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Abstract
Consider positive solutions and multiple positive solutions for a discrete nonlinear
third-order boundary value problem

{
�3u(t – 1) = a(t)f (t,u(t)), t ∈ [1, T – 2]Z,

�u(0) = u(T ) = 0, �2u(η) – α�u(T – 1) = 0,

which has the sign-changing Green’s function. Here T > 8 is a positive integer,
[1, T – 1]Z = {1, 2, . . . , T – 2}, α ∈ [0, 1

T–1 ), a : [0, T – 2]Z → (0, +∞),
f : [1, T – 2]Z × [0,∞) → [0,∞) is continuous.

Keywords: Discrete third-order three-point boundary value problem; Positive
solutions; Cone; Fixed point; Sign-changing Green’s function

1 Introduction
Multi-point boundary value problems for differential equations have a wide application
in computational physics, economics, and modern biological fields [1]. In 1992, Gupta
[2] studied solvability of differential equation three-point boundary value problem. Soon
afterwards, there arose many results on multi-point nonlinear boundary value problems
[3–6]. In 1999, Ma [7] studied the existence of positive solution for a second-order dif-
ferential equation three-point boundary value problem. Thereafter, many results for the
existence of positive solutions on multi-point boundary value problems have been stud-
ied [7–19]. With the development of the computing science and the computer simulation,
multi-point boundary value problems should be discretized, so we need to study corre-
sponding difference equation [20–26]. In 1998, by using Krasnosel’skii’s fixed point theo-
rem, Agarwal and Henderson [24] studied the discrete problem

⎧⎨
⎩�3u(t – 1) = λa(t)f (t, u(t)), t ∈ [2, T]Z,

u(0) = u(1) = u(T + 3) = 0.

They obtained the existence of positive solutions in two cases for λ = 1 and λ �= 1. Later,
there were many interesting results on the positive solutions to the discrete boundary
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value problems, see, for instance, [23–26] and the references therein. It is noted that
Green’s functions are positive in most of these results. However, when the Green’s function
is sign-changing, could we also obtain the existence of positive solutions to these kinds of
problems?

In 2015, by using the Guo–Krasnosel’skii fixed point theorem, Wang and Gao [25] stud-
ied the existence of positive solutions to the discrete third-order three-point boundary
value problem

⎧⎨
⎩�3u(t – 1) + a(t)f (t, u(t)) = 0, t ∈ [1, T – 1]Z,

u(0) = �u(T) = �2u(η) = 0,

where η ∈ [1, [ 3T2–3T–2
6T+3 ]]Z and the Green’s function is sign-changing. In 2016, Geng and

Gao [26], by using the Guo–Krasnosel’skii fixed point theorem, studied the discrete third-
order three-point boundary value problem

⎧⎨
⎩�3u(t – 1) + λa(t)f (t, u(t)) = 0, t ∈ [1, T – 1]Z,

u(0) = �u(t) = �2u(η) = 0,

when f satisfies some superlinear and sublinear condition on 0 and ∞. For the continuous
case, which has the sign-changing Green’s function, one can see [27–29] and the references
therein. Inspired by the above works, in this paper, we consider the existence and multiple
positive solutions to the following discrete nonlinear third-order three-point BVP:

⎧⎨
⎩�3u(t – 1) = a(t)f (t, u(t)), t ∈ [1, T – 2]Z,

�u(0) = u(T) = 0, �2u(η) – α�u(T – 1) = 0,
(1.1)

where T > 8 is a positive integer, α ∈ [0, 1
T–1 ), a : [1, T – 2]Z → (0, +∞), f : [1, T – 2]Z ×

[0,∞) → [0,∞) is continuous, η satisfies
(H0) η ∈ [�T–2

2 � + 1, T – 2]Z.
Under assumption (H0), the Green’s function of (1.1) changes its sign. The proof of our

main results is based upon the following well-known Guo–Krasnoselskii fixed point the-
orems [30].

Theorem 1.1 Let E be a Banach space and K ⊂ E be a cone. Assume that Ω1, Ω2 are open
bounded subsets of E with 0 ∈ Ω1, Ω1 ⊂ Ω2. If

A : K ∩ (Ω2 \ Ω1) → K

is a completely continuous operator such that
(i) ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2,

or
(ii) ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2,

then A has a fixed point in K ∩ (Ω2 \ Ω1).

Theorem 1.2 Let E be a Banach space and K be a cone in E. For some p > 0, define Kp = {x ∈
K |‖x‖ ≤ p}. Assume that A : Kp → K is a compact operator; if x ∈ ∂Kp = {x ∈ k|‖x‖ = p},
Ax �= x, we have
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(i) For ∀x ∈ ∂Kp, if ‖Ax‖ ≥ ‖x‖, then i(A, Kp, K) = 0,
(ii) For ∀x ∈ ∂Kp, if ‖Ax‖ ≤ ‖x‖, then i(A, Kp, K) = 1.

2 Preliminaries
Lemma 2.1 Suppose that (H0) holds. Then the linear problem

⎧⎨
⎩�3u(t – 1) = y(t), t ∈ [1, T – 2]Z,

�u(0) = u(T) = 0, �2u(η) – α�u(T – 1) = 0
(2.1)

has a unique solution

u(t) =
T–2∑
s=1

G(t, s)y(s), (2.2)

where

G(t, s) = g(t, s) + k(t, s) +

⎧⎨
⎩

T(T–1)–t(t–1)
2–2α(T–1) , s ≤ η,

0, η < s,

g(t, s) = –
α(T – s – 1)[T(T – 1) – t(t – 1)]

2 – 2α(T – 1)
–

(T – s)(T – s – 1)
2

,

k(t, s) =

⎧⎨
⎩

(t–s)(t–s–1)
2 , 0 < s ≤ t – 2 ≤ T – 2,

0, 0 ≤ t – 2 < s ≤ T – 2,

and

G(0, s) = G(1, s) =

⎧⎨
⎩

–αT(T–1)(T–s–1)+T(T–1)
2–2α(T–1) – (T–1)(T–s–1)

2 , s ≤ η,
–αT(T–1)(T–s–1)

2–2α(T–1) – (T–1)(T–s–1)
2 , η < s.

Proof Summing both sides of equation (2.1) from s = 1 to s = t – 1, we get

�2u(t – 1) = �2u(0) +
t–1∑
s=1

y(s),

and

�u(t – 1) = (t – 1)�2u(0) +
t–2∑
s=1

(t – s – 1)y(s).

Then summing both sides from τ = 1 to τ = t, we get

u(t) = u(0) +
t(t – 1)

2
�2u(0) +

t–2∑
s=1

(t – s)(t – s – 1)
2

y(s).
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From boundary conditions �u(0) = u(T) = 0, �2u(η) – α�u(T – 1) = 0, we have

⎧⎨
⎩u(0) + T(T–1)

2 �2u(0) +
∑T–2

s=1
(T–s)(T–s–1)

2 y(s) = 0;

�2u(0) +
∑η

s=1 y(s) – α(T – 1)�2u(0) – α
∑T–2

s=1 (T – s – 1)y(s) = 0.

Furthermore, we get

⎧⎪⎪⎨
⎪⎪⎩

u(0) =
∑T–2

s=1
–αT(T–1)(T–s–1)

2–2α(T–1) y(s) +
∑η

s=1
T(T–1)

2–2α(T–1) y(s)

–
∑T–2

s=1
(T–s)(T–s–1)

2 y(s),

�2u(0) =
∑T–2

s=1
α(T–s–1)
1–α(T–1) y(s) –

∑η
s=1

1
1–α(T–1) y(s).

Then we have

u(t) =
T–2∑
s=1

(
–

α(T – s – 1)[T(T – 1) – t(t – 1)]
2 – 2α(T – 1)

–
(T – s)(T – s – 1)

2

)
y(s)

+
t–2∑
s=1

(t – s)(t – s – 1)
2

y(s)

+
η∑

s=1

T(T – 1) – t(t – 1)
2 – 2α(T – 1)

y(s). �

Lemma 2.2 Suppose that (H0) holds. Then the Green’s function G(t, s) changes its sign on
[0, T]Z × [0, T]Z. More precisely,

(i) If s ∈ [1,η]Z, then �tG(t, s) ≤ 0, G(t, s) ≥ 0 for ∀t ∈ [0, T]Z. Furthermore,

min
t∈[0,T]Z

G(t, s) = G(T , s) = 0,

max
t∈[0,T]Z

G(t, s) = G(0, s) ≤ T(T – 1)(1 + αη)
1 – α(T – 1)

.

(ii) If s ∈ [η + 1, T – 2]Z, then �tG(t, s) ≥ 0, G(t, s) ≤ 0 for ∀t ∈ [0, T]Z. Furthermore,

max
t∈[0,T]Z

G(t, s) = G(T , s) = 0,

min
t∈[0,T]Z

G(t, s) = G(0, s) ≥ –T(T – 1)(1 + αη)
1 – α(T – 1)

.

Proof (i) If s ∈ [1,η]Z, we have

�tG(t, s) =

⎧⎨
⎩

αt(T–s–1)–2t
1–α(T–1) , t – 2 ≤ s,

αt(T–s–1)–2t
1–α(T–1) + t – s, s ≤ t – 2.

If s ≤ t – 2, since α(T – 1) – 1 < 0, we get

�tG(t, s) =
2αt(T – s – 1) – 2t

2 – 2α(T – 1)
+ t – s

=
2αt(T – s – 1) – 2t + (t – s)(2 – 2α(T – 1))

2 – 2α(T – 1)
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=
–2sα + 2s[α(T – 1) – 1]

2 – 2α(T – 1)
< 0.

If t – 2 ≤ s, since α < 1
T–1 , so 2 – 2α(T – 1) > 0, α(T – s – 1) – 1 < 0, we have

�tG(t, s) =
2αt(T – s – 1) – 2t

2 – 2α(T – 1)
< 0.

For ∀t ∈ [0, T – 1]Z, �tG(t, s) ≤ 0. If s ∈ [1,η]Z, G(t, s) ≥ 0. So

min
t∈[0,T]Z

G(t, s) = G(T , s) = 0,

max
t∈[0,T]Z

G(t, s) = G(0, s)

=
T(T – 1)[1 – α(T – s – 1)]

2 – 2α(T – 1)
–

(T – s)(T – s – 1)
2

≤ T(T – 1)[1 – α(T – η – 1)]
2 – 2α(T – 1)

–
(T – η)(T – η – 1)

2

≤ T(T – 1)(1 + αη)
1 – α(T – 1)

.

(ii) If s ∈ [η + 1, T]Z, we have

�tG(t, s) =

⎧⎨
⎩

2αt(T–s–1)
2–2α(T–1) , s ≥ t – 2,
2αt(T–s–1)
2–2α(T–1) + t – s, s ≤ t – 2.

If t – 2 ≤ s, since α < 1
T–1 , 2 – 2α(T – 1) > 0, we have

�tG(t, s) =
2αt(T – s – 1)
2 – 2α(T – 1)

> 0.

If s ≤ t – 2, then t – s > 0, so

�tG(t, s) =
2αt(T – s – 1)
2 – 2α(T – 1)

+ t – s > 0.

If s ∈ [η + 1, T]Z, for ∀t ∈ [0, T]Z, we have

max
t∈[0,T]Z

G(t, s) = G(T , s) = 0,

min
t∈[0,T]Z

G(t, s) = G(0, s)

=
–αT(T – 1)(T – s – 1)

2 – 2α(T – 1)
–

(T – s)(T – s – 1)
2

≥ –αT(T – 1)(T – η – 1)
2 – 2α(T – 1)

–
(T – η)(T – η – 1)

2

≥ –T(T – 1)(1 + αη)
1 – α(T – 1)

.
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In conclusion, if s ∈ [1,η]Z, G(t, s) is decreasing, then G(t, s) ≥ 0, since mint∈[0,T]Z G(t, s) =
0; if s ∈ [η + 1, T]Z, G(t, s) is increasing, then G(t, s) ≤ 0 since maxt∈[0,T]Z G(t, s) = 0. So, the
Green’s function G(t, s) is a sign-changing function on [0, T]Z × [0, T]Z. �

Remark Now, we give a brief explanation for the reason why we choose

η ∈
[⌊

T – 2
2

⌋
+ 1, T – 2

]
Z

. (2.3)

Consider the problem

⎧⎨
⎩�3u(t – 1) = 1, t ∈ [1, T – 2]Z,

�u(0) = u(T) = 0, �2u(η) – α�u(T – 1) = 0.
(2.4)

From Lemma 2.1, we get

u(t) =
1

12 – 12α(T – 1)
{

3α
[
t(t – 1) – T(T – 1)

]
(T – 1)(T – 2)

+ 6η
[
T(T – 1) – t(t – 1)

]
– 2T(T – 1)(T – 2)

[
1 – α(T – 1)

]
+ 2t(t – 1)(t – 2)

[
1 – α(T – 1)

]}
=

φ(t)
12 – 12α(T – 1)

,

where

φ(t) = 3α
[
t(t – 1) – T(T – 1)

]
(T – 1)(T – 2) + 6η

[
T(T – 1) – t(t – 1)

]
– 2T(T – 1)(T – 2)

[
1 – α(T – 1)

]
+ 2t(t – 1)(t – 2)

[
1 – α(T – 1)

]
.

Clearly, u(t) ≥ 0 is equivalent to φ(t) ≥ 0, and

�φ(t) = 6t
{

(t – 1)
[
1 – α(T – 1)

]
– 2η + α(T – 1)(T – 2)

}
.

Let �φ(t) = 0. Then t = 0 or t = 1 + 2η–α(T–1)(T–2)
1–α(T–1) . Therefore,

�φ(t) > 0 ⇔ t >
2η + 1 – α(T – 1)2

1 – α(T – 1)
.

Now, we claim that if (2.3) holds, then φ(t) is a positive solution of (2.4). In fact, if (2.3)
holds, then 2η+1–α(T–1)2

1–α(T–1) ≥ T – 1 in this case, this implies that

�φ(t) ≤ 0, t ∈ [0, T – 1]Z.

More precisely, �φ(0) = 0, �φ(t) < 0 for t ∈ [1, T – 2]Z and �φ(T – 1) < 0 for 2η+1–α(T–1)2

1–α(T–1) >

T – 1 and �φ(T – 1) = 0 for 2η+1–α(T–1)2

1–α(T–1) = T – 1. Therefore, φ(t) is a positive solution of
the linear problem (2.4) since φ(T) = 0.
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Let

E =
{

u : [0, T]Z →R|�u(0) = u(T),�2u(η) – α�u(T – 1) = 0
}

.

Then E is a Banach space with norm ‖u‖ = maxt∈[0,T]Z |u(t)|.
Let

K0 =
{

y ∈ E : y(t) ≥ 0, t ∈ [0, T]Z;�y(t) ≤ 0, t ∈ [0, T – 1]Z
}

.

Then K0 is a cone in E.

Lemma 2.3 Let (H0) hold. If y ∈ K0, then the solution u(t) of problem (2.1) belongs to K0,
i.e., u ∈ K0. Furthermore, u(t) is concave on [0,η]Z.

Proof Firstly, if 0 ≤ t – 2 ≤ η, then

u(t) =
T–2∑

s=η+1

{
–α(T – s – 1)[T(T – 1) – t(t – 1)]

2 – 2α(T – 1)
–

(T – s)(T – s – 1)
2

}
y(s)

+
η∑

s=1

{
[1 – α(T – s – 1)][T(T – 1) – t(t – 1)]

2 – 2α(T – 1)
–

(T – s)(T – s – 1)
2

}
y(s)

+
t–2∑
s=1

(t – s)(t – s – 1)
2

y(s).

Then we obtain that

�u(t) = u(t + 1) – u(t)

= –
η∑

s=1

t[1 – α(T – s – 1)]
1 – α(T – 1)

y(s) +
t–2∑
s=1

(t – s)y(s) + y(t – 1) +
T–2∑

s=η+1

αt(T – s – 1)
1 – α(T – 1)

y(s)

=
t–2∑
s=1

–αts + s(α(T – 1) – 1)
1 – α(T – 1)

y(s) –
η∑

s=t–1

t[1 – α(T – s – 1)]
1 – α(T – 1)

y(s) + y(t – 1)

+
T–2∑

s=η+1

αt(T – s – 1)
1 – α(T – 1)

y(s). (2.5)

Since y ∈ K0, we know that y is decreasing on [0, T]Z. That is to say, y(t) ≥ y(η) for t ≤ η

and y(t) ≤ y(η) for t ≥ η. Therefore, if t – 1 ≤ η, then

�u(t)

=
t–1∑
s=1

–αts + s(α(T – 1) – 1)
1 – α(T – 1)

y(s) –
η∑

s=t–1

t[1 – α(T – s – 1)]
1 – α(T – 1)

y(s)

+
T–2∑

s=η+1

αt(T – s – 1)
1 – α(T – 1)

y(s)
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≤ y(η)

{ t–1∑
s=1

–αts + s(α(T – 1) – 1)
1 – α(T – 1)

–
η∑

s=t–1

t[1 – α(T – s – 1)]
1 – α(T – 1)

+
T–2∑

s=η+1

αt(T – s – 1)
1 – α(T – 1)

}

= y(η)

{
–

η∑
s=1

t[1 – α(T – s – 1)]
1 – α(T – 1)

+
t–1∑
s=1

(t – s) +
T–2∑

s=η+1

αt(T – s – 1)
1 – α(T – 1)

}
.

If t – 1 > η, then y(t – 1) ≤ y(η). Therefore, by (2.5), no matter t – 1 ≤ η or t – 1 > η, we
always have

�u(t) ≤ y(η)

{
–

η∑
s=1

t[1 – α(T – s – 1)]
1 – α(T – 1)

+
t–1∑
s=1

(t – s) +
T–2∑

s=η+1

αt(T – s – 1)
1 – α(T – 1)

}

=
ty(η)

1 – α(T – 1)

{
–η +

(t – 1)[1 – α(T – 1)]
2

+
α(T – 1)(T – 2)

2

}

=
1

1 – α(T – 1)
[
–2η + (t – 1) + α(T – 1)(T – t – 1)

]
.

Combining this with η ≥ T–2
2 , we have

�u(t) ≤ (T – t – 1)
(
α(T – 1) – 1

)
< 0.

Furthermore, we have

�2u(t – 1)

= –
η∑

s=1

1 – α(T – s – 1)
1 – α(T – 1)

y(s) +
t∑

s=1

y(s) +
T–2∑

s=η+1

α(T – s – 1)
1 – α(T – 1)

y(s)

= –
η∑

s=1

1 – α(T – s – 1)
1 – α(T – 1)

y(s) +
t–2∑
s=1

y(s) + y(t – 1) + y(t) +
T–2∑

s=η+1

α(T – s – 1)
1 – α(T – 1)

y(s).

Now, if t – 1 ≤ η and t ≤ η, then

�2u(t – 1)

≤ –
t–2∑
s=1

sα
1 – α(T – 1)

y(s) –
η∑

s=t–1

1 – α(T – s – 1)
1 – α(T – 1)

y(s) +
T–2∑

s=η+1

α(T – s – 1)
1 – α(T – 1)

y(s) + 2y(η).

Combining this with the monotonicity of y, we get that

�2u(t – 1)

≤ y(η)

{
–

t–2∑
s=1

sα
1 – α(T – 1)

–
η∑

s=t–1

1 – α(T – s – 1)
1 – α(T – 1)

+
T–2∑

s=η+1

α(T – s – 1)
1 – α(T – 1)

+ 2

}

= y(η)

{
–

η∑
s=1

1 – α(T – s – 1)
1 – α(T – 1)

+ t +
T–2∑

s=η+1

α(T – s – 1)
1 – α(T – 1)

}

=
y(η)

1 – α(T – 1)

{
–η +

t[1 – α(T – 1)]
2

+
α(T – 1)

2

}
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=
y(η)

1 – α(T – 1)
–2η + 2t + α(T – 1)(T – 2)

2

≤ 0.

For other cases, t – 1 ≤ η < t and t – 1 > η, we could also obtain �2u(t – 1) ≤ 0 for 0 ≤
t – 2 ≤ η.

Secondly, if η < t – 2 ≤ T – 2, then

u(t) =
T–2∑

s=t–1

{
–

α(T – s – 1)[T(T – 1) – t(t – 1)]
2 – 2α(T – 1)

–
(T – s)(T – s – 1)

2

}
y(s)

+
t–2∑
s=1

{
–α(T – s – 1)[T(T – 1) – t(t – 1)]

2 – 2α(T – 1)
–

(T – s)(T – s – 1)
2

+
(t – s)(t – s – 1)

2

}
y(s) +

η∑
s=1

T(T – 1) – t(t – 1)
2 – 2α(T – 1)

y(s)

and

�u(t) =
T–2∑
s=1

αt(T – s – 1)
1 – α(T – 1)

y(s) +
t–1∑
s=1

(t – s)y(s) –
η∑

s=1

t
1 – α(T – 1)

y(s)

= –
η∑

s=1

αts + s(1 – α(T – 1))
1 – α(T – 1)

y(s) +
T–2∑

s=η+1

αt(T – s – 1)
(1 – α(T – 1))

y(s) +
t–1∑

s=η+1

(t – s)y(s).

Combining this with the fact that y ∈ K0 and the monotonicity of y, we get that

�u(t) ≤ y(η)

{
–

η∑
s=1

αts + s(1 – α(T – 1))
1 – α(T – 1)

+
T–2∑

s=η+1

αt(T – s – 1)
1 – α(T – 1)

+
t–1∑

s=η+1

(t – s)

}

=
y(η)

2 – 2α(T – 1)
[
αt(T – 1)(T – 2) + t(t – 1)

(
1 – α(T – 1)

)
– 2tη

]
.

Since η ≥ T–2
2 , then we get that

�u(t) ≤ y(η)
(
1 – α(T – 2)

)
t(t – T) ≤ 0.

So, for ∀t ∈ [0, T – 1]Z, �u(t) ≤ 0, which implies that u(t) is decreasing. Since u(T) = 0, for
∀t ∈ [0, T]Z, we have u(t) ≥ 0 and u ∈ K0. For ∀t ∈ [1,η + 1]Z, �2u(t – 1) ≤ 0, we get that
u(t) is concave on [0,η + 2]Z. �

Lemma 2.4 Let (H0) hold. If y ∈ K0, then the solution u(t) of (2.1) satisfies

min
t∈[T–θ ,θ ]Z

u(t) = u(θ ) ≥ η + 2 – θ

η + 2
‖u‖ = θ∗‖u‖,

where θ∗ = η+2–θ

η+2 , θ ∈ [�T
2 � + 1,η + 2]Z.
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Proof From Lemma 2.3, u(t) is concave on [0,η + 2]Z. So, u(t) satisfies

u(t) – u(0)
t

≥ u(η + 2) – u(0)
η + 2

, t ∈ [0,η + 2]Z.

Meanwhile, from Lemma 2.3, u(t) is non-increasing on [0, T]Z, which implies that u(0) =
‖u‖. Therefore,

u(t) ≥ η + 2 – t
η + 2

u(0) =
η + 2 – t

η + 2
‖u‖,

min
t∈[T–θ ,θ ]Z

u(t) = u(θ ) ≥ η + 2 – θ

η + 2
‖u‖ = θ∗‖u‖. �

3 Main results
(H1) f : [1, T – 2]Z × [0,∞) → [0,∞) is continuous. For u ∈ [0,∞), f (t, u) is a decreasing

function with respect to t, and for t ∈ [1, T – 2]Z, f (t, u) is an increasing function
with respect to u.

(H2) a : [1, T – 2]Z → [0,∞) is a decreasing function.
Let

K =
{

u ∈ K0| min
t∈[T–θ ,θ ]Z

u(t) ≥ θ∗‖u‖
}

.

Then K is a cone in E. Define the operator S : K → E as

Su(t) =
T–2∑
s=1

G(t, s)a(s)f
(
s, u(s)

)
. (3.1)

Lemma 3.1 S : K → K is completely continuous.

Proof It is obvious that S : K → E is completely continuous since the Banach space E
is finite dimensional. Now, let us prove that S : K → K , that is to say, for any u ∈ K ,
Su ∈ K .

Let u ∈ K . Then u ∈ K0, which implies that �u(t) ≤ 0 and u is decreasing on t. Therefore,
by (H1), f (t, u(t)) is a decreasing function of t. Let y(t) := a(t)f (t, u(t)). Then, from (H1)
and (H2), we obtain that y(t) ≥ 0 and y is also a decreasing function of t. Thus, y ∈ K0.
Furthermore, by (3.1), we know that

�3(Su)(t – 1) = y(t), t ∈ [1, T – 2]Z, (3.2)

and

�(Su)(0) = (Su)(T) = 0, �2(Su)(η) – α�(Su)(T – 1) = 0. (3.3)

Therefore, Su satisfies problem (2.1). Now, similar to the proof of Lemma 2.3, and us-
ing the fact y ∈ K0, we obtain that Su ∈ K0 and Su is concave on [0,η]Z. Furthermore, by
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Lemma 2.4 and the fact Su ∈ K0, we know that

min
t∈[T–θ ,θ ]Z

(Su)(t) ≥ θ∗‖Su‖.

Therefore, Su ∈ K and S : K → K is completely continuous. �

From (3.1) and Lemma 3.1, we know that if u is a fixed point of S in K , then u is a positive
solution of (1.1). In the rest of this paper, we try to prove S has at least one or two fixed
point(s) in K by using Theorem 1.1 and Theorem 1.2.

Let

A =
T–2∑
s=1

T(T – 1)(1 + αη)
1 – α(T – 1)

a(s), B =
θ∑

s=T–θ

θ (T – θ )[2 – α(θ – 1)]
2 – 2α(T – 1)

a(s).

Theorem 3.1 Suppose that (H0), (H1), and (H2) hold. If there exist two constants r and R
(r �= R) such that

(A1) f (t, u) ≤ r
A , (t, u) ∈ [1, T – 2]Z × [0, r];

(A2) f (t, u) ≥ R
B , (t, u) ∈ [1, T – 2]Z × [θ∗R, R],

then problem (1.1) has at least one positive solution u ∈ K with min{r, R} ≤ ‖u‖ ≤
max{r, R}.

Proof Without loss of generality, suppose that r < R, the other case could be treated sim-
ilarly. Let Ω1 = {u ∈ E : ‖u‖ < r}. From Lemma 2.2, G(t, s) ≤ 0 for s ∈ [η + 1, T – 2]Z;
G(t, s) ≥ 0 for s ∈ [1,η]Z. Since (A1), we get, for ∀u ∈ K ∩ ∂Ω1,

‖Su‖ = max
t∈[0,T]Z

∣∣∣∣∣
T–2∑
s=1

G(t, s)a(s)f
(
s, u(s)

)∣∣∣∣∣
≤ max

t∈[0,T]Z

T–2∑
s=1

∣∣G(t, s)
∣∣a(s)f

(
s, u(s)

)

≤
T–2∑
s=1

T(T – 1)(1 + αη)
1 – α(T – 1)

a(s)f
(
s, u(s)

)

≤
T–2∑
s=1

T(T – 1)(1 + αη)
1 – α(T – 1)

a(s)
r
A

= r.

So, for u ∈ K ∩ ∂Ω1,

‖Su‖ ≤ ‖u‖. (3.4)

Let Ω2 = {u ∈ E : ‖u‖ < R}. Then, for u ∈ K ∩ ∂Ω2,

Su(T – θ ) =
T–2∑
s=1

G(T – θ , s)a(s)f
(
s, u(s)

) ≥
T–θ∑
s=θ

G(T – θ , s)a(s)f
(
s, u(s)

)
. (3.5)
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In fact, by Lemma 2.2,

T–θ–1∑
s=1

G(T – θ , s)a(s)f
(
s, u(s)

)
+

T–2∑
s=θ+1

G(T – θ , s)a(s)f
(
s, u(s)

)

≥
T–θ–1∑

s=1

G(T – θ , s)a(s)f
(
s, u(s)

)
+

T–2∑
s=η+1

G(T – θ , s)a(s)f
(
s, u(s)

)

≥ a(η)f
(
η, u(η)

)[T–θ–1∑
s=1

G(T – θ , s) +
T–2∑

s=η+1

G(T – θ , s)

]
.

Furthermore,

T–θ–1∑
s=1

G(T – θ , s) +
T–2∑

s=η+1

G(T – θ , s)

= –
T–θ–1∑

s=1

αT(T – 1)(T – s – 1)
2 – 2α(T – 1)

–
T–θ–1∑

s=1

(T – s)(T – s – 1)
2

–
T–2∑

s=η+1

αT(T – 1)(T – s – 1)
2 – 2α(T – 1)

–
T–2∑

s=η+1

(T – s)(T – s – 1)
2

+
T–θ–1∑

s=1

T(T – 1)
2 – 2α(T – 1)

+
T–θ–1∑

s=1

α(T – s – 1)(T – θ )(T – θ – 1)
2 – 2α(T – 1)

+
T–θ–1∑

s=1

(T – θ – s)(T – θ – s – 1)
2 – 2α(T – 1)

–
T–θ–1∑

s=1

(T – θ )(T – θ – 1)
2 – 2α(T – 1)

.

Let

I1 := –
T–θ–1∑

s=1

αT(T – 1)(T – s – 1)
2 – 2α(T – 1)

–
T–θ–1∑

s=1

(T – s)(T – s – 1)
2

–
T–2∑

s=η+1

αT(T – 1)(T – s – 1)
2 – 2α(T – 1)

–
T–2∑

s=η+1

(T – s)(T – s – 1)
2

+
T–θ–1∑

s=1

T(T – 1)
2 – 2α(T – 1)

and

I2 :=
T–θ–1∑

s=1

α(T – s – 1)(T – θ )(T – θ – 1)
2 – 2α(T – 1)

+
T–θ–1∑

s=1

(T – θ – s)(T – θ – s – 1)
2 – 2α(T – 1)

–
T–θ–1∑

s=1

(T – θ )(T – θ – 1)
2 – 2α(T – 1)

.
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Then

I1 ≥ –
T–θ–1∑

s=1

(T – s – 1)
(T – 1)(1 + α)
2 – 2α(T – 1)

–
T–2∑
s=θ

(T – s – 1)
(T – 1)(1 + α)
2 – 2α(T – 1)

+
T–θ–1∑

s=1

T(T – 1)
2 – 2α(T – 1)

= –
(T – 1)(1 + α)(T – 1 – θ )(T – 2 + θ )

4 – 4α(T – 1)
–

(T – 1)(1 + α)(T – 1 – θ )(T – θ )
4 – 4α(T – 1)

+
T(T – 1)(T – θ – 1)

2 – 2α(T – 1)

=
(T – 1)(T – θ – 1)

2 – 2α(T – 1)
(
T – (1 + α)(T – 1)

)

≥ (T – 1)(T – θ – 1)
2 – 2α(T – 1)

(
T –

T
T – 1

(T – 1)
)

= 0

and

I2 =
(T – θ )(T – θ – 1)(T – θ – 1)

2 – 2α(T – 1)
(
α(T – 2 + θ ) – 1

)
+

T–θ–1∑
s=1

(T – θ – s)(T – θ – s – 1)
2 – 2α(T – 1)

=
(T – θ )(T – θ – 1)(T – θ – 1)

2 – 2α(T – 1)
(
α(T – 2 + θ ) – 1

)
+

(T – θ )(T – θ – 1)(T – θ – 2)
3

=
(T – θ )(T – θ – 1)(T – θ – 2)

6 – 6α(T – 1)
[
α(T – 8) + 3(θ – 1)

]
≥ 0.

Therefore, (3.5) holds. This implies that

Su(T – θ ) ≥
θ∑

s=T–θ

G(T – θ , s)a(s)f
(
s, u(s)

)

=
θ∑

s=T–θ

{
1 – α(T – s – s)[T(T – 1) – (T – θ )(T – θ – 1)]

2 – 2α(T – 1)

–
(T – s)(T – s – 1)

2
+

(T – θ – s)(T – θ – s – 1)
2

}
a(s)f

(
s, u(s)

)

≥
θ∑

s=T–θ

θ (T – θ )[2 – α(θ – 1)]
2 – 2α(T – 1)

a(s)f
(
s, u(s)

)

≥
θ∑

s=T–θ

θ (T – θ )[2 – α(θ – 1)]
2 – 2α(T – 1)

a(s)
R
B

≥ R.

So, for ∀u ∈ K ∩ ∂Ω2,

‖Su‖ ≥ ‖u‖. (3.6)
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Then, by Theorem 1.1, S has at least one fixed point u ∈ K and u will be a positive solution
of problem (1.1). �

Theorem 3.2 Suppose that (H0), (H1), and (H2) hold. If one of the following conditions
holds:

(B1) f 0 := lim
u→0+

max
t∈[1,T–2]Z

f (t, u)
u

= 0, f∞ := lim
u→∞ max

t∈[1,T–2]Z

f (t, u)
u

= ∞,

or

(B2) f0 := lim
u→0+

max
t∈[1,T–2]Z

f (t, u)
u

= ∞, f ∞ := lim
u→∞ max

t∈[1,T–2]Z

f (t, u)
u

= 0,

then (1.1) has at least one positive solution.

Proof Firstly, we prove the case that (B1) holds. Since f 0 = 0, there exists a constant R1 > 0
such that

f (t, u)
u

≤ R1

A
, (t, u) ∈ [1, T – 2]Z × [0, R1].

Since f∞ = ∞, there exists a constant R2 > R1 such that

f (t, u) ≥ u
θ∗B

≥ θ∗R2

θ∗B
=

R2

B
, (t, u) ∈ [1, T – 2]Z × [

θ∗R2, R2
]
.

From Theorem 3.1, problem (1.1) has at least one positive solution u ∈ K .
Secondly, suppose that (B2) holds. Since f0 = ∞, there exists a constant r1 > 0 such that

f (t, u) ≥ u
θ∗B

, (t, u) ∈ [1, T – 2]Z × [0, r1].

Let Ω1 = {u ∈ E : ‖u‖ < r1}. If u ∈ K ∩ ∂Ω1, we have

min
s∈[T–θ ,θ ]Z

u(s) ≥ θ∗‖u‖ = θ∗r1.

Therefore, similar to the proof of (3.6), we have

‖Su‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω1.

On the other hand, since f ∞ = 0, there exists a constant r2 > 0 such that

f (t, u) ≤ u
A

, (t, u) ∈ [1, T – 2]Z × [r2,∞).

If f is bounded, then there exists a constant N > 0 such that f ≤ N . So, we choose
R′ = max{2r1, NA}. If f is unbounded, then let R′ > max{2r1, r2} such that f (t, u) ≤ f (t, R2).
Let Ω2 = {u ∈ K : ‖u‖ < R′} for ∀(t, u) ∈ [1, T – 2]Z × [0, R2]. Similar to the proof of Theo-
rem 3.1, we get, for ∀u ∈ k ∩ ∂Ω2,

‖Su‖ ≤ ‖u‖.
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Thus, by Theorem 1.1, S has at least one fixed point u ∈ K ∩ Ω2 \ Ω1, which is a positive
solution of problem (1.1). �

Theorem 3.3 Assume that (H0), (H1), and (H2) hold. If
(C1) f0 := limu→0+ mint∈[1,T–2]Z = f (t,u)

u = +∞, f∞ := limu→∞ mint∈[1,T–2]Z = f (t,u)
u = +∞,

and
(C2) There exists a constant p > 0 such that f (t, u) < γ p for 0 ≤ u ≤ p and t ∈ [1, T – 2]Z,

where

γ =

(
T(T – 1)(1 + αη)

1 – α(T – 1)

T–2∑
s=1

a(s)

)–1

,

then problem (1.1) has at least two positive solutions u1 and u2 with 0 ≤ ‖u1‖ ≤ p ≤ ‖u2‖.

Proof Choose M > 0 such that

Mθ∗ θ (T – θ )[2 – α(θ – 1)]
2 – 2α(T – 1)

θ∑
s=T–θ

a(s) ≥ 1.

Since f0 = +∞, there exists a constant r with 0 < r < p such that f (t, u) ≥ Mu for 0 ≤ u ≤ r.
Then, for ∀u ∈ ∂Kr , we have

Su(T – θ ) =
T–2∑
s=1

G(T – θ , s)a(s)f
(
s, u(s)

)

≥
θ∑

s=T–θ

G(T – θ , s)a(s)f
(
s, u(s)

)

≥ Mθ∗
θ∑

s=T–θ

G(T – θ , s)a(s)‖u‖

≥ Mθ∗ θ (T – θ )[2 – α(θ – 1)]
2 – 2α(T – 1)

θ∑
s=T–θ

a(s)‖u‖

≥ ‖u‖.

From Theorem 1.2, we get

i(S, Kr , K) = 0.

Since f∞ = +∞, there exists a constant R1 > 0 such that f (t, u) ≥ Mu for ∀u ≥ R1. Choose
R > max{p, R1

θ∗ }, then for ∀u ∈ ∂KR, mint∈[T–θ ,θ ]Z u(t) ≥ θ∗‖u‖ > R1. Similar to the above
proof, we have

‖Su‖ ≥ ‖u‖ for u ∈ ∂KR.

Therefore,

i(S, KR, K) = 0.
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From (C2), for ∀u ∈ ∂Kp,

‖Su‖ = max
t∈[0,T]Z

∣∣∣∣∣
T–2∑
s=1

G(t, s)a(s)f
(
s, u(s)

)∣∣∣∣∣
≤ max

t∈[0,T]Z

T–2∑
s=1

∣∣G(t, s)
∣∣a(s)f

(
s, u(s)

)

≤
T–2∑
s=1

T(T – 1)(1 + αη)
1 – α(T – 1)

a(s)f
(
s, u(s)

)
= ‖u‖.

Therefore, for ∀u ∈ ∂Kp, ‖Tu‖ ≤ ‖u‖. By Theorem 1.2,

i(S, Kp, K) = 1.

Thus,

i(S, KR \ K̊p, K) = –1, i(S, Kp \ K̊r , K) = 1.

So, S has a fixed point u1 in Kp \ K̊r and another fixed point u2 in KR \ K̊p. So, problem
(1.1) has at least two positive solutions u1 and u2 with 0 ≤ ‖u1‖ ≤ p ≤ ‖u2‖. �

Theorem 3.4 Assume that (H0), (H1), and (H2) hold. If
(D1) f 0 := limu→0+ maxt∈[1,T–2]Z

f (t,u)
u = 0, f ∞ := limu→∞ maxt∈[1,T–2]Z

f (t,u)
u = 0,

and
(D2) there exists a constant p > 0 such that f (t, u) > βp for θ∗p ≤ u ≤ p and t ∈ [1, T – 2]Z,

where

β =

(
θ∗ θ (T – θ )[2 – α(θ – 1)]

2 – 2α(T – 1)

θ∑
s=T–θ

a(s)

)–1

,

then (1.1) has at least two positive solutions u1 and u2 with 0 ≤ ‖u1‖ ≤ p ≤ ‖u2‖.

Proof From (D1), for ∀ε > 0, there exists M1 > 0, if u > 0, t ∈ [0, T]Z, we have f (t, u) ≤
M1 + εu. Then, for ∀u ∈ K ,

‖Su‖ = max
t∈[0,T]Z

∣∣∣∣∣
T–2∑
s=1

G(t, s)a(s)f
(
s, u(s)

)∣∣∣∣∣
≤ T(T – 1)(1 + αη)

1 – α(T – 1)

T–2∑
s=1

a(s)(M1 + εu).

Choose ε > 0 sufficiently small and R > p sufficiently large, then for ∀u ∈ ∂KR, ‖Su‖ ≤ ‖u‖,
from Theorem 1.2, we have

i(S, KR, K) = 1.
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In a similar way, if 0 < r < p,

i(S, KR, K) = 1.

From (D2), for ∀u ∈ ∂Kp,

Su(T – θ ) =
T–2∑
s=1

G(T – θ , s)a(s)f
(
s, u(s)

)

≥
θ∑

s=T–θ

G(T – θ , s)a(s)f
(
s, u(s)

)

> βθ∗p
θ∑

s=T–θ

G(T – θ , s)a(s)

≥ βθ∗p
θ (T – θ )[2 – α(θ – 1)]

2 – 2α(T – 1)

θ∑
s=T–θ

a(s)

= p.

Then, for ∀u ∈ ∂Kp, ‖Su‖ ≥ ‖u‖. From Theorem 1.2, we have

i(S, Kp, K) = 0.

Then, problem (1.1) has at least two solutions u1 and u2 with 0 ≤ ‖u1‖ ≤ p ≤ ‖u2‖. �

4 Example
Example 4.1 Consider the discrete three-point boundary problem

⎧⎨
⎩�3u(t – 1) – a(t)f (t, u(t)) = 0, t ∈ [1, 7]Z,

�u(0) = u(9) = 0, �2u(7) – 1
9�u(8) = 0,

(4.1)

where a(t) = 9–t
10 , and

f (t, u) =

⎧⎨
⎩15 – t + u

1000 , (t, u) ∈ [1, 7]Z × [0, 1000],
3√u + 6 – t, (t, u) ∈ [1, 7]Z × [1000,∞].

Since T = 9 and α = 1
9 , η ∈ [4, 7]Z. Without loss of generality, let η = 4. Then, by the direct

calculation, we get θ ∈ [5, 6]Z. Choose θ = 5, then θ∗ = η+2–θ

η+2 = 1
6 . So,

A =
T–2∑
s=1

T(T – 1)(1 + αη)
1 – α(T – 1)

a(s) = 936
7∑

s=1

9 – s
10

= 3276,

B =
θ∑

s=T–θ

θ (T – θ )[2 – α(θ – 1)]
2 – 2α(T – 1)

a(s) = 140
5∑

s=4

9 – s
10

= 136.

If we choose R = 330, r = 1,000,000, from Theorem 3.1, problem (4.1) has at least one
positive solution.
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Example 4.2 In this example, we continue to consider problem (4.1) with

f (t, u) =

⎧⎪⎪⎨
⎪⎪⎩

u2(10–t)
10 , (t, u) ∈ [1, 7]Z × [0, 1],

3√u+9–t
10 , (t, u) ∈ [1, 7]Z × [1, 3],

3√u+1890–t
1000 , (t, u) ∈ [1, 7]Z × [3,∞).

Continue to take α = 1
9 , η = 4, θ = 5, and θ∗ = 1

6 . Then

β =

(
θ∗ θ (T – θ )[2 – α(θ – 1)]

2 – 2α(T – 1)

θ∑
s=T–θ

a(s)

)–1

=
3

68
.

Furthermore, if we choose p = 1, then for θ∗p ≤ u ≤ p, f (t, u) ≥ βp = 3
68 . From Theo-

rem 3.4, problem (4.1) has at least two positive solutions u1 and u2 with 0 ≤ ‖u1‖ ≤ p ≤
‖u2‖.
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