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Abstract
In this research article, we investigate sufficient results for the existence, uniqueness
and stability analysis of iterative solutions to a coupled system of the nonlinear
fractional differential equations (FDEs) with highier order boundary conditions. The
foundation of these sufficient techniques is a combination of the scheme of lower
and upper solutions together with the method of monotone iterative technique. With
the help of the proposed procedure, the convergence criteria for extremal solutions
are smoothly achieved. Furthermore, a major aspect is devoted to the investigation of
Ulam–Hyers type stability analysis which is also established. For the verification of our
work, we provide some suitable examples along with their graphical represntation
and errors estimates.

Keywords: Monotone iterative technique; Fractional differential equations; Extremal
solutions; Ulam stability

1 Introduction
FDEs and their systems are the core purpose of most of the researchers because they
have many important applications in various fields of advanced technology and science.
There are many books and articles which have been written on the topic, see the works of
Mainardi and Podlubny. Some applications where FDEs have been used are as follows:

• Modeling materials or systems which are dependent on past history (memory) such as
nonlocal elasticity, biological tissues, propagation in complex medium, earth
sediments, polymers, and expansion of the universe.

• Strong connection with fractal geometry.
• Can be derived even from probabilistic approaches.

Moreover, classical DEs are just discrete aspects of the whole spectrum of DEs, while FDEs
give the total spectrum.

Although some phenomena have been produced in the form of integral order differen-
tial equations, in general, every phenomenon cannot be produced accurately in the form
of integral order differential equations like the phenomena of electrochemistry, rheology,
porous media, geology, electromagnetism, optics, medicine, bioscience, bioengineering,
probability, and statistics. In this concern, most of the researchers prefer nonlinear FDEs,
which are powerful tools, instead of the integral order differential equations for mathemat-
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ical modeling of the aforesaid phenomena. Therefore, plenty of the research items have
been written on nonlinear FDEs, see [1–8] to explore more of their features for modeling
purposes. Numerous properties and useful features of mathematical modeling of FDEs
have been established by many authors in almost every field of science and technology
such as ecology, control theory, seepage flow in porous media, and nonlinear oscillations
due to earthquake (for details, see [9–15]). Furthermore, many researchers have devoted
their works to the uniqueness and existence of solutions to FDEs; for reading, see [16–20].
As far as we know, the aforesaid area of fractional calculus has been greatly developed. The
field of a coupled system of fractional differential equations is the main research field of
most of the authors. It is the cascading form of single fractional differential equation. The
handling of a coupled system of FDEs is a difficult task as compared with single fractional
differential equation. In concern to the establishment of various aspects of the coupled
system of FDEs is the need of science and technology because some phenomena describe
more than one required task (solution) to be found. These phenomena can be expressed as
a system of FDEs instead of DE/FDE. In this regard, some authors have devoted their trea-
sured work to basic features and properties of the coupled systems of FDEs; for reading,
see [21–24].

Existence and uniqueness of differential equations involving fractional derivatives have
been considered in many works. For details on these works, we refer the readers to [25–
31] and the works cited therein. Recently, the existence and uniqueness of lower and upper
solutions of FDEs have attracted the focus of most of researchers. Although some authors
have well studied lower and upper solutions of integral order partial and ordinary dif-
ferential equations using iterative techniques (see [32–42]), the iterative techniques have
been rarely studied for the lower and upper solutions of FDEs as well as coupled systems
of FDEs. It is a useful tool for the existence of approximation to the solutions of many
applied problems of integral and differential equations of arbitrary order. The aforemen-
tioned scheme has been studied by some authors for FDEs. Quite recently, Ali [43] has
considered this scheme (technique) for the following fractional differential equations:

⎧
⎨

⎩

D
αθ (ξ ) + f (ξ , θ (ξ )) = 0, ξ ∈ (0, 1), 1 < α < 2,

θ ′(0) = 0, θ (1) = ξθ (�),

where ξ ,� ∈ (0, 1).
As far as we know, the aforementioned scheme for the coupled system of FDEs is in its

initial stage.
On the other hand, stability aspect is the most popular topic in the discussion among

most of the researchers. It has been well studied in major research articles for the clas-
sical differential equations. Some types of stability analysis for both classical differential
equations and FDEs, like Lyapunov, exponential and Ulam–Hyers type stability, etc., have
been developed. Among them, Ulam–Hyers type stability is fundamental and very im-
portant stability analysis. It has been verified in many articles for the classical differential
equations as well as fractional differential equations. Ulam–Hyers stability analysis has
been well studied for the initial value problems of fractional differential equations. As far
as we know, it has been rarely investigated for the boundary value problems of fractional
differential equations; for reading, see [44–48].
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The aim of our manuscript is to extend the scheme of Ali [43] to coupled systems of
FDEs. We consider the following class of nonlinear fractional coupled system of higher
order boundary conditions:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

D
pθ (ξ ) + Φ

(
ξ ,ϑ(ξ )

)
= 0, ξ ∈ [0, 1],

D
qϑ(ξ ) + Ψ

(
ξ , θ (ξ )

)
= 0, ξ ∈ [0, 1],

θ (1) = θ ′(0) = θ ′′(0) = · · · = θ (n–2)(0) = θ (n–1)(0) = 0,

ϑ(1) = ϑ ′(0) = ϑ ′′(0) = · · · = ϑ (n–2)(0) = ϑ (n–1)(0) = 0,

(1)

where n = 2, 3, 4, . . . , n – 1 < q, p ≤ n, θ , y ∈ C[0, 1].
D is considered in the sense of Caputo derivative assuming that Φ ,Ψ : I ×R→ R.
This manuscript has the following main contributions:
• To extend and develop the iterative scheme while combining the method of lower and

upper solutions for the nonlinear fractional coupled system of higher order boundary
conditions.

• Existence of lower and upper solutions of the nonlinear fractional coupled system of
higher order boundary conditions.

• The investigation of Ulam–Hyers stability for the coupled system of nonlinear FDEs
of higher order boundary conditions.

• Approximations of extremal solutions of the nonlinear fractional coupled system of
higher order boundary conditions.

• Provision of maximum errors estimate of extremal solutions of the nonlinear
fractional coupled system of higher order boundary conditions.

• The presentation of lower and upper solutions of the nonlinear fractional coupled
system of higher order boundary conditions via plots using Matlab software.

Three illustrative examples are provided to demonstrate the obtained results. Further we
remark that Caputo type fractional order derivative is considered throughout this paper.

2 Background materials
In the present section of our work, we mention supportive basic definitions with useful
lemmas from fractional calculus as well as measure theory and functional analysis; for
reading, see [2–5, 19, 20, 37].

Definition 2.1 Let θ (ξ ) ∈ L([0, 1],R) be a function. Then the Riemann–Liouville integral
of fractional order δ ∈R+ of function θ (ξ ) is given by

Iδθ (ξ ) =
1

Γ (δ)

∫ ξ

0
(ξ – σ )δ–1θ (σ ) dσ ,

provided that the integral is pointwise defined on the right-hand side.

Definition 2.2 ([3]) The Caputo derivative of fractional order p of function θ (ξ ) is defined
by

D
pθ (ξ ) =

1
Γ (n – p)

∫ ξ

0
(ξ – σ )n–p–1θ (n)(σ ) dσ ,
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provided that the integral on the right-hand side is pointwise defined on (0,∞), where
n = [p] + 1 and [p] denotes the integer part of the real number p.

Definition 2.3 As in [21, 43], “Let U = C[0, 1] be the Banach space endowed with ‖θ‖ =
maxξ∈[0,1] |θ (ξ )| which satisfies the partial ordering, and let W = [θ1, θ2] with θ1 ≤ θ2 be
a set such that W ⊂ U , then the operator T : W → U is known as increasing function if
for each θ1, θ2 ∈ W and θ1 ≤ θ2 gives Tθ1 ≤ Tθ2. The operator T is known as decreasing
function if for each θ1, θ2 ∈ W gives Tθ1 ≥ Tθ2.”

Definition 2.4 As in [21, 43], “Let I be an identity operator. If (I – T)θ1 ≤ 0, then the
function θ1 ∈ W is known as a minimal solution of (I – T)θ = 0 and if (I – T)θ2 ≥ 0, then
the function θ2 ∈ W is known as a maximal solution of (I – T)θ = 0.”

Lemma 2.5 ([20]) For the Banach space U which partially satisfies order with W ⊂ U and
θn, θ∗

n ∈ W such that θn ≤ θ∗
n , n ∈ Z+. If θn → θ and θ∗

n → θ∗, then θ ≤ θ∗.

Lemma 2.6 ([3, 49]) Let p > 0, then the FDE

D
pθ (ξ ) = 0

has the solution in the form of

θ (ξ ) =
[p]∑

i=0

θ (i)(0)
i!

ti.

Lemma 2.7 ([3, 49]) Let p > 0, then

Ip[
D

pθ (ξ )
]

= θ (ξ ) –
[p]∑

i=0

θ (i)(0)
i!

ti.

3 Iterative solutions
This section is committed to the existence theory, approximation and error estimates to
the extremal solution of system (1). In the first attempt we transfer system (1) to the equiv-
alent system of integral equations. It is to be noted that the integral representation of the
coupled system is very useful for onward computations. Green’s function in the integral
representation is also necessary to be computed for iterative solution. The next step af-
ter the integral representation is establishing sufficient conditions for the existence of ex-
tremal solutions to system (1). We also provide iterative approximation to extremal so-
lution of the system by a monotone iterative scheme coupled with the lower and upper
solutions method. Further, by the convergent property of monotonic sequence, we con-
sequently compute the error estimates for the iterative solution to extremal solutions of
system (1). For the aforesaid concerns and computations, the following assumptions are
considered:

(C1) The real-valued functions Φ ,Ψ : [0, 1] × R → R satisfy the Carathéodory lemma
(for reading, see the preliminary section of [20]).

(C2) The functions Φ(ξ , θ ) and Ψ (ξ ,ϑ) are increasing in θ and ϑ for every ξ ∈ [0, 1]
respectively.
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(C3) The existence of the constants A,B > 0 such that 0 ≤ Φ(ξ , θ1(ξ )) – Φ(ξ , θ2(ξ ) ≤
A(θ1 – θ2) and 0 ≤ Ψ (ξ ,ϑ1(ξ )) – Ψ (ξ ,ϑ2(ξ ) ≤ B(ϑ1 – ϑ2).

Lemma 3.1 In view of C1 with h ∈ C([0, 1],R), then the fractional differential equation

D
pθ (ξ ) + h(ξ ) = 0, ξ ∈ [0, 1], (n – 1) < p ≤ n,

θ (1) = θ ′(0) = θ ′′(0) = · · · = θ (n–2)(0) = θ (n–1)(0) = 0
(2)

has the solution defined by

θ (ξ ) =
∫ 1

0
G1(ξ ,σ )h(σ ) dσ , (3)

where G1(ξ ,σ ) is given by

G1(ξ ,σ ) =
1

Γ (p)

⎧
⎨

⎩

(1 – σ )p–1 – (ξ – σ )p–1, 0 ≤ σ ≤ ξ ≤ 1,

(1 – σ )p–1, 0 ≤ ξ ≤ σ ≤ 1.
(4)

G1(ξ ,σ ) is known as Green’s function.

Proof In view of Lemma 2.7 and derivative considered in the sense of Caputo derivative,
the linear BVP (2) yields that

θ (ξ ) = C1 + C2ξ + · · · + Cnξ
n–1 – Iph(ξ ). (5)

We face singularity by using the conditions θ ′(0) = θ ′′(0) = · · · = θ (n–2)(0) = θ (n–1)(0) = 0.
Therefore to avoid singularity, here we have C2 = C3 = C4 = · · · = Cn = 0. Further, as θ (1) =
0, then we have C1 = Iph(1). Therefore, we deduce from (5) that

θ (ξ ) =
∫ 1

0

(1 – σ )p–1

Γ (p)
h(σ ) dσ –

∫ ξ

0

(ξ – σ )p–1

Γ (p)
h(σ ) dσ . (6)

Hence, we obtain the result from (6) that is

θ (ξ ) =
∫ 1

0
G1(ξ ,σ )h(σ ) dσ .

This is the end of the proof. �

Lemma 3.2 Let W = C[0, 1] be the Banach space with ‖θ‖ = maxξ∈[0,1] |θ (ξ )|. Then the
coupled system (1) has the integral representation

⎧
⎨

⎩

θ (ξ ) =
∫ 1

0 G1(ξ ,σ )Φ(σ ,ϑ(σ )) dσ , ξ ∈ [0, 1],

ϑ(ξ ) =
∫ 1

0 G2(ξ ,σ )Ψ (σ , θ (σ )) dσ , ξ ∈ [0, 1],
(7)

where G1(ξ ,σ ) is given in (4) and

G2(ξ ,σ ) =

⎧
⎨

⎩

(1–σ )q–1–(ξ–σ )q–1

Γ (q) , 0 ≤ σ ≤ ξ ≤ 1,
(1–σ )q–1

Γ (q) , 0 ≤ ξ ≤ σ ≤ 1.
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Clearly, G1(ξ ,σ ) ≥ 0, G2(ξ ,σ ) ≥ 0 for all ξ , σ ∈ [0, 1].

Lemma 3.3 The functions G1, G2 satisfy the following property:

∫ 1

0

∣
∣G1(ξ ,σ )

∣
∣dσ ≤ 1

Γ (p + 1)
,

∫ 1

0

∣
∣G2(ξ ,σ )

∣
∣dσ ≤ 1

Γ (q + 1)
for all ξ ∈ [0, 1].

Proof As

(1 – σ )p–1 – (ξ – σ )p–1

Γ (p)
≤ (1 – σ )p–1

Γ (p)

implies that

G1(ξ ,σ ) ≤ (1 – σ )p–1

Γ (p)
,

thus

∣
∣G1(ξ ,σ )

∣
∣ ≤ (1 – σ )p–1

Γ (p)
,

from which we have

∫ 1

0

∣
∣G1(ξ ,σ )

∣
∣dσ ≤ 1

Γ (p + 1)
.

Similarly, we can prove that
∫ 1

0 |G2(ξ ,σ )|dσ ≤ 1
Γ (q+1) .

Hence, the proof is completed. �

We write the coupled system (7) of integral equations as

θ (ξ ) =
∫ 1

0
G1(ξ ,σ )Φ

(
σ ,ϑ(σ )

)
dσ

=
∫ 1

0
G1(ξ ,σ )Φ

(

σ ,
∫ 1

0
G2(σ ,�)Ψ

(
�, θ (�)

)
d�

)

dσ . (8)

Further, we define T : W → U is an operator by

T
(
θ (ξ )

)
=

∫ 1

0
G1(ξ ,σ )Φ

(

σ ,
∫ 1

0
G2(σ ,�)Ψ

(
�, θ (�)

)
d�

)

dσ . (9)

Thanks to equation (8) and equation (9), we obtain the equation

[
I – T

(
θ (ξ )

)]
= 0, ξ ∈ [0, 1]. (10)
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It is to be noted that equations (8) and (10) have the same solutions that are fixed points
of T. As in C2, we have that, for θ , θ∗ ∈ W with θ ≤ θ∗, we obtain

T
(
θ (ξ )

)
=

∫ 1

0
G1(ξ ,σ )Φ

(

σ ,
∫ 1

0
G2(σ ,�)Ψ

(
�, θ (�)

)
d�

)

dσ

≤
∫ 1

0
G1(ξ ,σ )Φ

(

σ ,
∫ 1

0
G2(σ ,�)Ψ

(
�, θ∗(�)

)
d�

)

dσ = T
(
θ∗(ξ )

)
(11)

implies that

T
(
θ (ξ )

) ≤ T
(
θ∗(ξ )

)
,

thus T is an increasing operator.
(C4) Assume that the lower and upper solutions of (10) are α and β ∈ W . Then the

inequality α ≤ β on [0, 1] holds.

Lemma 3.4 Consider all the assumptions (C1) to (C4). Then the solutions of linear prob-
lems are an iterative convergent sequence which converges to solution of the integral equa-
tion (8).

Proof Under assumptions (C1), (C2), and(C4), let θi, θj ∈ W ⊂ U , where i, j = 1, 2, 3, . . . , n

∣
∣T

(
θi(ξ )

)
– T

(
θj(ξ )

)∣
∣

=
∣
∣
∣
∣

∫ 1

0
G1(ξ ,σ )Φ

(

σ ,
∫ 1

0
G2(σ ,�)Ψ

(
�, θi(�)

)
d�

)

dσ

–
∫ 1

0
G1(ξ ,σ )Φ

(

σ ,
∫ 1

0
G2(σ ,�)Ψ

(
�, θj(�)

)
d�

)

dσ

∣
∣
∣
∣

≤
∫ 1

0
G1(ξ ,σ )

∣
∣
∣
∣Φ

(

σ ,
∫ 1

0
G2(σ ,�)Ψ

(
�, θi(�)

)
d�

)

– Φ

(

σ ,
∫ 1

0
G2(σ ,�)Ψ

(
�, θj(�)

)
d�

)∣
∣
∣
∣dσ

≤
∫ 1

0
G1(ξ ,σ )A

∫ 1

0
G2(σ ,�)

∣
∣Ψ

(
�, θi(�)

)
– Ψ

(
�, θj(�)

)∣
∣d� dσ

≤ AB

Γ (q + 1)
Γ (p + 1)‖θi – θj‖ = ∇‖θi – θj‖, where ∇ =

AB

Γ (q + 1)
Γ (p + 1). (12)

Therefore, the operator T is continuous. Further, it is obvious that T is also equi-
continuous and uniformly bounded. Arzelá–Ascoli theorem which states that “If M is a
family (finite or infinite) of an equi-continuous, uniformly bounded real-valued functions
θ on an interval [0, 1], then M contains a uniformly convergent sequence of functions θn,
converging to a function θ in W as n → ∞, where W denotes the space of all continuous
bounded functions on [0, 1]. Thus any sequence in M contains a uniformly bounded con-
vergent subsequence on [0, 1] and consequently M has a compact closure in W .” Hence,
in view of the Arzelá–Ascoli theorem, T is also a compact operator. Let the lower solution
of integral equation (10) be θ0 = α. Then, in view of condition (C4), we obtain

θ0 ≤ β .
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As T is an increasing operator, then we obtain

θ0 ≤ Tθ0 ≤ Tβ ≤ β , that is, θ0 ≤ θ1 ≤ β on the interval [0, 1],

where θ1 = Tθ0 is an iterative solution of integral equation (10). By applying T, we obtain

Tθ0 ≤ Tθ1 ≤ Tβ ≤ β , that is, θ1 ≤ θ2 ≤ β on [0, 1],

where θ2 = Tθ1. Consequently, we obtain a bounded monotone sequence {θn} which is

θ0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θn–1 ≤ θn ≤ β on [0, 1], (13)

where θn = Tθn–1 is solution of equation (10). Thus, in view of the bounded monotone
sequence {θn}, there exists θ ∈ W so that θn → θ as n → ∞. Therefore θ = Tθ , which is
the solution of integral equation (8) defined by

θ (ξ ) =
∫ 1

0
G1(ξ ,σ )Φ

(

σ ,
∫ 1

0
G2(σ ,�)Ψ

(
�, θ (�)

)
d�

)

dσ , ξ ∈ [0, 1].

Hence, in view of (13) and (12), we get

‖θ2 – θ1‖ = ‖Tθ1 – Tθ0‖ ≤ ∇e1,

‖θ3 – θ2‖ = ‖Tθ2 – Tθ1‖ ≤ ∇2e1,

‖θ4 – θ3‖ = ‖Tθ3 – Tθ2‖ ≤ ∇3e1,

...

‖θn+1 – θn‖ = ‖Tθn – Tθn–1‖ ≤ ∇ne1.

Consequently, for positive integers mandn, we have

‖θm+n – θn‖ ≤ ‖θn+m – θn+m–1‖ + ‖θn+m–1 – θn+m–2‖ + · · · + ‖θn+1 – θn‖

≤ ∇n 1 – ∇m

1 – ∇ e1. (14)

It is obvious that ∇ < 1, which implies that ‖θm+n – θn‖ → 0 when n → ∞. Thus θn is a
Cauchy sequence in W . Let θ∗(ξ ) = limn→∞ θn(ξ ), thus Tθ∗ = θ∗. Therefore, if m → ∞ in
(14), then error estimate for the lower solution is

en =
∥
∥θ∗ – θn

∥
∥ ≤ ∇n

1 – ∇ e1, where e1 = ‖θ1 – θ0‖. �

Remark Let us choose θ0 = β , we have a sequence {θn} so that

θ0 ≥ θ1 ≥ θ2 ≥ · · · ≥ θn–1 ≥ θn ≥ α on [0, 1],

which converges to a solution of the integral equation (8). Therefore, we can obtain
the estimate error for the maximal solution which is given by e∗

n = ‖θ∗
n – θ̄∗‖ ≤ ∇n

1–∇ e∗
1,
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where e∗
1 = ‖θ∗

0 – θ∗
1 ‖. Further, we use Lemma 3.4, the iterative sequences for lower and

upper solutions of system (1) are:

θn(ξ ) =
∫ 1

0
G1(ξ ,σ )Φ

(

σ ,
∫ 1

0
G2(σ ,�)Ψ

(
�, θn–1(�)

)
d�

)

dσ , n ≥ 1,

θ∗
n (ξ ) =

∫ 1

0
G1(ξ ,σ )Φ

(

σ ,
∫ 1

0
G2(σ ,�)Ψ

(
�, θ∗

n–1(�)
)

d�

)

dσ , n ≥ 1.

Hence, we have

θ∗(ξ ) = lim
n→∞ θn(ξ ), ϑ∗(ξ ) =

∫ 1

0
G2(ξ ,σ )Ψ

(
σ , θ∗(σ )

)
dσ ,

θ̄∗(ξ ) = lim
n→∞ θ∗

n (ξ ), ϑ̄∗(ξ ) =
∫ 1

0
G2(ξ ,σ )Ψ

(
σ , θ̄∗(σ )

)
dσ .

Theorem 3.5 Consider conditions (C1), (C2), and (C3) and ∇ < 1. Then the coupled system
of BVPs (1) has unique minimal and maximal solutions respectively.

Proof We prove that (θ∗,ϑ∗) and (θ̄∗, ϑ̄∗) are the minimal and maximal solutions of (7).
Let for any u(ξ ) ∈ W with Tu = u and θn ≤ u ≤ θ∗

n , due to the increasing behavior of T and
using Lemma 3.4, we have θ∗(ξ ) ≤ u(ξ ) ≤ ¯θ∗(ξ ) that θ∗(ξ ) and ¯θ∗(ξ ) are the minimal and
maximal fixed points of T respectively. Therefore (θ∗,ϑ∗) and (θ̄∗, ϑ̄∗) are the minimal and
maximal solution of (7) respectively.

Next, for the concern of uniqueness of minimal and maximal solutions of system (7), let
α,β ∈ W be the lower and upper solutions of Tθ = θ respectively. Then α ≤ Tα, β ≥ Tβ ,
ξ ∈ [0, 1]. We use αandβ as initial iterations respectively so that αn → α∗ and βn → β∗,
n → ∞. We also have Tα∗ = α∗, Tβ∗ = β∗. To prove α∗ = θ∗, observe that θ0 ≤ α∗ and
T is increasing, so we have θn = T

nθ0 ≤ T
nα∗ for each n ∈ {1, 2, 3, . . . }. Then θ0 ≤ θ1 ≤

θ2 ≤ · · · ≤ θn ≤ · · · ≤ α∗. Therefore from (12) and mathematical induction, it is obvious
that ‖α∗ – θn‖ = ‖Tnα∗ – T

nθ0‖ ≤ ∇n‖α∗ – θ0‖ → 0 as n → ∞. Therefore ‖α∗ – θ∗‖ → 0
as n → ∞, which gives θ∗ = α∗. In the same manner, we obtain that θ̄∗ = β∗. Thus, the
minimal and maximal solutions of the coupled system (7) are unique. �

4 Generalized Ulam–Hyers stability of the solutions of BVPs (1)
This section is devoted to the investigation of more general stability analysis for the sys-
tem of fractional differential equations. The stability analysis is an important aspect of
fractional calculus for the ordinary and partial differential equations of fractional order.
As far as we know, it is in the initial stage for a coupled system. Therefore the aim of this
section is to investigate some sufficient conditions for a system of fractional differential
equations. In this concern, we study Ulam–Hyers and generalized Ulam–Hyers stability
for a coupled system of BVPs (1) of the nonlinear FDEs. For this concern, we require the
following auxiliary definitions.

Definition 4.1 The considered problem (1) is Ulam–Hyers stable if we can find a real
number ĈΦ ,Ψ > 0 with the property that, for every ε = max{ε1, ε2} > 0 with ε1 > 0 and



Ali et al. Advances in Difference Equations        (2019) 2019:215 Page 10 of 19

ε2 > 0 and for every solution (θ ,ϑ) ∈ C([0, 1], R) × C([0, 1], R) of the inequality

∣
∣Dpθ (ξ ) – Φ

(
ξ ,ϑ(ξ )

)∣
∣ ≤ ε1, ξ ∈ [0, 1],

∣
∣Dqϑ(ξ ) – Ψ

(
ξ , θ (ξ )

)∣
∣ ≤ ε2, ξ ∈ [0, 1],

(15)

there exists a unique solution (θ̃ , ϑ̃) ∈ C([0, 1], R) × C([0, 1], R) of the proposed BVPs (1)
with

∥
∥(θ ,ϑ) – (θ̃ , ϑ̃)

∥
∥ ≤ ĈΦ ,Ψ ε, ξ ∈ [0, 1].

Definition 4.2 The proposed BVPs (1) is called to be generalized Ulam–Hyers stable
if we can find ΘΦ ,Ψ : (0,∞) → R+ with ΘΦ ,Ψ (0) = 0, with the property that, for every
ε = max{ε1, ε2} > 0 with ε1 > 0 and ε2 > 0 and for every solution (θ ,ϑ) ∈ C([0, 1], R) ×
C([0, 1], R) of the inequality

∣
∣Dpθ (ξ ) – Φ

(
ξ ,ϑ(ξ )

)∣
∣ ≤ ε1, ξ ∈ [0, 1],

∣
∣Dqϑ(ξ ) – Ψ

(
ξ , θ (ξ )

)∣
∣ ≤ ε2, ξ ∈ [0, 1],

there exists a unique solution (θ̃ , ϑ̃) ∈ C([0, 1], R) × C([0, 1], R) of the proposed BVPs (1)
with

∥
∥(θ ,ϑ) – (θ̃ , ϑ̃)

∥
∥ ≤ ĈΦ ,Ψ ΘΦ ,Ψ (ξ ), ξ ∈ [0, 1].

Remark 4.3 The (θ ,ϑ) ∈ C([0, 1],R) is said to be the solution of BVPs (1) and satisfy the
inequality given in (15) if and only if we can find a function α,β ∈ C([0, 1],R) depending
only on (θ ,ϑ) respectively, then

(i) |α(ξ )| ≤ ε1, |β(ξ )| ≤ ε2, for all ξ ∈ [0, 1];
(ii) D

pθ (ξ ) + Φ(ξ ,ϑ(ξ )) = α(ξ ), for all ξ ∈ [0, 1], Dqϑ(ξ ) + Ψ (ξ , θ (ξ )) = β(ξ ), for all
ξ ∈ [0, 1].

Thanks to Remark 4.3 and assumption (C3) for ξ ∈ ([0, 1]), the considered solution (θ ,ϑ)
of the problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

D
pθ (ξ ) + Φ(ξ ,ϑ(ξ )) = α(ξ ), ξ ∈ [0, 1],

D
qϑ(ξ ) + Ψ (ξ , θ (ξ )) = β(ξ ), ξ ∈ [0, 1],

θ (1) = θ ′(0) = θ ′′(0) = · · · = θ (n–2)(0) = θ (n–1)(0) = 0,

ϑ(1) = ϑ ′(0) = ϑ ′′(0) = · · · = ϑ (n–2)(0) = ϑ (n–1)(0) = 0,
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given by

θ (ξ ) =
∫ 1

0
G1(ξ ,σ )Φ

(

σ ,
∫ 1

0
G2(ξ ,�)Ψ

(
�, θ (�)

)
d� +

∫ 1

0
K2(ξ ,�)β(�) d�

)

dσ

+
∫ 1

0
G1(ξ ,σ )α(σ ) dσ , ξ ∈ [0, 1],

ϑ(ξ ) =
∫ 1

0
G2(ξ ,σ )Ψ

(

σ ,
∫ 1

0
G1(ξ ,�)Φ

(
�,ϑ(�)

)
d� +

∫ 1

0
K1(ξ ,�)α(�) d�

)

dσ

+
∫ 1

0
G2(ξ ,σ )β(σ ) dσ , ξ ∈ [0, 1],

(16)

satisfies the following inequality:

∣
∣
∣
∣θ (ξ ) –

∫ 1

0
G1(ξ ,σ )Φ

(

σ ,
∫ 1

0
G2(ξ ,�)Ψ

(
�, θ (�)

)
d� +

∫ 1

0
K2(ξ ,�)β(�) d�

)

dσ

∣
∣
∣
∣

≤ ε2

Γ (p + 1)
, ξ ∈ [0, 1], (17)

and

∣
∣
∣
∣ϑ(ξ ) –

∫ 1

0
G2(ξ ,σ )Ψ

(

σ ,
∫ 1

0
G1(ξ ,�)Φ

(
�,ϑ(�)

)
d� +

∫ 1

0
K1(ξ ,�)α(�) d�

)

dσ

∣
∣
∣
∣

≤ ε1

Γ (q + 1)
. (18)

Theorem 4.4 Let ∇ < 1 and assumption (C3) hold. Then solutions of the considered cou-
pled system (1) are Ulam–Hyers stable and consequently generalized Ulam–Hyers stable.

Proof Let (θ ,ϑ) be any solution of BVPs (1)and satisfy inequality (15), and let (θ̄ , ϑ̄) be the
unique solution of the considered BVPs problem, then consider

|θ – θ̄ |

=
∣
∣
∣
∣θ –

∫ 1

0
G1(ξ ,σ )Φ

(

σ ,
∫ 1

0
G2(ξ ,�)Ψ

(
�, θ̄ (�)

)
d� +

∫ 1

0
K2(ξ ,�)β(�) d�

)

dσ

∣
∣
∣
∣

≤
∣
∣
∣
∣θ –

∫ 1

0
G1(ξ ,σ )Φ

(

σ ,
∫ 1

0
G2(ξ ,�)Ψ

(
�, θ (�)

)
d� +

∫ 1

0
K2(ξ ,�)β(�) d�

)

dσ

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ 1

0
G1(ξ ,σ )Φ

(

σ ,
∫ 1

0
G2(ξ ,�)Ψ

(
�, θ (�)

)
d� +

∫ 1

0
K2(ξ ,�)β(�) d�

)

dσ

–
∫ 1

0
G1(ξ ,σ )Φ

(

σ ,
∫ 1

0
G2(ξ ,�)Ψ

(
�, θ̄ (�)

)
d� +

∫ 1

0
K2(ξ ,�)β(�) d�

)

dσ

∣
∣
∣
∣. (19)

Therefore from inequality (19)

‖θ – θ̄‖ ≤ ε2

Γ (p + 1)
+ ∇‖θ – θ̄‖,

‖θ – θ̄‖ ≤ ε2ĈΦ ,Ψ , ĈΦ ,Ψ =
1

(1 – ∇)Γ (p + 1)
> 0.

(20)
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In the same manner, it is easy to prove that

‖ϑ – ϑ̄‖ ≤ ε1ĈΨ , ĈΨ =
1

(1 – ∇)Γ (q + 1)
> 0. (21)

Therefore, from inequalities (20) and (21), we have

∥
∥(θ ,ϑ) – (θ̄ , ϑ̄)

∥
∥ ≤ max{ε1ĈΦ , ε2ĈΨ } = εĈΦ ,Ψ . (22)

Therefore the solutions of a coupled system of BVPs (1) are Ulam–Hyers stable. Further,
if ΘΦ ,Ψ (ε) = ε, hence (22) can be expressed as

∥
∥(θ ,ϑ) – (θ̄ , ϑ̄)

∥
∥ ≤ ĈΦ ,Ψ ΘΦ ,Ψ (ε). (23)

Therefore, ΘΦ ,Ψ (0) = 0 in (23) holds. Thus, solutions of the system of BVP (1) are general-
ized Ulam–Hyers stable. Thus we have investigated sufficient condition for Ulam–Hyers
stability generalized Ulam–Hyers stability, that is, ∇ < 1. �

5 Examples
In this section, we provide some examples of the coupled system (1). We compute the it-
erative approximation for the extremal solution of the corresponding examples. We also
provide error estimates for the extremal solutions. Furthermore, the stability analysis un-
der the sufficient conditions for the examples of system (1) is also the concern of this
section. We also provide the plots of each example of system (1) in the frame figures.

Example 5.1 Consider the following coupled system of BVPs of FDEs:

D
5
2 θ (ξ ) +

t 7
2 ϑ(ξ )(56,754ϑ2(ξ ) + 160)

1 + ϑ2(ξ )
= 0, 0 ≤ ξ ≤ 1,

D
27
10 ϑ(ξ ) +

t 9
2 θ (ξ )(θ (ξ ) + 1)(23,471e(–θ (ξ )) + 120)

2 + θ (ξ )
= 0, 0 ≤ ξ ≤ 1,

(24)

under the boundary condition given by

θ (1) = θ ′(0) = θ ′′(0) = 0, ϑ(1) = ϑ ′(0) = ϑ ′′(0) = 0. (25)

As for A = B = 0.0001, we have ∇ = 7.2147e–10 < 1. When n = 3 is large enough, iterative
sequences for the approximate minimal and maximal solutions θn and θ̄∗

n respectively are:

θ∗(ξ ) = θ3(ξ ),

ϑ∗(ξ ) =
∫ 1

0
G2(ξ ,σ )

σ
9
2 θ2(σ )(θ2(σ ) + 1)(23,471e–θ2(σ ) + 120)

1 + θ2(σ )
dσ ,

θ̄∗(ξ ) = θ∗
3 (ξ ),

ϑ̄∗(ξ ) =
∫ 1

0
G2(ξ ,σ )

σ
9
2 θ∗

2 (σ )(θ∗
2 (σ ) + 1)(23,471e–θ∗

2 (σ ) + 120)
1 + θ∗

2 (σ )
dσ .

(26)
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Figure 1 A line graph of the solutions of Example 5.1

Let (θ0,ϑ0) = (–0.01, –0.01), (θ∗
0 ,ϑ∗

0 ) = (0.01, 0.01) be the minimal and maximal solutions
of Example 5.1 respectively, then we have their corresponding maximum error estimates:

e3 = ‖θ – θ3‖ ≤ ∇3

1 – ∇ × e1 ≤ 3.7554292227e–28 × max
ξ∈[0,1]

∣
∣θ1(ξ ) + 0.01

∣
∣

� 5.66292592845e–24,

e∗
3 =

∥
∥θ – θ∗

3
∥
∥ ≤ ∇3

1 – ∇ × e∗
1 ≤ 3.7554292227e–28 × max

ξ∈[0,1]

∣
∣0.01 – θ∗

1 (ξ )
∣
∣

� 5.60233983913e–24.

The iterative solutions of minimal and maximal of Example 5.1 are plotted in Figs. 1–2
wherein for the simple execution of Matlab code, we have replaced (θ ,ϑ) by (w, z) and
(θ∗,ϑ∗) by (w∗, z∗). Each plot in the figures has the demonstration of physical behavior of
the approximate solutions.

Further, as ∇ < 1, therefore, the Ulam–Hyers stability and generalized Ulam–Hyers
stability are obvious. The stability of the iterative solutions can also be observed from
Figs. 1–2.

Example 5.2 To strengthen our results, we provide another example as follows:

D
19
5 θ (ξ ) +

√
1 + ϑ2(ξ )

(
ϑ1.1(ξ ) + ϑ2.3(ξ )

)
= 0, 0 ≤ ξ ≤ 1,

D
7
2 ϑ(ξ ) +

√
θ (ξ )

(
θ2.3(ξ ) + θ1.1(ξ )

)
= 0, 0 ≤ ξ ≤ 1,

(27)

subject to boundary conditions given as

θ (1) = θ ′(0) = θ ′′(0) = θ ′′′(0) = 0, ϑ(1) = ϑ ′(0) = ϑ ′′(0) = ϑ ′′′(0) = 0. (28)
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Figure 2 A line graph of the solutions of Example 5.1, when p = 11
5 and q = 15

7

As for A = B = 1
64 , we have ∇ = 1.1767e–6 < 1. When n = 3 is large enough, iterative se-

quences for the approximate minimal and maximal solutions θn and θ̄∗
n respectively are:

θ∗(ξ ) = θ3(ξ ), ϑ∗(ξ ) =
∫ 1

0
G2(ξ ,σ )

√
θ2(σ )

(
θ2.3

2 (σ ) + θ1.1
2 (σ )

)
dσ ,

θ̄∗(ξ ) = θ∗
3 (ξ ), ϑ̄∗(ξ ) =

∫ 1

0
G2(ξ ,σ )

√
θ∗

2 (σ )
((

θ∗
2 (σ )

)2.3 +
(
θ∗

2 (σ )
)1.1)dσ .

(29)

Let (θ0,ϑ0) = (–3, –3), (θ∗
0 ,ϑ∗

0 ) = (3, 3) be the maximal and minimal solutions of Exam-
ple 5.2 respectively, then the error estimates are:

e3 = ‖θ – θ3‖ ≤ ∇3

1 – ∇ × e1 ≤ 1.62914414119e–18 × max
ξ∈[0,1]

∣
∣θ1(ξ ) + 3

∣
∣

� 5.03862710112e–18,

e∗
3 =

∥
∥θ – θ∗

3
∥
∥ ≤ ∇3

1 – ∇ × e∗
1 ≤ 1.62914414119e–18 × max

ξ∈[0,1]

∣
∣3 – θ∗

1 (ξ )
∣
∣

� 4.88743242358e–18.

The iterative solutions of minimal and maximal of Example 5.2 are plotted in Figs. 3–4,
wherein for the simple execution of Matlab code, we have replaced (θ ,ϑ) by (w, z) and
(θ∗,ϑ∗) by (w∗, z∗). Each plot in the figures has the demonstration of physical behavior of
the approximate solutions.

Further, as ∇ < 1, therefore, the Ulam–Hyers stability and generalized Ulam–Hyers
stability are obvious. The stability of the iterative solutions can also be observed from
Figs. 3–4.
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Figure 3 A line graph of the solutions of Example 5.2

Figure 4 A line graph of the solutions of Example 5.2, when p = 17
5 and q = 10

3

Example 5.3 Consider the following coupled system of BVPs of FDEs:

D
21
5 θ (ξ ) +

t 15
4 ϑ(ξ )(ϑ2(ξ ) + 160)

(1 + ϑ2(ξ ))2 = 0, 0 ≤ ξ ≤ 1,

D
9
2 ϑ(ξ ) +

t 19
4 θ (ξ )(θ (ξ ) + 1)(θ (ξ ) + 9)(e–2θ (ξ ) + 120)

(2 + θ (ξ ))2 = 0, 0 ≤ ξ ≤ 1,

(30)

with the given boundary condition

θ (1) = θ ′(0) = θ ′′(0) = θ ′′′(0) = θ ′′′′(0) = 0,

ϑ(1) = ϑ ′(0) = ϑ ′′(0) = ϑ ′′′(0) = ϑ ′′′′(0) = 0.
(31)
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Obviously, A = B = 1
64 , from which it is easy to see that ∇ = 1.4317e–7 < 1. For taking n = 3

is large enough, we have the iterative sequences for approximate minimal and maximal
solutions θn and θ̄∗

n as given by

θ∗(ξ ) = θ3(ξ ),

ϑ∗(ξ ) =
∫ 1

0
G2(ξ ,σ )

σ
19
4 θ2(σ )(θ2(σ ) + 1)(θ2(σ ) + 9)(e–2θ2(σ ) + 120)

(2 + θ2(σ ))2 dσ ,

θ̄∗(ξ ) = θ∗
3 (ξ ),

ϑ̄∗(ξ ) =
∫ 1

0
G2(ξ ,σ )

t 19
4 θ∗

2 (σ )(θ∗
2 (σ ) + 1)(θ∗

2 (σ ) + 9)(e–2θ∗
2 (σ ) + 120)

(2 + θ∗
2 (σ ))2 dσ ,

(32)

respectively. Let (θ0,ϑ0) = (–0.1, –0.1), (θ∗
0 ,ϑ∗

0 ) = (0.1, 0.1) be maximal and minimal solu-
tions respectively of Example 5.3, then

e3 = ‖θ – θ3‖ ≤ ∇3

1 – ∇ × e1 ≤ 2.93476154975e–21 × max
ξ∈[0,1]

∣
∣θ1(ξ ) + 0.1

∣
∣

� 2.93476154975e–22,

e∗
3 =

∥
∥θ – θ∗

3
∥
∥ ≤ ∇3

1 – ∇ × e∗
1 ≤ 2.93476154975e–21 × max

ξ∈[0,1]

∣
∣0.1 – θ∗

1 (ξ )
∣
∣

� 2.93476154975e–22.

Physical behavior of the approximate maximal and minimal solutions has also been
demonstrated by providing Figs. 5–6, wherein, for the simple execution of Matlab code,
we have replaced (θ ,ϑ) by (w, z) and (θ∗,ϑ∗) by (w∗, z∗).

It is easy to obtain the conditions of various types of Ulam–Hyers stabilities for the so-
lutions. The stability of iterative solutions is also obvious from Figs. 5–6.

Figure 5 A line graph of the solutions of Example 5.3
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Figure 6 A line graph of the solutions of Example 5.3, when p = 23
5 and q = 13

3

Figures discussion: We have plotted the iterative solutions of three considered exam-
ples of system (1). These plots are provided in Figs. 1–6. For the sketch of plots, we have
used the subplot command in the Matlab software. Each plot of numerical results shows
a meaningful behavior of the extremal solutions of the coupled system of fractional differ-
ential equations. The different visualizations of each upper and lower solutions are very
clear.

6 Conclusion
We have developed sufficient conditions for the existence of extremal solutions to a cou-
pled system of FDEs with highier order boundary conditions. We have successfully pro-
vided these sufficient conditions on the basis of combining the method of upper and lower
solutions together with the method of monotone iterative technique. We have constructed
two monotonic sequences corresponding to upper and lower solutions such that a mono-
tonically increasing sequence converged to the maximal solutions and the monotonically
decreasing sequence converged to the minimal solutions of the system under considera-
tion. Finally, an error estimate has been established, which provided the efficiency of the
method.
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48. Wang, J., Fečkan, M., Zhou, Y.: Fractional order differential switched systems with coupled nonlocal initial and

impulsive conditions. Bull. Sci. Math. 141, 727–746 (2017)
49. Cabada, A., Wang, G.: Positive solutions of nonlinear fractional differential equations with integral boundary value

conditions. J. Math. Anal. Appl. 389, 403–411 (2012)


	Computation of iterative solutions along with stability analysis to a coupled system of fractional order differential equations
	Abstract
	Keywords

	Introduction
	Background materials
	Iterative solutions
	Generalized Ulam-Hyers stability of the solutions of BVPs (1)
	Examples
	Conclusion
	Acknowledgements
	Funding
	Abbreviations
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


