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Abstract
By using KAM theory we investigate the stability of equilibrium points of the class of
difference equations of the form xn+1 =

f (xn)
xn–1

,n = 0, 1, . . . , f : (0, +∞) → (0, +∞), f is
sufficiently smooth and the initial conditions are x–1, x0 ∈ (0, +∞). We establish when
an elliptic fixed point of the associated map is non-resonant and non-degenerate,
and we compute the first twist coefficient α1. Then we apply the results to several
difference equations.
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1 Introduction and preliminaries
By using KAM (Kolmogorov–Arnold–Mozer) theory we investigate the stability proper-
ties of solutions of the following class of second-order difference equations:

xn+1 =
f (xn)
xn–1

, n = 0, 1, . . . , (1)

where f is sufficiently smooth, f : (0, +∞) → (0, +∞), and the initial conditions are
x–1, x0 ∈ (0, +∞).

Equation (1) is considered in the book [18] where f : (0, +∞) → (0, +∞) and the ini-
tial conditions are x–1, x0 ∈ (0, +∞). In particular, several open problems and conjectures
concerning the possible choice of the function f , for which the difference equation (1) is
globally periodic, are listed. In [25] the answers to some open problems and conjectures
listed in the book [18] are given. Precisely, for the cases p ≤ 5, necessary and sufficient
conditions on f for all solutions to be periodic with period p are found.

The well-known difference equation of the form (1) is Lyness’ equation

xn+1 =
xn + β

xn–1
, n = 0, 1, . . . . (2)

Several authors have studied the Lyness equation (2) and have obtained numerous results
concerning the stability of equilibrium, non-existence of solutions that converge to the
equilibrium point, the existence of invariants, etc.; see [2, 14, 15, 17, 19, 35]. See [16] for
the application of the KAM theory to Lyness equation (2). See also [3, 4, 6] for the results
on the feasible periods for solutions of (2) and the existence of non-periodic solutions
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of (2). See [20, 21] for the results on the stability of Lyness equation (2) with period two
and period three coefficients. These proofs were based on the construction of the cor-
responding Lyapunov functions associated with the invariants of the equation. See also
[21] for the results on the stability of Lyness equation with period two coefficient by using
KAM theory.

In [1, 7] authors consider the rational second-order difference equation

xn+1 =
α

(1 + xn)xn–1
, n = 0, 1, 2, . . . , (3)

as a special case of the rational difference equation

xn+1 =
α + βxnxn–1 + γ xn–1

A + Bxnxn–1 + Cxn–1
, n = 0, 1, 2, . . . ,

with nonnegative parameters and with arbitrary nonnegative initial conditions such that
the denominator is always positive. Equation (3) is of the form (1). Equation (3) possesses
the following invariant:

xn–1 + xn + xn–1xn + α

(
1

xn–1
+

1
xn

)
= constant, ∀n ≥ 0.

See [1]. Equation (3) has a unique positive equilibrium point, and the characteristic equa-
tion of the linearized equation of (3) about the equilibrium point has two complex con-
jugate roots on |λ| = 1. Several conjectures and open problems concerning the stability of
the equilibrium point as well as the periodicity of solutions are listed, see [1]. For a more
general case of Equation (3), see [10].

The following equation, which is of the form (1):

yn+1 =
αy2

n
(1 + yn)yn–1

, n = 1, 2, . . . , (4)

where α is a parameter, is known as May’s host parasitoid equation, see [22]. In [22] the
authors investigated the corresponding map known as May’s map. More precisely, they
investigated the following system of rational difference equations:

un+1 =
αun

1 + βvn
,

vn+1 =
βunvn

1 + βvn
, n = 0, 1, 2, . . . ,

(5)

where α and β are positive numbers and initial conditions u0 and v0 are arbitrary positive
numbers. When α ∈ (1, +∞) and β ∈ (0,∞) this system is a special case of May’s host
parasitoid model. The change of variables xn = βun and yn = βvn reduces System (5) to

xn+1 =
αxn

1 + yn
,

yn+1 =
xnyn

1 + yn
, n = 0, 1, 2, . . . .

(6)
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By eliminating xn from the right-hand side, System (6) reduces to Equation (4). In [23, 24,
33] it was asserted that the positive equilibrium ( α

β
, α–1

β
) of System (5) is not asymptotically

stable. In [22] it was proved that this is the case, and then, by employing KAM theory, the
authors showed that the positive equilibrium of System (5) is stable. See [30] for results
on periodic solutions.

In [12] authors analyzed a certain class of difference equations governed by two param-
eters

xn+1 =
xk

n + a
xp

nxn–1
, (7)

where k, p, and a are positive and the initial conditions x0, x1 are positive. They fixed the
value of a as a = (2k–p–2 – 1)/2k and gave an essentially complete description of the global
behavior of solutions in the first quadrant. They showed how Equation (7) leads to dif-
feomorphism F and showed that, for certain parameter value, all such F share four key
properties. One of these is that F has precisely two fixed points. Then they showed that an
“upper” fixed point is hyperbolic, and they showed by using KAM theory that, by further
restricting k and l, the origin becomes a neutrally stable elliptic point. Also, they showed
that outside a compact neighborhood of the origin containing the two fixed points, all
points tend to infinity at an exponential rate under the iterates of F and F–1 and two
branches of the eigenmanifolds of the hyperbolic point intersect at a homoclinic point.
Notice that Equation (7) has the form (1).

In [28] authors considered the following difference equation:

xn+1 =
Ax3

n + B
axn–1

, n = 0, 1, . . . , (8)

where the parameters A, B, a and the initial conditions x–1, x0 are positive numbers. They
employed KAM theory to investigate stability property of the positive elliptic equilibrium.
Equation (8) is a special case of the following equation:

xn+1 =
Axk

n + B
axn–1

, n = 0, 1, . . . .

See [19]. See [13] for the equation

xn+1 =
Ax2

n + F
exn–1

, n = 0, 1, . . . .

In [8] authors considered the following difference equation:

xn+1 =
A + Bxn + x2

n
(1 + Dxn)xn–1

, n = 0, 1, . . . .

They employed KAM theory to investigate stability property of the positive elliptic equi-
librium.

Notice that all of these equations are of the form (1).
By using the methods of algebraic and projective geometry in [4, 5], the authors stud-

ied algebraic generalization of Lyness difference equation. More precisely, they analyzed
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global behavior of the following difference equations:

un+2un = a + bun+1 + u2
n+1, un+2un =

a + bun+1 + cu2
n+1

c + un+1
and

un+2un =
a + bun+1 + cu2

n+1
c + dun+1 + u2

n+1
.

They obtained very precise description of complicated global behavior which includes
finding the possible periods of all solutions, proving the existence of chaotic solutions
through conjugation of maps, and so forth. These methods were first used by Zeeman in
[35] for the study of Lyness equation. Notice that each of these equations has the form (1).

Motivated by all these results, we consider any real function f of one real variable which
is sufficiently smooth and f : (0, +∞) → (0, +∞), and then we consider Equation (1). In
Sect. 2 we show how (1) leads to diffeomorphisms T and F . We prove some properties
of the map T , and we establish the condition under which a fixed point (x̄, x̄) of the map
T , in (u, v) coordinates (0, 0), is an elliptic fixed point, where x̄ is an equilibrium point of
Equation (1). In Sect. 3 we compute the first twist coefficient α1, and we establish when an
elliptic fixed point of the map T is non-resonant and non-degenerate. In Sect. 4 we apply
our results to several difference equations of the form (1), and we visualize the behavior
of solutions for some values of the corresponding parameters.

2 Logarithmic coordinate change and area-preserving property
We may write Equation (1) as a map T : (0, +∞)2 → (0, +∞)2 by setting

un = xn–1, vn = xn, T

(
u
v

)
=

(
v

f (v)
u

)
. (9)

The fixed point (ū, v̄) of the map T satisfies the following:

ū = v̄ and
f (v̄)

ū
= v̄,

which implies

ū2 = f (ū).

Note that ū = v̄ = x̄, where x̄ is the equilibrium point of Equation (1).
We will assume that all maps are sufficiently smooth to justify subsequent calculations.

The map T itself must be diffeomorphism of (0, +∞)2, and therefore we assume that this
is the case. The inverse of T is given by

T–1

(
u
v

)
=

(
u

f (u)
v

)
.

The planar map F is area-preserving or conservative if the map F preserves area of the
planar region under the forward iterate of the map, see [11, 19, 32]. A differentiable map
F is area-preserving if and only if the absolute value of determinant of the Jacobian matrix
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of the map F is equal to 1, that is, |det JF (x, y)| = 1 at every point (x, y) of the domain of F ,
see [11, 32].

We claim that map (9) is exponentially equivalent to an area-preserving map, see [16].
Let

E(u, v) =
(
x̄eu, x̄ev)T .

Then

E–1(x, y) =
(

ln
x
x̄

, ln
y
x̄

)T

,

and if we set F(u, v) = E–1 ◦ T ◦ E(u, v), where ◦ denotes composition of functions, then we
obtain a new mapping F , which is given by

F(u, v) = E–1 ◦ T ◦ E(u, v) =

(
v

ln(f (evx̄)) – 2 ln(x̄) – u

)
.

The map F is defined on all of R2. In fact, since T was a diffeomorphism of the open first
quadrant Q and since E is a diffeomorphism of R2 onto Q, F is a diffeomorphism of R2

onto itself.
In the study of area-preserving maps, symmetries play an important role since they yield

special dynamic behavior. A transformation R of the plane is said to be a time reversal
symmetry for T if R–1 ◦ T ◦ R = T–1, meaning that applying the transformation R to the
map T is equivalent to iterating the map backwards in time. If the time reversal symmetry
R is an involution, i.e., R2 = id, then the time reversal symmetry condition is equivalent to
R ◦ T ◦ R = T–1, and T can be written as the composition of two involutions T = I1 ◦ I0,
with I0 = R and I1 = T ◦ R. Note that if I0 = R is a reversor, then so is I1 = T ◦ R. Also, the
jth involution, defined as Ij := Tj ◦ R, is also a reversor.

Similar to the proof of Theorem 2.1 in [12], we prove some properties of the map F in
the following lemma.

Lemma 1 Assume f ∈ C1[(0, +∞), (0, +∞)], f (x̄) = x̄2, and x̄ > 0, then F shares the following
properties:

(a) F has the origin as a fixed point;
(b) F is globally area-preserving;
(c) F satisfies a time-reversing, mirror image, symmetry condition;
(d) All fixed points of F are located on the diagonal in the first quadrant.

Proof Assertion (a) is immediate. The Jacobian matrix of the map F is

JF (u, v) =

(
0 1

–1 evx̄f ′(evx̄)
f (evx̄)

)
, (10)

and so det JF (u, v) = 1. To explain (c), let R(x, y) = (y, x) which is reflection about the diago-
nal. An easy calculation shows that R2 = id, and the map F will satisfy F ◦ R ◦ F = R. This
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equation may be rewritten as R ◦ F = F–1 ◦ R. For the final assertion (d), it is easier to work
with the original form of our function T . �

A fixed point (x̄, x̄) is an elliptic point of an area-preserving map if the eigenvalues of
JT (x̄, ȳ) form a purely imaginary, complex conjugate pair λ, λ̄, see [11, 19]. The following
lemma holds.

Lemma 2 Assume that f (x̄) = x̄2 and x̄ > 0. Then the map T in (x, y) coordinates has an
elliptic fixed point (x̄, x̄) if and only if |f ′(x̄)| < 2x̄. In the (u, v) coordinates, the corresponding
fixed point is (0, 0).

Proof For the fixed points in (x, y) coordinates, solving y = x and f (x) = x2 yields the fixed
point (x̄, x̄) where f (x̄) = x̄2. Evaluating the Jacobian matrix of T at (x̄, x̄) by using f (x̄) = x̄2

gives

JT (x̄, x̄) =

(
0 1

– f (x̄)
x̄2

f ′(x̄)
x̄

)
=

(
0 1

–1 f ′(x̄)
x̄

)
.

We obtain that the eigenvalues of JT (x̄, x̄) are λ, λ̄ where

λ =
f ′(x̄) – i

√
4x̄2 – [f ′(x̄)]2

2x̄
.

Since |λ| = 1, we have that (x̄, x̄) is an elliptic fixed point if and only if |f ′(x̄)| < 2x̄. Under
the logarithmic coordinate change (x, y) → (u, v) the fixed point (x̄, x̄) becomes (0, 0). �

3 The KAM theory and Birkhoff normal form
The stability of an elliptic fixed point of nonlinear area-preserving map cannot be deter-
mined solely from linearization, and the effects of the nonlinear terms in local dynamics
must be accounted for. This task is facilitated by simplifying the nonlinear terms through
appropriate coordinate transformations into Birkhoff normal form.

Consider a smooth, area-preserving map (u, v) → F(u, v) of the plane that has (0, 0) as
an elliptic fixed point, and let λ be an eigenvalue of JF (0, 0). By putting the linear part of
such a map into Jordan canonical form, by making an appropriate change of variables, we
can represent the map in the form

(
ũ
ṽ

)
→

(
Re(λ) – Im(λ)
Im(λ) Re(λ)

)(
ũ
ṽ

)
+ F̃

(
ũ
ṽ

)
. (11)

By using complex coordinates z, z̄ = ũ ± iṽ map (11) leads to the complex form

z → λz + ξ20z2 + ξ11zz̄ + ξ02z̄2 + ξ30z3 + ξ21z2z̄ + ξ12zz̄2 + ξ03z̄3 + O
(|z|4). (12)

Assume that the eigenvalue λ of the elliptic fixed point satisfies the non-resonance condi-
tion λk 
= 1 for k = 1, . . . , q, for some q ≥ 4. By Lemma 15.37 [11] there exist new canonical
complex coordinates (ζ , ζ̄ ) relative to which mapping (12) takes the normal form (Birkhoff
normal form)

ζ → λζ eiα(ζ ζ̄ ) + g(ζ , ζ̄ )
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in a neighborhood of the elliptic fixed point, where α(ζ ζ̄ ) = α1|ζ |2 + · · · + αs|ζ |2s is a real
polynomial, s = [ q

2 ] – 1, and g vanishes with its derivatives up to order q – 1 at ζ = ζ̄ = 0.
The square brackets denote the largest integer in q/2. The numbers α1, . . . ,αs are called
twist coefficients.

Consider an invariant annulus a < |ζ | < b in a neighborhood of an elliptic fixed point
(0, 0). It is easy to see that the normal form approximation ζ → λζ eiα(ζ ζ̄ ) leaves invariant all
circles |ζ | = const. This map is called a twist mapping. It is easy to describe the dynamics of
the twist map: the orbits are simple rotations on these circles. Also note that if at least one
of the twist coefficients αj is nonzero, then the angle of rotation is not constant. Applying
KAM-theory (Moser’s twist map theorem [9, 27, 29, 31]) it follows that if a system is close
enough to a twist mapping with rotation angle varying with the radius, then still infinitely
many of the invariant circles survive the perturbation. By [29], p. 245, the rotation angles
of these circles are only badly approximable by rational numbers. According to KAM-
theory there exist states close enough to the fixed point, which are enclosed by an invariant
curve. Within these gaps, one finds, in general, orbits of hyperbolic and elliptic periodic
points. These facts cannot be deduced from computer pictures. By continuity arguments
the interior of such a closed invariant curve will then map onto itself. The same is true for
a state within an annulus enclosed between two such curves.

The KAM theorem requires that the elliptic fixed point be non-resonant and non-
degenerate. Note that, for q = 4, the non-resonance condition λk 
= 1 requires that λ 
= ±1
or ±i. The above normal form yields the approximation

ζ → λζ + c1ζ
2ζ̄ + O

(|ζ |4)

with c1 = iλα1 and α1 being the first twist coefficient. We will call an elliptic fixed point
non-degenerate if α1 
= 0.

The following is a consequence of Lemma 15.37 [11] and Moser’s twist map theorem [9,
11, 27, 29].

Theorem 1 Let F : R2 →R
2 be an area-preserving diffeomorphism and (x, y) be an elliptic

fixed point. Assume that α1 
= 0. Then there exist periodic points of F with arbitrarily large
period in every neighborhood of (x, y). In addition, if λ 
= ±1 or ±i, then the (x, y) is a stable
fixed point.

In the sequel we set

f1 := f ′(x̄), f2 := f ′′(x̄) and f3 := f ′′′(x̄).

We prove the following theorem.

Theorem 2 Assume that |f ′(x̄)| < 2x̄, where x̄ is an equilibrium point of Equation (1). The
elliptic fixed point (0, 0) of the map F , in the (u, v) coordinates, is always non-degenerate.
It is non-resonant if and only if

f3 
= f2(f2 + 6)x̄4 + f1(f2(2f2 – 1) + 2)x̄3 – 4f 2
1 (f2 + 1)x̄2 – f 3

1 f2x̄ + 2f 4
1

x̄3(f1 – 2x̄)(x̄ + f1)
. (13)
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Proof To compute the first twist coefficient α1, we follow the procedure in [9]. Let F be
the function defined by

F

(
u
v

)
=

(
v

log(f (evx̄)) – 2 log(x̄) – u

)
.

The Jacobian matrix of F at (u, v) is given by (10). At (0, 0), JF (u, v) has the form

J0 = JF (0, 0) =

(
0 1

–1 f1
x̄

)
. (14)

The eigenvalues of (14) are λ and λ̄ where

λ =
f1 – i

√
4x̄2 – f 2

1
2x̄

.

It is easy to see that

λ2 =
f 2
1

2x̄2 –
if1

√
4x̄2 – f 2

1
2x̄2 – 1,

λ3 =
f 3
1

2x̄3 –
if 2

1
√

4x̄2 – f 2
1

2x̄3 –
3f1

2x̄
+

i
√

4x̄2 – f 2
1

2x̄
,

λ4 =
f 4
1

2x̄4 –
if 3

1
√

4x̄2 – f 2
1

2x̄4 –
2f 2

1
x̄2 +

if1
√

4x̄2 – f 2
1

x̄2 + 1,

from which it follows that λk 
= 1 for k = 1, 2, 3, 4.
Then we have that

F

(
u
v

)
= JF (0, 0)

(
u
v

)
+ F1

(
u
v

)
,

where

F1

(
u
v

)
=

(
0

– f1v
x̄ + log(f (evx̄)) – 2 log(x̄)

)
.

By using eigenvectors

p =
(

f1 – i
√

4x̄2 – f 2
1

2x̄
, 1

)

and the associated matrix

P =
1√
D

(
f1
2x̄ –

√
4x̄2–f 2

1
2x̄

1 0

)
, D =

√
4x̄2 – f 2

1
2x̄

with determinant 1, we change coordinates
(

ũ
ũ

)
= P–1

(
u
v

)
=

√
D

(
0 1

– 2x̄√
4x̄2–f 2

1

f1√
4x̄2–f 2

1

)(
u
v

)

and bring the linear part into Jordan normal form.
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The system in the new coordinates becomes

(
ũ
ṽ

)
→

(
Re(λ) – Im(λ)
Im(λ) Re(λ)

)(
ũ
ṽ

)
+ F2

(
ũ
ṽ

)
,

where

F2

(
ũ
ṽ

)
=

(
g1(ũ, ṽ)
g2(ũ, ṽ)

)
= P–1F1

(
P

(
ũ
ṽ

))

=

⎛
⎜⎝

√
D(log(f (x̄e

ũ√
D )) – 2 log(x̄)) – f1ũ

x̄

f1(
√

Dx̄(log(f (x̄e
ũ√
D ))–2 log(x̄))–f1ũ)

x̄
√

4x̄2–f 2
1

⎞
⎟⎠ .

One can now pass to the complex coordinates z, z̄ = ũ ± iṽ to obtain the complex form of
the system

z → λz + ξ20z2 + ξ11zz̄ + ξ02z̄2 + ξ30z3 + ξ21z2z̄ + ξ12zz̄2 + ξ03z̄3 + O
(|z|4).

A tedious symbolic computation done with package Mathematica yields

ξ20 =
1
8
{

(g1)ũũ – (g1)ṽṽ + 2(g2)ũṽ + i
[
(g2)ũũ – (g2)ṽṽ – 2(g1)ũṽ

]}

=
(
√

4x̄2 – f 2
1 + if1)(f2x̄2 + f1x̄ – f 2

1 )
4
√

2x̄3/2(4x̄2 – f 2
1 )3/4

,

ξ11 =
1
4
{

(g1)ũũ + (g1)ṽṽ + i
[
(g2)ũũ + (g2)ṽṽ

]}
=

(
√

4x̄2 – f 2
1 + if1)(f2x̄2 + f1x̄ – f 2

1 )
2
√

2x̄3/2(4x̄2 – f 2
1 )3/4

,

ξ02 =
1
8
{

(g1)ũũ – (g1)ṽṽ – 2(g2)ũṽ + i
[
(g2)ũũ – (g2)ṽṽ + 2(g1)ũṽ

]}

=
(
√

4x̄2 – f 2
1 + if1)(f2x̄2 + f1x̄ – f 2

1 )
4
√

2x̄3/2(4x̄2 – f 2
1 )3/4

,

ξ21 =
1

16
{

(g1)ũũũ + (g1)ũṽṽ + (g2)ũũṽ + (g2)ṽṽṽ + i
[
(g2)ũũũ + (g2)ũṽṽ – (g1)ũũṽ – (g1)ṽṽṽ

]}

=
(
√

4x̄2 – f 2
1 + if1)(x̄3(f3x̄ + 3f2) + f1(1 – 3f2)x̄2 – 3f 2

1 x̄ + 2f 3
1 )

32x̄4 – 8f 2
1 x̄2 .

The above normal form yields the approximation

ζ → λζ + c1ζ
2ζ̄ + O

(|ζ |4)

with c1 = iλα1 and α1 being the first twist coefficient.
The coefficient c1 can be computed directly using the formula

c1 =
ξ20ξ11(λ̄ + 2λ – 3)

(λ2 – λ)(λ̄ – 1)
+

|ξ11|2
1 – λ̄

+
2|ξ02|2
λ2 – λ̄

+ ξ21
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derived by Wan in the context of Hopf bifurcation theory [34]. In [26] it is shown that when
one uses area-preserving coordinate changes Wan’s formula yields the twist coefficient α1

that is used to verify the non-degeneracy condition necessary to apply the KAM theorem.
By using

ξ20ξ11 =
(
√

4x̄2 – f 2
1 + if1)2(f2x̄2 + f1x̄ – f 2

1 )2

16x̄3(4x̄2 – f 2
1 )3/2 ,

ξ11ξ11 =
(f2x̄2 + f1x̄ – f 2

1 )2

2x̄(4x̄2 – f 2
1 )3/2 ,

ξ02ξ02 =
(f2x̄2 + f1x̄ – f 2

1 )2

8x̄(4x̄2 – f 2
1 )3/2 ,

a straightforward calculation yields

c1 =
ξ20ξ11(λ̄ + 2λ – 3)

(λ2 – λ)(λ̄ – 1)
+

|ξ11|2
1 – λ̄

+
2|ξ02|2
λ2 – λ̄

+ ξ21

= Θ(x̄)
x̄4(2f3x̄ + f2(f2 + 6)) + f1x̄3(f3x̄ + f2(2f2 – 1) + 2) – f 2

1 x̄2(f3x̄ + 4f2 + 4) – f 3
1 f2x̄ + 2f 4

1

4x̄(f1 – 2x̄)2(x̄ + f1)(2x̄ + f1)(–i
√

4x̄2 – f 2
1 + 2x̄ + f1)

,

where

Θ(x̄) := f1

(√
4x̄2 – f 2

1 + ix̄
)

+ x̄
(√

4x̄2 – f 2
1 – 2ix̄

)
+ if 2

1 .

It can be proved that

α1 = –iλ̄c1

=
2f3x̄5 + (f2(f2 + 6) + f1f3)x̄4 – f1(–2f 2

2 + f2 + f1f3 – 2)x̄3 – 4f 2
1 (f2 + 1)x̄2 – f 3

1 f2x̄ + 2f 4
1

4(f1 – 2x̄)2(x̄ + f1)(2x̄ + f1)
, (15)

which implies that α1 
= 0 if (13) holds. �

Since map (9) is exponentially equivalent to an area-preserving map F , an immediate
consequence of Theorems 1 and 2 is the following result.

Theorem 3 Let x̄ > 0 be the equilibrium point of (1) such that |f ′(x̄)| < 2x̄. If (13) holds,
then there exist periodic points of T with arbitrarily large period in every neighborhood of
(x̄, x̄). In addition, x̄ is a stable equilibrium point of (1).

4 Examples
In this section, we apply Theorem 3 to several difference equations of the form (1) that
have been listed in Sect. 1.

4.1 Example 1: xn+1 = xk
n+a

xp
n xn–1

The equation

xn+1 =
xk

n + a
xp

nxn–1
, (16)
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where k, p, a and the initial conditions x0, x1 are positive, is analyzed in [12] with fixed the
value of a as a = (2k–p–2 – 1)/2k , where k > p + 2 and p ≥ 1.

Now, we assume that a is any positive real number.
The equilibrium point of Equation (16) satisfies

x̄p+2 = x̄k + a.

Similar as in Proposition 2.2 [12] one can prove the following.

Proposition 1 Assume that k, p, and a are positive. Let x0 be the positive solution of the
equation xk–p–2

0 = (p + 2)/k, and let y0 = xp+2
0 – xk

0. Then the following holds:
(a) If k > p + 2, then for 0 < a < y0 Equation (16) has exactly two positive equilibrium

points, for a = y0 it has exactly one, and for a > y0 it has none.
(b) If k < p + 2, then Equation (16) has exactly one positive equilibrium point.

Since

f ′(x̄) – 2x̄ = –
(px̄k – kx̄k + 2x̄p+2 + ap)

x̄p+1

and

f ′(x̄) + 2x̄ = –
(px̄k – kx̄k – 2x̄p+2 + ap)

x̄p+1 ,

we have that if x̄ > 0 then |f ′(x̄)| < 2x̄ if and only if

(k – p – 2)x̄k < a(p + 2) and (k – p + 2)x̄k > a(p – 2). (17)

Hence, x̄ is an elliptic point if and only if condition (17) is satisfied.
A tedious symbolic computation done with package Mathematica yields

α1 =
ak3x̄k((k – p – 2)(k – p + 1)x̄2k + 2akx̄k – a2(p2 + p – 2))

4((–k + p – 2)x̄k + a(p – 2))((–k + p – 1)x̄k + a(p – 1))((–k + p + 2)x̄k + a(p + 2))2 .

Therefore we have the following statement.

Theorem 4 Assume that k, p, and a are positive and the initial conditions x0, x1 are posi-
tive. Let x̄ > 0 be an equilibrium point of (16) and T be the map associated with Equation
(16). Then (x̄, x̄) is an elliptic fixed point of T if and only if

(k – p – 2)x̄k < a(p + 2) and (k – p + 2)x̄k > a(p – 2).

Further, if

(k – p – 2)(k – p + 1)x̄2k + 2akx̄k – a2(p2 + p – 2
) 
= 0,

then there exist periodic points of the map T with arbitrarily large period in every neigh-
borhood of (x̄, x̄). In addition, x̄ is a stable equilibrium point of (16).



Kalabušić et al. Advances in Difference Equations        (2019) 2019:209 Page 12 of 17

Figure 1 Some orbits of the map T associated with Eq. (16) for (a) k = 2.1, p = 1, and a = 0.1 and (b) k = 2.01,
p = 2, and a = 0.1

Figure 1 shows phase portraits of the orbits of the map T associated with Equation (16)
for some values of the parameters p, k, and a. Neither of these two plots shows any self-
similarity character.

4.2 Example 2: xn+1 = A+Bxn+Cx2
n

(D+Exn)xn–1
The equation

xn+1 =
A + Bxn + Cx2

n
(D + Exn)xn–1

, (18)

where A, B, C, D, and E are nonnegative and the initial conditions x0, x1 are positive, is
analyzed by using the methods of algebraic and projective geometry in [4, 5] where C = D
and E = 1 and by using KAM theory in [8] where C = D = 1 and A, B, E > 0. Now, we assume
that

(D, E > 0 ∧ A + B > 0) ∨ (D, E > 0 ∧ A + B = 0 ∧ C > D).

The equilibrium point of Equation (18) satisfies

Ex̄3 – x̄2(C – D) – Bx̄ – A = 0.

By using Descartes’ rule of sign, we obtain that this equation has one positive root. There-
fore, Equation (18) has one positive equilibrium point.

If D, E > 0, then the change xn = D
E yn conjugates Equation (18) to

yn+1 =
a + byn + cy2

n
(1 + yn)yn–1

, (19)

where the parameters a, b, and c are

a =
AE2

D3 , b =
BE
D2 and c =

C
D

.
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One can see that the following holds.

Proposition 2 Assume a, b, c ≥ 0 and a + b > 0 or a + b = 0 ∧ c > 1. Let x̄ be a positive
equilibrium of Equation (19), then |f ′(x̄)| < 2x̄.

A tedious symbolic computation done with package Mathematica yields

α1 =
Γ1 + Γ2x̄ + Γ3x̄2

2(x̄ + 1)2(2cx̄ + x̄ + b)(2x̄(b – c + 1) + (c + 2)x̄2 + 3a – b)2(2x̄(b + c + 1) + (3c + 2)x̄2 + a + b)
,

where

Γ1 = a3b2 + 25a3bc2 + 66a3bc + 11a3b + 20a3c3 + 70a3c2 + 55a3c – a3 – 2a2b3

– 12a2b2c3 + 5a2b2c2 – 8a2b2c – 5a2b2 – 29a2bc5 – 44a2bc4 – 82a2bc3

– 46a2bc2 + 22a2bc + 2a2b – 8a2c7 – 8a2c6 – 16a2c5 – 2a2c4 + 8a2c2 + 8a2c

+ 3ab4c2 + 8ab4c + ab4 + ab3c4 + 16ab3c3 – 6ab3c2 – 2ab3c – 7ab3 – 3ab2c6

+ 10ab2c5 – 26ab2c4 – 3ab2c3 + ab2c2 – 5ab2c – ab2 – abc8 + 6abc7 – 14abc6

+ 8abc5 + abc4 + ac9 – 3ac8 + 3ac7 – ac6 + b4,

Γ2 = 11a3bc + 4a3b + 8a3c3 + 63a3c2 + 54a3c + a3 + 24a2b2c2 + 75a2b2c + 16a2b2

– 20a2bc4 – 18a2bc3 + 18a2bc2 + 110a2bc + 6a2b – 8a2c6 – 17a2c5 – 33a2c4

– 35a2c3 + 21a2c2 + 37a2c – a2 + ab4c – ab4 – 10ab3c3 + 18ab3c2 – ab3c – 19ab3

– 31ab2c5 – 38ab2c4 – 95ab2c3 – 54ab2c2 – 15ab2c – 6ab2 – 9abc7 – 4abc6

– 25abc5 – 3abc4 – 4abc2 + 8abc + ab + ac8 – 2ac7 + ac6 + 3b5c2 + 8b5c + b5

+ b4c4 + 16b4c3 – 6b4c2 – 2b4c – b4 – 3b3c6 + 10b3c5 – 26b3c4 – 3b3c3 + b3c2

+ 2b3c – b3 – b2c8 + 6b2c7 – 14b2c6 + 8b2c5 + b2c4 + bc9 – 3bc8 + 3bc7 – bc6,

Γ3 = 16a3c2 + 19a3c + a3 + 12a2b2c + 8a2b2 + 22a2bc3 + 92a2bc2 + 84a2bc + 6a2b

– 8a2c5 – 6a2c4 – 10a2c3 + 33a2c2 + 28a2c – a2 – ab4 + ab3c2 + 15ab3c – 7ab3

– 33ab2c4 – 16ab2c3 – 65ab2c2 – 25ab2c – 6ab2 – 38abc6 – 30abc5 – 78abc4

– 7abc3 + 5abc2 + 9abc + ab – 8ac8 + ac7 – 9ac6 + 14ac5 + 2ac4 + b5c + b5

+ 5b4c3 + 18b4c2 – b4 – b3c5 + 21b3c4 – 35b3c3 – 4b3c2 + b3c – b3 – 4b2c7

+ 17b2c6 – 45b2c5 + 22b2c4 + 4b2c3 – bc9 + 8bc8 – 22bc7 + 23bc6 – 7bc5 – bc4

+ c10 – 4c9 + 6c8 – 4c7 + c6.

In Table 1 we compute the twist coefficient for some values a, b, c ≥ 0.

Theorem 5 Assume that a, b, and c are positive numbers such that a + b > 0. Let x̄ > 0 be
an equilibrium point of Equation (19) and T be the map associated with Equation (19).
Then (x̄, x̄) is an elliptic fixed point of T and, if α1 
= 0, then there exist periodic points of
the map T with arbitrarily large period in every neighborhood of (x̄, x̄). In addition, x̄ is a
stable equilibrium point of (19).
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Table 1 The first twist coefficient for some values of a,b, c ≥ 0

Parameters Equation The first twist coefficient

a = b = 0, c > 1, x̄ = c – 1 yn+1 =
cy2n

(1+yn )yn–1
α1 = c

12c2+10c+2
a = c = 0, x̄ = 1

2 (
√
4b + 1 – 1) yn+1 =

byn
(1+yn )yn–1

α1 = (b–1)b
2(4b+1)(3(

√
4b+1+1)+b(

√
4b+1+6))

b = c = 0, a = x̄3 + x̄2 yn+1 = a
(1+yn )yn–1

α1 = (x̄–1)x̄
2(x̄+2)(3x̄+2)2

c = 0, a = x̄3 + x̄2 – bx̄ yn+1 =
a+byn

(1+yn )yn–1
α1 = (b–x̄2)(2b3 x̄–4bx̄4–(b(b+5)–1)x̄3+(b–2)bx̄2–x̄5+b3)

2(x̄+1)(x̄+b)(x̄(x̄+2)+b)(b–x̄(3x̄+2))2

Figure 2 Some orbits of the map T associated with Eq. (19) for (a) a = 0.2, b = 1.05, and c = 1.03 and (b)
a = 0.1, b = 0.05, and c = 0.3

Figure 2 shows phase portraits of the orbits of the map T associated with Equation (19)
for some values of the parameters a, b, and c.

4.3 Example 3: xn+1 = a+bxn+cx2
n

xn–1
In [4, 5] the authors analyzed the equation

xn+1 =
a + bxn + cx2

n
xn–1

, (20)

where a, b, and c are nonnegative and the initial conditions x0, x1 are positive, by using the
methods of algebraic and projective geometry where c = 1. It is easy to see that Equation
(20) has one positive equilibrium

x̄ =
b +

√
4ac + 4a + b2

2(1 – c)

for c < 1. Further, |f ′(x̄)| – 2x̄ = –
√

b2 + 4a(1 – c) < 0.
By using package Mathematica, we obtain

α1 =
16a2(c – 1)2c(c + 1) + ab2(–8c3 + 8c2 + c – 1) + bΓ4

√
–4ac + 4a + b2 + b4(c2 – c + 1)

2(b2 – 4ac + 4a+)(2b + (c + 1)
√

b2 – 4ac + 4a)(3b + (2c + 1)
√

b2 – 4ac + 4a)
,



Kalabušić et al. Advances in Difference Equations        (2019) 2019:209 Page 15 of 17

Figure 3 Some orbits of the map T associated with Eq. (20) for (a) a = 0.1, b = 0.002, and c = 0.001 and (b)
a = 0.1, b = 0.02, and c = 0.001

where

Γ4 = a
(
4c3 – 12c2 + 7c + 1

)
– b2(c2 – 3c + 1

)
.

Theorem 6 Assume that a, b, and c are positive numbers such that a + b > 0 and c < 1. Let
x̄ > 0 be the equilibrium point of Equation (20) and T be the map associated with Equation
(20). Then (x̄, x̄) is an elliptic fixed point of T and, if α1 
= 0, there exist periodic points with
arbitrarily large period in every neighborhood of (x̄, x̄). In addition, x̄ is a stable equilibrium
point of (20).

Figure 3 shows phase portraits of the orbits of the map T associated with Equation (20)
for some values of the parameters a, b, and c.

5 Conclusion
In this paper, we investigated the stability of a class of difference equations of the form
xn+1 = f (xn)

xn–1
, n = 0, 1, . . . . We assume that the function f is sufficiently smooth and the initial

conditions are arbitrary positive real numbers. It is enough to assume that the function f
is in C(3)(0, +∞). We show how the map T associated with this difference equation leads to
diffeomorphism F . We prove some properties of the map F , and we establish the condition
under which an equilibrium point (0, 0) in u, v coordinates is an elliptic fixed point. Also,
we compute the first twist coefficient. The condition for an elliptic fixed point to be non-
degenerate and non-resonant is established in closed form. This condition depends only
on the values of the first, second, and third derivatives of the function f at the equilibrium
point. We apply our result to several difference equations that have been investigated by
others. By numerical computations, we confirm our analytic results.
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18. Kulenović, M.R.S., Ladas, G.: Dynamics of Second Order Rational Difference Equations: With Open Problems and

Conjectures. Chapman and Hall/CRC, London (2001)
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