
t2 + 4
2

B(c,r)
n (x)

= x
(

t +
√

t2 + 4
2

–
t
2

)
B(c,r)

n (x) + rB(c,r)
n (x)

= x
(

e
1
2 f (t) –

t
2

)
B(c,r)

n (x) + rB(c,r)
n (x)

= xe
1
2 f (t)B(c,r)

n (x) –
1
2

x
d

dx
B(c,r)

n (x) + rB(c,r)
n (x)

= x
∞∑

k=0

1
k!

1
2k f (t)kB(c,r)

n (x) –
1
2

x
d

dx
B(c,r)

n (x) + rB(c,r)
n (x)

= x
n∑

k=0

(
n
k

)
1
2k B(c,r)

n–k (x) –
1
2

x
d

dx
B(c,r)

n (x) + rB(c,r)
n (x). (3.6)

This does not give us a new result. In fact, combining (3.3) and (3.6) yields Eq. (3.4).
In order to apply Eq. (2.10), we first note from (3.5) and f̄ (t) = e t

2 – e– t
2 that

g
(
f̄ (t)

)–1g ′(f̄ (t)
)

=
–2r

e t
2 + e– t

2
, f ′(f̄ (t)

)
=

2
e t

2 + e– t
2

. (3.7)
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Then, by (2.10), we have

xB(c,r)
n (x) = –r

n∑
k=0

(
n
k

)〈
2

e t
2 + e– t

2

∣∣∣xn–k
〉
B(c,r)

k (x)

+
n+1∑
k=1

(
n

k – 1

)〈
2

e t
2 + e– t

2

∣∣∣xn–k+1
〉
B(c,r)

k (x)

= –r
n∑

k=0

(
n
k

)
E∗

n–kB(c,r)
k (x) +

n+1∑
k=1

(
n

k – 1

)
E∗

n–k+1B(c,r)
k (x)

=
n+1∑
k=0

{
–r

(
n
k

)
E∗

n–k +
(

n
k – 1

)
E∗

n–k+1

}
B(c,r)

k (x).

Here E∗
n are the type 2 Euler numbers, which are given by

2
e t

2 + e– t
2

=
∞∑

n=0

E∗
n

tn

n!
. (3.8)

Thus we have shown the following theorem.

Theorem 3.3 For n ≥ 0, we have the following identity:

xB(c,r)
n (x) =

n+1∑
k=0

{
–r

(
n
k

)
E∗

n–k +
(

n
k – 1

)
E∗

n–k+1

}
B(c,r)

k (x),

where E∗
n are the type 2 Euler numbers given in (3.8).

Noting that B(c)
n (x) = g(t)B(c,r)

n (x), from the Sheffer identity in (2.6), we have

B(c,r)
n (x + y) =

n∑
k=0

(
n
k

)
B(c,r)

k (x)B(c)
n–k(y). (3.9)

Noting that the Bernoulli polynomials Bn(x) is Sheffer for the pair ( et–1
t , t), we write

B(c,r)
n (x) =

∑n
k=0 Cn,kBk(x). Then

Cn,k =
1
k!

〈
ert ee

t
2 –e– t

2 – 1
e t

2 – e– t
2

(
e

t
2 – e– t

2
)k

∣∣∣xn
〉

=

〈
ee

t
2 –e– t

2 – 1
e t

2 – e– t
2

∣∣∣∣
∞∑
l=k

Tr(l + r, k + r)
tl

l!
xn–l

〉

=
n∑

l=k

(
n
l

)
Tr(l + r, k + r)

〈
ee

t
2 –e– t

2 – 1
t

∣∣∣∣ t
e t

2 – e– t
2

xn–l
〉
. (3.10)
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Before proceeding, let us recall that B∗
n are the type 2 Bernoulli numbers, which are defined

by

t
e t

2 – e– t
2

=
∞∑

n=0

B∗
n

tn

n!
. (3.11)

From (3.10) and (3.12), we have

Cn,k =
n∑

l=k

(
n
l

)
Tr(l + r, k + r)

〈
ee

t
2 –e– t

2 – 1
t

∣∣∣∣
∞∑

m=0

B∗
m

tm

m!
xn–l

〉

=
n∑

l=k

n–l∑
m=0

(
n
l

)(
n – l

m

)
Tr(l + r, k + r)B∗

m

〈
ee

t
2 –e– t

2 – 1
t

∣∣∣xn–l–m
〉

=
n∑

l=k

n–l∑
m=0

(
n
l

)(
n – l

m

)
Tr(l + r, k + r)B∗

m
1

n – l – m + 1
〈
ee

t
2 –e– t

2 – 1|xn–l–m+1〉

=
n∑

l=k

n–l∑
m=0

(
n
l

)(
n – l

m

)
Tr(l + r, k + r)B∗

m
1

n – l – m + 1

〈 ∞∑
s=1

B(c)
s

ts

s!

∣∣∣∣xn–l–m+1

〉
. (3.12)

Here B(c)
n are the central Bell numbers, given by

ee
t
2 –e– t

2 =
∞∑

n=0

B(c)
n

tn

n!
. (3.13)

Finally, from (3.12) we obtain

Cn,k =
n∑

l=k

n–l∑
m=0

(
n
l

)(
n – l

m

)
1

n – l – m + 1
Tr(l + r, k + r)B∗

mB(c)
n–l–m+1

=
1

n + 1

n∑
l=k

n–l∑
m=0

(
n + 1

l

)(
n – l + 1

m

)
Tr(l + r, k + r)B∗

mB(c)
n–l–m+1. (3.14)

This completes the proof for the next theorem.

Theorem 3.4 For n ≥ 0, we have the following representation of B(c,r)
n (x) in terms of Bk(x):

B(c,r)
n (x) =

n∑
k=0

(
1

n + 1

n∑
l=k

n–l∑
m=0

(
n + 1

l

)(
n – l + 1

m

)
Tr(l + r, k + r)B∗

mB(c)
n–l–m+1

)
Bk(x),

where B∗
n are the type 2 Bernoulli numbers in (3.11) and B(c)

n are the central Bell numbers
in (3.13).
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Let us write B(c,r)
n (x) =

∑n
k=0 Cn,kEk(x). Here En(x) are the Euler polynomials with En(x) ∼

( et+1
2 , t). Then

Cn,k =
1
k!

〈
ert ee

t
2 –e– t

2 + 1
2

(
e

t
2 – e– t

2
)k

∣∣∣xn
〉

=
1
2

n∑
l=k

(
n
l

)
Tr(l + r, k + r)

〈
ee

t
2 –e– t

2 + 1|xn–l〉

=
1
2

n∑
l=k

(
n
l

)
Tr(l + r, k + r)

(
B(c)

n–l + δn,k
)
. (3.15)

This shows the next result.

Theorem 3.5 For n ≥ 0, we have the following representation of B(c,r)
n (x) in terms of Ek(x):

B(c,r)
n (x) =

1
2

n∑
k=0

n∑
l=k

(
n
l

)
Tr(l + r, k + r)

(
B(c)

n–l + δn,l
)
Ek(x).

We let B(c,r)
n (x) =

∑n
k=0 Cn,k(x)k . Here (x)n is the falling factorial sequence with (x)n ∼

(1, et – 1). Then

Cn,k =
〈

1
k!

ert(ee
t
2 –e– t

2 – 1
)k

∣∣∣xn
〉

=

〈 ∞∑
l=k

S2,r(l + r, k + r)
1
l!
(
e

t
2 – e– t

2
)l
∣∣∣∣xn

〉

=
n∑

l=k

S2,r(l + r, k + r)
〈

1
l!
(
e

t
2 – e– t

2
)l
∣∣∣xn

〉

=
n∑

l=k

S2,r(l + r, k + r)

〈 ∞∑
m=l

T(m, l)
tm

m!

∣∣∣∣xn

〉

=
n∑

l=k

n∑
m=l

S2,r(l + r, k + r)T(m, l)
1

m!
n!δn,m

=
n∑

l=k

S2,r(l + r, k + r)T(n, l). (3.16)

Here S2,r(l + r, k + r) are the r-Stirling numbers of the second kind, given by

1
k!

ert(et – 1
)k =

∞∑
n=k

S2,r(n + r, k + r)
tn

n!
. (3.17)

This gives the next result.

Theorem 3.6 For n ≥ 0, we have the following representation of B(c,r)
n (x) in terms of (x)k :

B(c,r)
n (x) =

n∑
k=0

n∑
l=k

S2,r(l + r, k + r)T(n, l)(x)k .
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To obtain another expression, we compute Cn,k in (3.16) in a different way as follows:

1
k!

〈
ert(ee

t
2 –e– t

2 – 1
)k|xn〉

=
1
k!

k∑
l=0

(
k
l

)
(–1)k–l〈ertel(e

t
2 –e– t

2 )|xn〉

=
1
k!

k∑
l=0

(
k
l

)
(–1)k–l

〈 ∞∑
m=0

B(c,r)
m (l)

tm

m!

∣∣∣∣xn

〉

=
1
k!

k∑
l=0

(
k
l

)
(–1)k–lB(c,r)

n (l). (3.18)

This finishes the proof of the next theorem.

Theorem 3.7 For n ≥ 0, we have the following representation of B(c,r)
n (x) in terms of (x)k :

B(c,r)
n (x) =

n∑
k=0

1
k!

k∑
l=0

(
k
l

)
(–1)k–lB(c,r)

n (l)(x)k .

Let B(c,r)
n (x) =

∑n
k=0 Cn,kAk(x; a). Here An(x; a) are the Abel polynomials with An(x; a) ∼

(1, teat), (a �= 0). Then

Cn,k =
1
k!

〈
ert(e

t
2 – e– t

2
)keak(e

t
2 –e– t

2 )|xn〉

=
n∑

l=k

(
n
l

)
Tr(l + r, k + r)

〈
eak(e

t
2 –e– t

2 )|xn–l〉

=
n∑

l=k

(
n
l

)
Tr(l + r, k + r)

〈 ∞∑
m=0

B(c)
m (ak)

tm

m!

∣∣∣∣xn–l

〉

=
n∑

l=k

(
n
l

)
Tr(l + r, k + r)B(c)

n–l(ak). (3.19)

Thus the following has been verified.

Theorem 3.8 For n ≥ 0, we have the following representation of B(c,r)
n (x) in terms of Ak(x; a):

B(c,r)
n (x) =

n∑
k=0

n∑
l=k

(
n
l

)
Tr(l + r, k + r)B(c,r)

n–l (ak)Ak(x; a).

Let us write B(c,r)
n (x) =

∑n
k=0 Cn,kObk(x). Here Ohn(x) are the ordered Bell polynomials

with Obn(x) ∼ (2 – et , t). Then

Cn,k =
1
k!

〈
ert(2 – ee

t
2 –e– t

2 )(
e

t
2 – e– t

2
)k|xn〉

=
n∑

l=k

(
n
l

)
Tr(l + r, k + r)

〈
2 – ee

t
2 –e– t

2 |xn–l〉
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=
n∑

l=k

(
n
l

)
Tr(l + r, k + r)

(
2δn,l – B(c)

n–l
)
. (3.20)

This shows the following result.

Theorem 3.9 For n ≥ 0, we have the following representation of B(c,r)
n (x) in terms of Obk(x):

B(c,r)
n (x) =

n∑
k=0

n∑
l=k

(
n
l

)
Tr(l + r, k + r)

(
2δn,l – B(c)

n–l
)
Obk(x).

We write B(c,r)
n (x) =

∑n
k=0 Cn,kL(α)

k (x), where L(α)
k (x) are the Laguerre polynomials with

L(α)
k (x) ∼ ((1 – t)–α–1, t

t–1 ). Then

Cn,k =
1
k!

〈
ert(1 –

(
e

t
2 – e– t

2
))–α–1

(
e t

2 – e– t
2

e t
2 – e– t

2 – 1

)k∣∣∣xn
〉

= (–1)k
〈(

1 –
(
e

t
2 – e– t

2
))–(α+k+1)

∣∣∣ 1
k!

ert(e
t
2 – e– t

2
)kxn

〉

= (–1)k
n∑

l=k

(
n
l

)
Tr(l + r, k + r)

〈(
1 –

(
e

t
2 – e– t

2
))–(α+k+1)|xn–l〉. (3.21)

Before proceeding, we recall several definitions. The central Fubini polynomials F (c)
n (x) are

defined by (see [9])

1
1 – x(e t

2 – e– t
2 )

=
∞∑

n=0

F (c)
n (x)

tn

n!
. (3.22)

For x = 1, F (c)
n = F (c)

n (1) are called the central Fubini numbers.
More generally, for any real number α, the central Fubini polynomials F (c,x)

n (x) of order
α are given by

(
1

1 – x(e t
2 – e– t

2 )

)α

=
∞∑

n=0

F (c,α)
n (x)

tn

n!
. (3.23)

For x = 1, F (c,α)
n = F (c,α)

n (1) are called the central Fubini numbers of order α. Now, from
(3.21) and (3.23) we have

Cn,k = (–1)k
n∑

l=k

(
n
l

)
Tr(l + r, k + r)

〈 ∞∑
m=0

F (c,α+k+1)
m

tm

m!

∣∣∣∣xn–l

〉

= (–1)k
n∑

l=k

(
n
l

)
Tr(l + r, k + r)F (c,α+k+1)

n–l .

This verifies the following theorem.



Jang et al. Advances in Difference Equations        (2019) 2019:202 Page 13 of 17

Theorem 3.10 For n ≥ 0, we have the following representation of B(c,r)
n (x) in terms of

L(α)
k (x).

B(c,r)
n (x) =

n∑
k=0

(–1)k
n∑

l=k

(
n
l

)
Tr(l + r, k + r)F (c,α+k+1)

n–l L(α)
k (x).

Let us write B(c,r)
n (x) =

∑n
k=0 Cn,kDk(x). Here Dn(x) are the Daehee polynomials with

Dn(x) ∼ ( et–1
t , et – 1). Then

Cn,k =
1
k!

〈
ert ee

t
2 –e– t

2 – 1
e t

2 – e– t
2

(
ee

t
2 –e– t

2 – 1
)k

∣∣∣xn
〉

=
1
k!

〈
ert t

e t
2 – e– t

2

ee
t
2 –e– t

2 – 1
t

(
ee

t
2 –e– t

2 – 1
)k

∣∣∣xn
〉

=
k + 1
n + 1

〈
ert t

e t
2 – e– t

2

∣∣∣∣ 1
(k + 1)!

(
ee

t
2 –e– t

2 – 1
)k+1xn+1

〉

=
k + 1
n + 1

〈
t

e t
2 – e– t

2

∣∣∣∣
∞∑

l=k+1

S2(l, k + 1)
1
l!

ert(e
t
2 – e– t

2
)lxn+1

〉

=
k + 1
n + 1

n+1∑
l=k+1

S2(l, k + 1)

〈
t

e t
2 – e– t

2

∣∣∣∣
∞∑

m=l

Tr(m + r, l + r)
tm

m!
xn+1

〉

=
k + 1
n + 1

n+1∑
l=k+1

S2(l, k + 1)
n+1∑
m=l

(
n + 1

m

)
Tr(m + r, l + r)

〈
t

e t
2 – e– t

2

∣∣∣xn+1–m
〉

=
k + 1
n + 1

n+1∑
l=k+1

n+1∑
m=l

S2(l, k + 1)Tr(m + r, l + r)
(

n + 1
m

)
B∗

n+1–m. (3.24)

This completes the proof for the next result.

Theorem 3.11 For n ≥ 0, we have the following representation of B(c,r)
n (x) in terms of Dk(x).

B(c,r)
n (x) =

n∑
k=0

k + 1
n + 1

n+1∑
l=k+1

n+1∑
m=l

S2(l, k + 1)Tr(m + r, l + r)
(

n + 1
m

)
B∗

n+1–mDk(x).

Let us put B(c,r)
n (x) =

∑n
k=0 Cn,kH (ν)

k (x). Here H (ν)
k (x) are the Hermite polynomials with

H (ν)
k (x) ∼ (e νt2

2 , t). Then

Cn,k =
1
k!

〈
erteν(e

t
2 –e– t

2 )2/2(e
t
2 – e– t

2
)k|xn〉

=
n∑

l=k

(
n
l

)
Tr(l + r, k + r)

〈
eν(e

t
2 –e– t

2 )2/2|xn–l〉

=
n∑

l=k

(
n
l

)
Tr(l + r, k + r)

〈 ∞∑
m=0

νm

m!
(e t

2 – e– t
2 )2m

2m

∣∣∣∣xn–l

〉
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=
n∑

l=k

(
n
l

)
Tr(l + r, k + r)

[ n–l
2 ]∑

m=0

(2m)!νm

m!2m

〈
1

(2m)!
(
e

t
2 – e– t

2
)2m

∣∣∣xn–l
〉

=
n∑

l=k

(
n
l

)
Tr(l + r, k + r)

[ n–l
2 ]∑

m=0

(2m)!νm

m!2m T(n – l, 2m). (3.25)

This shows the following theorem.

Theorem 3.12 For n ≥ 0, we have the following representation of B(c,r)
n (x) in terms of

H (ν)
k (x).

B(c,r)
n (x) =

n∑
k=0

n∑
l=k

[ n–l
2 ]∑

m=0

(
n
l

)
Tr(l + r, k + r)m!

(
2m
m

)(
ν

2

)m

T(n – l, 2m)H (ν)
k (x).

The Bessel polynomials yn(x) are given by

yn(x) =
n∑

k=0

(n + k)!
(n – k)!k!

(
x
2

)k

,

which satisfies the differential equation

x2y′′ + (2x + 2)y′ – n(n + 1)y = 0.

The reverse Bessel polynomials are known to be

θn(x) = xnyn

(
1
x

)
=

n∑
k=0

(n + k)!
(n – k)!k!

xn–k

2k ,

which obey

xy′′ – 2(x + n)y′ + 2ny = 0.

On the other hand, Carlitz defined a related set of polynomials,

Pn(x) = xnyn–1

(
1
x

)
= xθn–1(x) (n ≥ 1), P0(x) = 1.

Then we can show that Pn(x) ∼ (1, t – 1
2 t2) (see [20]). Let us write B(c,r)

n (x) =
∑n

k=0 Cn,kPk(x).
Then

Cn,k =
1
k!

〈
ert

(
e

t
2 – e– t

2 –
1
2
(
e

t
2 – e– t

2
)2

)k∣∣∣xn
〉

=
(

–
1
2

)k〈(
e

t
2 – e– t

2 – 2
)k

∣∣∣ 1
k!

ert(e
t
2 – e– t

2
)kxn

〉

=
(

–
1
2

)k n∑
l=k

(
n
l

)
Tr(l + r, k + r)

〈(
e

t
2 – e– t

2 – 2
)k|xn–l〉
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=
(

–
1
2

)k n∑
l=k

(
n
l

)
Tr(l + r, k + r)

〈 k∑
m=0

(
k
m

)
(–2)k–m(

e
t
2 – e– t

2
)m

∣∣∣∣xn–l

〉

=
(

–
1
2

)k n∑
l=k

(
n
l

)
Tr(l + r, k + r)

k∑
m=0

(
k
m

)
(–2)k–mm!

〈
1

m!
(
e

t
2 – e– t

2
)m

∣∣∣xn–l
〉

=
n∑

l=k

k∑
m=0

(
n
l

)(
k
m

)(
–

1
2

)m

m!Tr(l + r, k + r)T(n – l, m). (3.26)

This completes the proof for the next theorem.

Theorem 3.13 For n ≥ 0, we have the following representation of B(c,r)
n (x) in terms of Pk(x):

B(c,r)
n (x) =

n∑
k=0

( n∑
l=k

k∑
m=0

(
n
l

)(
k
m

)(
–

1
2

)m

m!Tr(l + r, k + r)T(n – l, m)

)
Pk(x).

We write B(c,r)
n (x) =

∑n
k=0 Cn,kbk(x). Here bn(x) are the Bernoulli polynomials of the sec-

ond kind with bn(x) ∼ ( t
et–1 , et – 1). Then

Cn,k =
1
k!

〈
ert e t

2 – e– t
2

ee
t
2 –e– t

2 –1

(
ee

t
2 –e– t

2 – 1
)k

∣∣∣xn
〉

=
〈

e t
2 – e– t

2

ee
t
2 –e– t

2 –1

∣∣∣ 1
k!

ert(ee
t
2 –e– t

2 – 1
)kxn

〉

=

〈
e t

2 – e– t
2

ee
t
2 –e– t

2 –1

∣∣∣∣
∞∑
l=k

S2(l, k)
1
l!

ert(e
t
2 – e– t

2
)lxn

〉

=
n∑

l=k

S2(l, k)

〈
e t

2 – e– t
2

ee
t
2 –e– t

2 –1

∣∣∣∣
∞∑

m=l

Tr(m + r, l + r)
tm

m!
xn

〉

=
n∑

l=k

S2(l, k)
n∑

m=l

(
n
m

)
Tr(m + r, l + r)

〈 ∞∑
s=0

Bs
1
s!

(
e

t
2 – e– t

2
)s

∣∣∣∣xn–m

〉

=
n∑

l=k

S2(l, k)
n∑

m=l

(
n
m

)
Tr(m + r, l + r)

n–m∑
s=0

Bs

〈
1
s!

(
e

t
2 – e– t

2
)s

∣∣∣xn–m
〉

=
n∑

l=k

n∑
m=l

n–m∑
s=0

(
n
m

)
S2(l, k)BsTr(m + r, l + r)T(n – l, s), (3.27)

where S2(l, k) are the Stirling numbers of the second and Bs are the Bernoulli numbers,
given by

t
et – 1

=
∞∑
s=0

Bs
ts

s!
.

Thus we have shown the next theorem.
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Theorem 3.14 For n ≥ 0, we have the following representation of B(c,r)
n (x) in terms of bk(x).

B(c,r)
n (x) =

n∑
k=0

( n∑
l=k

n∑
m=l

n–m∑
s=0

(
n
m

)
S2(l, k)BsTr(m + r, l + r)T(n – l, s)

)
bk(x).

From (3.2), B(c,r)
n (x) = ( t+

√
t2+4
2 )2rB(c)

n (x), and hence

B(c,r+s)
n (x) =

(
t +

√
t2 + 4
2

)2s

B(c,r)
n (x). (3.28)

In particular, for s = 1 we have

B(c,r+1)
n (x) =

(
t +

√
t2 + 4
2

)2

B(c,r)
n (x)

= ef (t)B(c,r)
n (x)

=
∞∑

k=0

1
k!

f (t)kB(c,r)
n (x)

=
n∑

k=0

(
n
k

)
B(c,r)

n–k (x). (3.29)

Thus we have shown the following theorem.

Theorem 3.15 The following identity holds true.

B(c,r+1)
n (x) =

n∑
k=0

(
n
k

)
B(c,r)

k (x).

4 Conclusions
In this paper, we studied the extended r-central factorial numbers of the second kind and
the extended r-central Bell polynomials by making use of umbral calculus techniques. We
noted that the extended r-central factorial numbers of the second kind are an extended
version of the central factorial numbers of the second kind and also a central analog of the
r-Stirling numbers of the second kind. Also, the extended r-central Bell polynomials are
an extended version of the central Bell polynomials and also a central analogue of r-Bell
polynomials.

We derived some properties, identities and recurrence relations. In addition, we rep-
resented the extended r-central Bell polynomials in terms of many well-known special
polynomials. Here the special polynomials are Bernoulli polynomials, Euler polynomi-
als, falling factorial polynomials, Abel polynomials, ordered Bell polynomials, Laguerre
polynomials, Daehee polynomials, Hermite polynomials, polynomials closely related to
the reverse Bessel polynomials and studied by Carlitz, and Bernoulli polynomials of the
second kind.

Finally, along the same line as this paper, we will continue to investigate some special
numbers and polynomials from the umbral calculus viewpoint.
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