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Abstract
We propose and study two finite difference schemes (FDSs) for the double dispersion
equations. The first FDS is symplectic, while the second one preserves the discrete
momentum exactly. Both FDS conserve the discrete energy approximately with
O(h2 + τ 2) global error. The extensive numerical experiments agree well with the
theoretical results for single solitary wave as well as for the interaction between two
solitary waves.
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1 Introduction
The aim of this paper is to develop and analyze two finite difference schemes (FDSs) for
the solution of the double dispersion equations (DDEs)

∂2u
∂t2 = �u + β1�

∂2u
∂t2 – β2�

2u + �f (u), x ∈ R, t > 0, (1)

with initial data

u(x, 0) = u0(x),
∂u
∂t

(x, 0) = u1(x), x ∈ R, (2)

and asymptotic boundary conditions u(x, t) → 0, �u(x, t) → 0 as |x| → ∞.
Here the dispersion parameters β1, β2 satisfy β1 ≥ 0, β2 > 0. The nonlinear term has the

form f (u) = αup, p = 2, 3, . . . , with α an amplitude parameter.
The DDE appears in a number of mathematical models of physical processes, for

example—in the modeling of surface waves in shallow water, in the dislocation theory of
crystals, in optics, etc. The derivation of (1) from the full Boussinesq model can be found
e.g. in [10], where Eq. (1) is also called the Boussinesq paradigm equation.

The problem (1) with β1 = 0 is referred in the literature as Boussinesq equation. Several
numerical methods are used to solve this equation. For example, a Galerkin method is
investigated in [8, 23], a finite difference method is applied in [11], spectral and pseudo-
spectral methods are reported in [6, 12, 22, 27]. A predictor–corrector method is derived
in [2], while a mesh-free method is given in [21]. Numerical analysis of the Boussinesq
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equation based on structure preserving methods (symplectic and multi-symplectic meth-
ods) is reported in [1, 3–5, 15, 26].

The DDE (1) with β1 > 0 is studied less numerically. The finite difference method is used
in [7, 9, 10, 16, 18] to solve the one-dimensional problem (1). The exact preservation of
the global discrete energy and the convergence of the numerical methods are proved in
[17–19].

The DDE conserves not only the energy, it preserves the mass, the momentum; and it
has a Hamiltonian structure—the phase flow of the Hamiltonian systems are symplectic
transformations that conserve area.

We believe, that the numerical methods should preserve as much of the essential prop-
erties of the original continuous problem as possible. Based on this idea we construct in
this paper two new invariant preserving schemes for DDE, called FDS-S and FDS-M. We
define discrete invariants of the mass, the momentum and the energy (equivalently the
Hamiltonian) and analyze conservation of these quantities in time. The FDS-S is symplec-
tic as the continuous problem is, it retains at the discrete level the symplecticness of the
flow. In addition we prove that this scheme satisfies equalities, which connect the discrete
momentum on every two consecutive time levels; the same holds true for the discrete en-
ergy. Moreover, we show that FDS-S preserves the discrete momentum and the discrete
Hamiltonian in time approximately, up to O(h2 + τ 2) global error.

We prove that the second FDS, i.e. FDS-M, preserves exactly the discrete momentum
and approximately, up to O(h2 + τ 2) global error, the discrete Hamiltonian. In addition
both FDS preserve exactly the discrete mass.

We report and discuss numerical experiments based on two examples—one solitary
wave and interaction of two solitary waves. We study on nested grids the convergence
of the discrete solution to the exact one, as well as the approximate preservation of the
discrete momentum and the discrete energy. The provided numerical tests are in accor-
dance with theoretical results.

The paper is organized in the following way. The necessary preliminary results are re-
ported in Sect. 2. The two FDS are stated in Sect. 3. The theoretical analysis of these FDS is
given in Sect. 4. In Sect. 5 we report and discuss numerical experiments on two examples.
Our concluding remarks are given in Sect. 6.

2 Preliminaries
DDE (1) can be rewritten as the generalized Hamiltonian system (or Poisson system)

[
∂u
∂t
∂v
∂t

]
= J

[
δH
δu
δH
δv

]

using auxiliary function v, defined by ∂v
∂x = ∂u

∂t . Here

J =

[
0 (E – β1�)–1∂x

(E – β1�)–1∂x 0

]

is an anti-symmetric matrix and E is the identity operator. The separable Hamiltonian

H(t) := H
(
u(x, t), v(x, t)

)
=

1
2

∫
R

(
v2 + β1

(
∂v
∂x

)2

+ u2 + β2

(
∂u
∂x

)2

+ 2F(u)
)

dx (3)
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represents the total energy of the system, F(u) =
∫ u

0 f (s) ds and δH
δu , δH

δv are the variational
derivatives of H with respect to u and v. The Poisson bracket is defined in this case as
ω(G1, G2) = ∇(G1)T J∇(G2); see e.g. [14, 20].

The scalar DDE (1)–(2) is equivalent to the system

⎧⎨
⎩

∂u
∂t = ∂v

∂x ,
∂v
∂t = (E – β1�)–1( ∂u

∂x – β2
∂3u
∂x3 + ∂f (u)

∂x ),
(4)

with initial conditions

u(x, 0) = u0(x), v(x, 0) = v0(x), where ∂xv0(x) = u1(x).

Given a solution (u, v) of (4) we define the mass I(u(x, t)) and the momentum M(u(x, t),
v(x, t)) as

I(t) := I
(
u(x, t)

)
=

∫
R

u(x, t) dx, (5)

M(t) := M
(
u(x, t), v(x, t)

)
=

∫
R

(
u(x, t)v(x, t) + β1ux(x, t)vx(x, t)

)
dx. (6)

The phase flow of the Hamiltonian system (4) is a symplectic transformation that pre-
serves area (see [14]). Besides the symplectic property of (4), it has three invariants—the
mass, the momentum, and the energy (which coincides with the Hamiltonian in this pa-
per). In the following theorem we give an exact formulation of this statement.

Theorem 1 (Conservation laws) For every t ≥ 0 the solution (u, v) to the problem (4) sat-
isfies the following identities:

I(t) = I(0), i.e. mass conservation;

M(t) = M(0), i.e. momentum conservation;

H(t) = H(0), i.e. energy (Hamiltonian) conservation.

It is well known that the DDE possesses exact solutions of the form of traveling waves
u(x, t) = ψ(x – ct), where c is the velocity of the wave. When these solutions are localized in
space, maintain their shape during the evolution, interact with other solutions and emerge
from the collision unchanged (except for a phase shift), then these solutions are called
‘solitary waves’ or ‘solitons’. In the case of quadratic nonlinearity (f (u) = αu2) the solitary
waves to (1) are given by

ϕ(x, t; c) =
3(c2 – 1)

2α
sech2

(
–

1
2

√
c2 – 1

β1c2 – β2
(x – ct)

)
. (7)

Note that the pair (ϕ(x, t; c), –cϕ(x, t; c)) is the solitary wave solution to the system (4).
In the following we suppose that β1 > 0 and that the unique exact solution to (1)–(2) ex-

ists and is sufficiently smooth in the considered time interval t ∈ [0, T]. The paper [25]
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gives conditions on the initial data, under which the solution to (1)–(2) is sufficiently
smooth.

By C (with different indices) we denote positive numbers which depend on some norms
of the functions u and v but are independent of the discretization steps h and τ .

3 The finite difference schemes
3.1 Mesh and notations
Theoretical analysis of the solitary waves (7) shows that waves decay exponentially to zero
as |x| → ∞. In view of this and the imposed asymptotic boundary conditions we choose
numbers L1 and L2 sufficiently large, so that the exact solution with its derivatives is neg-
ligible outside the interval [–L1, L2].

For simplicity of the numerical analysis presented in this paper we suppose that the
discrete solution to DDE satisfies periodic boundary conditions at –L1 and L2.

In [–L1, L2] we introduce an uniform grid xi, i = 0, 1, . . . , N with step h = (L1 + L2)/N .
We denote the approximation of the function u(xi, t) at the mesh points xi by Ui(t)
and the approximations of v(xi, t) by Vi(t). We use the following notations: U(t) =
(U1(t), U2(t), . . . , UN (t)), V(t) = (V1(t), V2(t), . . . , VN (t)),

∂x̂Ui = Ux̂,i =
Ui+1 – Ui–1

2h
, �̂hUi = Ux̂x̂,i =

Ui+2 – 2Ui + Ui–2

4h2 ,

Ux̂x̂x̂,i =
Ui+3 – 3Ui+1 + 3Ui–1 – Ui–3

8h3 .

Denote by 〈V , W 〉 =
∑N

i=1 hViWi the discrete scalar product of the functions V and W .
For periodic functions (Ui = UN+i) the discrete operator AUi = –�̂hUi, i = 1, 2, . . . , N is
self-adjoint and positive definite, thus it has an inverse A–1.

For the discretization in time we consider an uniform mesh {tk = kτ , k = 0, . . . , K , K =
T/τ } with time step τ and discrete time differences

Uk
t =

Uk+1 – Uk

τ
, Uk

t̄ =
Uk – Uk–1

τ
.

The discrete approximations to u(xi, tk) and v(xi, tk) are denoted by Uk
i and V k

i , respec-
tively. We omit the notation k

i for the arguments of the mesh functions whenever possible.

3.2 Finite difference scheme FDS-S
Replacing the derivatives in (4) with finite differences of second order of approximation,
we obtain the semi-discrete system of 2N ordinary differential equations with respect to
the unknowns U(t) and V(t):

dUi(t)
dt

= Vx̂,i,
dVi(t)

dt
= (E – β1�̂h)–1(Ux̂,i – β2Ux̂x̂x̂,i +

(
f (U)

)
x̂,i

)
. (8)

Note that the new system (8) is also a generalized Hamiltonian system (or Poisson system)
with a separable Hamiltonian Hh(U, V) and a matrix Jh defined by

Hh(U, V) =
1
2

N∑
i=1

(
V 2

i + β1V 2
x̂,i + U2

i + β2U2
x̂,i + 2F(Ui)

)
, (9)
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Jh =

[
0 (E – β1�̂h)–1∂x̂

(E – β1�̂h)–1∂x̂ 0

]
.

Applying the staggered Störmer–Verlet method (equivalently the two-stage symplectic
Lobatto IIIA–IIIB method, as in [1] for the Boussinesq equation) to (8), we obtain the
following fully discrete system FDS-S:

⎧⎨
⎩(E – β1�̂h) V k+1/2

i –V k–1/2
i

τ
= Uk

x̂,i – β2Uk
x̂x̂x̂,i + f (Uk

i )x̂,i,
Uk+1

i –Uk
i

τ
= V k+1/2

x̂,i ,
(10)

where Uk
i and V k+1/2

i are approximations to Ui and Vi at time levels tk and tk + τ /2, re-
spectively.

We eliminate the function V from (10); applying the operator A = –�̂h we get the 3-time
level FDS that contains only the function Uk

i :

(E + β1A)Uk
t̄t,i + AUk

i + β2A2Uk
i + Af

(
Uk

i
)

= 0. (11)

3.3 Finite difference scheme FDS-M
For the derivation of the new scheme, we keep the linear terms in (10) intact and only
change the approximation to the nonlinear term f (u). We consider the following FDS-M:

⎧⎨
⎩

(E – β1�̂h) V k+1/2
i –V k–1/2

i
τ

= Uk
x̂,i – β2Uk

x̂x̂x̂,i + ( F(Uk
i+1)–F(Uk

i–1)
Uk

i+1–Uk
i–1

)x̂,i,
Uk+1

i –Uk
i

τ
= V k+1/2

x̂,i .
(12)

Eliminating the function V from (12), one can obtain the equivalent FDS for Uk
i

(E + β1A)Uk
t̄t,i + AUk

i + β2A2Uk
i + A

(
F(Uk

i+1) – F(Uk
i–1)

Uk
i+1 – Uk

i–1

)
i
= 0. (13)

3.4 Finite difference scheme FDS-E
For consistency of presentation we also formulate the following well studied scheme (see
e.g. [17, 19]):

⎧⎨
⎩

(E – β1�̂h) V k+1/2
i –V k–1/2

i
τ

= Uk
x̂,i – β2Uk

x̂x̂x̂,i + ( F(Uk+1
i )–F(Uk–1

i )
Uk+1

i –Uk–1
i

)x̂,i,
Uk+1

i –Uk
i

τ
= V k+1/2

x̂,i .
(14)

After eliminating the function V from (14) we get the equivalent 3-time level FDS for
function Uk

i

(E + β1A)Uk
t̄t,i + AUk

i + β2A2Uk
i + A

(
F(Uk+1

i ) – F(Uk–1
i )

Uk+1
i – Uk–1

i

)
i
= 0.

4 Analysis of finite difference schemes
4.1 Local approximation error, linear stability, implementation
By Taylor series expansion at the point (xi, tk) it is easy to conclude that both schemes FDS-
S (11) and FDS-M (13) approximate the DDE with O(h2 + τ 2) local error. So the schemes
are consistent with the DDE.
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The schemes FDS-S and FDS-M have the same linear part. Thus they have the same
linear stability requirement.

Theorem 2 The linearized scheme corresponding to (11) (equivalently to (13)) is stable
with respect to the initial data and the right-hand side if the steps τ and h satisfy the in-
equality

τ < h

√
4β1

(1 + ε)(β2 + h2)
(15)

for some positive number ε, independent of h, τ and U .

The proof of this theorem follows by stability theory for FDS from [24] since the operator
inequality E + β1A > 1+ε

4 (A + β2A2) holds whenever the requirement (15) is satisfied.
Both schemes use nine mesh points of the stencil, thus they are non-compact. The

schemes (10) and (12) are completely explicit, i.e. V k+1/2 and Uk+1 can be directly eval-
uated from the corresponding systems if data V k–1/2 and Uk on the previous time level are
known.

4.2 Symplecticness
The FDS (10) is symplectic by construction—the staggered Störmer–Verlet method
(equivalently the two-stage symplectic Lobatto IIIA-IIIB method) is applied to the sep-
arable Hamiltonian system (8); see e.g. [14]. Thus the following result holds.

Theorem 3 The scheme FDS-S (10) is symplectic, i.e. it conserves the discrete symplectic
structure ωk = dZkJhdZk–1, Zk = (Uk , V k– 1

2 ) at each time level: ωK = ωK–1 = · · · = ω1.

4.3 Conservation of mass
Let us define the discrete mass Ik

h (U),

Ik
h (U) :=

N∑
i=1

hUk
i . (16)

Note that the discrete mass (16) approximates the exact value of the mass (5) with O(h2)
local error.

Theorem 4 All three schemes FDS-S (10), FDS-M (12) and FDS-E (14) conserve the dis-
crete mass in time, i.e. the identity Ik

h (U) = I0
h(U) is true for all k = 1, 2, . . . K .

Proof Under the periodic conditions imposed on the discrete functions U , V and from the
second equation of the corresponding systems (10), (12), and (14), the following identity
holds:

1
τ

(
Ik+1

h (U) – Ik
h (U)

)
=

N∑
i=1

h
Uk+1

i – Uk
i

τ
=

N∑
i=1

hV k+1/2
x̂,i = 0.

Hence Ik+1
h (U) = Ik

h (U) = · · · = I0
h(U) and Theorem 4 is proved. �
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4.4 Conservation of the discrete momentum
Now we define the discrete momentum Mk

h as

Mk
h
(
Uk , V k–1/2) :=

N∑
i=1

h
(
Uk

i V k–1/2
i + β1Uk

x̂,iV
k–1/2
x̂,i

)
. (17)

Note that Mk
h(Uk , V k–1/2) approximates the exact momentum (6) with O(h2 + τ 2) local

error.

Theorem 5 (Momentum conservation law) The solution of the FDS-M (12) conserves the
discrete momentum in time, i.e.

Mk
h
(
Uk , V k–1/2) = M1

h
(
U1, V 1/2), k = 2, 3, . . . , K .

Proof We evaluate the difference R between momentum at time levels k + 1 and k and
obtain the equality

R =
1
τ

(
Mk+1

h
(
Uk+1, V k+1/2) – Mk

h
(
Uk , V k–1/2))

=
1
τ

N∑
i=1

h
(
Uk+1

i (E – β1�̂h)V k+1/2
i – Uk

i (E – β1�̂h)V k–1/2
i

)
.

After adding and subtracting the term Uk
i (I – β1�̂h)V k+1/2

i to the right-hand side of R we
get

R =
N∑

i=1

h
(
Uk

t,i(I – β1�̂h)V k+1/2
i + Uk

i (I – β1�̂h)V k–1/2
t,i

)

=
N∑

i=1

hV k+1/2
x̂,i (I – β1�̂h)V k+1/2

i

+
N∑

i=1

hUk
i

(
Uk

x̂,i – β2Uk
x̂x̂x̂,i +

(
F(Uk

i+1) – F(Uk
i–1)

Uk
i+1 – Uk

i–1

)
x̂,i

)

=
N∑

i=1

hV k+1/2
x̂,i V k+1/2

i + β1

N∑
i=1

hV k+1/2
x̂x̂,i V k+1/2

x̂,i +
N∑

i=1

hUk
i
(
Uk

x̂,i – β2Uk
x̂x̂x̂,i

)

+
N∑

i=1

hUk
i

(
F(Uk

i+1) – F(Uk
i–1)

Uk
i+1 – Uk

i–1

)
x̂,i

= 0.

All terms in the previous equality are equal to zero because of the periodicity of the dis-
crete functions. Additionally, the last term in the previous equality is zero because of the
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following transformations:

N∑
i=1

hUk
i

(
F(Uk

i+1) – F(Uk
i–1)

Uk
i+1 – Uk

i–1

)
x̂,i

= –
N∑

i=1

h
(
Uk

i
)

x̂,i

(
F(Uk

i+1) – F(Uk
i–1)

Uk
i+1 – Uk

i–1

)

= –
1
2

N∑
i=1

(
Uk

i+1 – Uk
i–1

)F(Uk
i+1) – F(Uk

i–1)
Uk

i+1 – Uk
i–1

= –
1
2

N∑
i=1

(
F
(
Uk

i+1
)

– F
(
Uk

i–1
))

= 0.

Thus Mk+1
h (Uk+1, V k+1/2) = Mk

h(Uk , V k–1/2) for every k = 1, 2, . . . , which completes the proof
of Theorem 5. �

The preservation of the discrete momentum Mk
h by the scheme FDS-S (10) is examined

in the next theorem.

Theorem 6 (Discrete identity for momentum) The solution of FDS-S (10) satisfies the
following discrete identities between every two consecutive time levels k + 1 and k:

Mk+1
h

(
Uk+1, V k+1/2) – Mk

h
(
Uk , V k–1/2) = –τ

N∑
i=1

hUk
x̂,if

(
Uk

i
)
, k = 1, 2, . . . , K – 1. (18)

Moreover,

∣∣MK
h
(
UK , V K–1/2) – M1

h
(
U1, V 1/2)∣∣ ≤ C1h2T . (19)

Proof We study the difference Mk+1
h (Uk+1, V k+1/2) – Mk

h(Uk , V k–1/2) on the solution of (10).
The treatment of all the terms but the nonlinear one is the same as in the proof of Theo-
rem 5. We have

Mk+1
h

(
Uk+1, V k+1/2) – Mk

h
(
Uk , V k–1/2) = –τ

N∑
i=1

hUk
x̂,if

(
Uk

i
)
, (20)

which proves (18).
We add the term τ

∑N
i=1 hUk

x̂,i(
F(Uk

i+1)–F(Uk
i–1)

Uk
i+1–Uk

i–1
) = 0 to the right-hand side of (20) and esti-

mate the expression Rk

Rk := Mk+1
h

(
Uk+1, V k+1/2) – Mk

h
(
Uk , V k–1/2)

= τ

N∑
i=1

hUk
x̂,i

(
F(Uk

i+1) – F(Uk
i–1)

Uk
i+1 – Uk

i–1
– f

(
Uk

i
))

. (21)

Using the definition of the nonlinearity functions f and F , we get

Sk
i :=

F(Uk
i+1) – F(Uk

i–1)
Uk

i+1 – Uk
i–1

– f
(
Uk

i
)

=
α

p + 1
((

Uk
i+1

)p +
(
Uk

i+1
)p–1Uk

i–1 + · · · +
(
Uk

i–1
)p – (p + 1)

(
Uk

i
)p). (22)
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Applying a Taylor series expansion about the point xi, we obtain the estimate

∣∣Sk
i
∣∣ ≤ h2 α

p + 1
C2,i, (23)

where the constant C2,i depends on the values of the function u and its first and sec-
ond derivatives, i.e. C2,i = C2,i(maxξ∈(xi–1,xi+1){|u(ξ , tk)|, | ∂u(ξ ,tk )

∂x |, | ∂2u(ξ ,tk )
∂x2 |}). We substitute

the estimate (23) into (21) to get

∣∣Rk∣∣ ≤ τh2 α

p + 1

N∑
i=1

h
∣∣Uk

x̂,i
∣∣C2,i ≤ τh2 2α

p + 1
C3. (24)

We add equalities (21) for k = 1, 2, . . . , K – 1, apply (24), and obtain

MK
h
(
UK , V K–1/2) – M1

h
(
U1, V 1/2) =

K–1∑
k=1

Rk ,

∣∣MK
h
(
UK , V K–1/2) – M1

h
(
U1, V 1/2)∣∣ ≤

K–1∑
k=1

∣∣Rk∣∣ ≤
K–1∑
k=1

τh2 2α

p + 1
C4,

≤ Kτh2 2α

p + 1
C4 ≤ h2TC1,

which completes the proof of the estimate (19) and of Theorem 6. �

In conclusion to this subsection, we see that the FDS-M (12) conserves the discrete mo-
mentum exactly in time, which fully corresponds to the conservation of the exact momen-
tum (6).

The scheme FDS-S (10) does not strictly conserve the discrete momentum Mk
h but it

preserves the discrete momentum approximately with O(h2) global error.

Remark 1 Following the lines of the proof of Theorem 6, we can prove that the solution
to the FDS-E conserves the discrete momentum approximately with O(h2) global error.

4.5 Conservation of the discrete Hamiltonian (energy)
Following the results from [17, 19] we define the linear part of the discrete Hamiltonian
Hk

h,L as

Hk
h,L

(
Uk , V k+1/2) :=

1
2
∥∥V k+1/2∥∥2 +

(
β1

2
–

τ 2

8

)∥∥V k+1/2
x̂

∥∥2 –
β2τ

2

8
∥∥V k+1/2

x̂x̂

∥∥2

+
1
8
∥∥Uk+1 + Uk∥∥2 +

β2

8
∥∥Uk+1

x̂ + Uk
x̂
∥∥2. (25)

By incorporating the nonlinearity we consider the full discrete Hamiltonian

Hk
h
(
Uk , V k+1/2) := Hk

h,L
(
Uk , V k+1/2) +

1
2
〈
F
(
Uk+1) + F

(
Uk), 1

〉
. (26)

Note that the discrete Hamiltonian Hk
h approximates the exact Hamiltonian H(U , V ) given

in (3) with O(h2 + τ 2) local error.
For completeness of the presentation we state the following theorem (see [17, 19]).
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Theorem 7 (Conservation of the discrete Hamiltonian) The solution to the FDS-E (14)
conserves the full discrete energy Hk

h in time, i.e.

Hk
h
(
Uk , V k+1/2) = H0

h
(
U0, V 1/2), k = 1, 2, . . . , K . (27)

In the next theorem we study the preservation of the discrete Hamiltonian (26) over the
solutions of FDS-S and FDS-M.

Theorem 8
(i) The solution to the FDS-S (10) satisfies the following identities at each time level

k = 1, 2, . . . , K :

Hk
h,L

(
Uk , V k+1/2) = Hk–1

h,L
(
Uk–1, V k–1/2) + 0.5

〈
f
(
Uk), Uk+1 – Uk–1〉. (28)

Moreover, it conserves approximately with O(τ 2) global error the discrete
Hamiltonian H0

h(U0, V 1/2), i.e.

∣∣HK
h
(
UK , V K+1/2) – H0

h
(
U0, V 1/2)∣∣ ≤ τ 2TC5.

(ii) The solution to the FDS-M (12) satisfies the following identities at each time level
k = 1, 2, . . . , K :

Hk
h,L

(
Uk , V k+1/2) = Hk–1

h,L
(
Uk–1, V k–1/2)

+
N∑

i=1

h
F(Uk

i+1) – F(Uk
i–1)

Uk
i+1 – Uk

i–1

(
Uk+1

i – Uk–1
i

)
.

Moreover, it preserves approximately with O(h2 + τ 2) global error the discrete
Hamiltonian H0

h(U0, V 1/2), i.e.

∣∣HK
h
(
UK , V K+1/2) – H0

h
(
U0, V 1/2)∣∣ ≤ (

h2 + τ 2)TC6.

Proof Applying A–1 to (11) we get

A–1(E + β1A)Uk
t̄t + (E + β2A)Uk + f

(
Uk) = 0.

We multiply the last equality by Uk+1
i –Uk–1

i
2 =

τ (Uk
t,i+Uk

t̄,i)
2 , substitute the following expressions:

Ut̄t =
Ut – Ut̄

τ
, Uk =

Uk+1 + Uk–1

2
–

τ

2
(
Uk

t – Uk
t̄
)

and sum these equalities for i = 1 to i = N . We obtain

1
2

〈(
A–1 + β1E –

τ 2

4
E –

β2τ
2A

4

)
Uk

t , Uk
t

〉
+

1
8
∥∥Uk+1 + Uk∥∥2

+
β2

8
〈
A

(
Uk+1 + Uk), Uk+1 + Uk 〉
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–
1
2

〈(
A–1 + β1E –

τ 2

4
E –

β2τ
2A

4

)
Uk–1

t , Uk–1
t

〉
–

1
8
∥∥Uk + Uk–1∥∥2

–
β2

8
〈
A

(
Uk + Uk–1), Uk + Uk–1〉 +

1
2
〈
f
(
Uk), Uk+1 – Uk–1〉 = 0.

Using definition (25) and the relations (A–1Ut , Ut) = (V k+1/2, V k+1/2), Uk
t = V k+1/2

x̂ , we get
the identity (28).

In view of the equalities (27) and (28), one has to estimate from above the expression Rk

Rk := Hk
h
(
Uk , V k+1/2) – Hk–1

h
(
Uk–1, V k–1/2)

=
1
2
〈
f
(
Uk), Uk+1 – Uk–1〉 –

1
2
〈
F
(
Uk+1) – F

(
Uk–1), 1

〉
. (29)

We reorganize Rk using the definitions of functions f and F to get

Rk =
1
2

α

p + 1
〈
Uk+1 – Uk–1,

(p + 1)
(
Uk)p –

(
Uk+1)p –

(
Uk+1)p–1Uk–1 – · · · –

(
Uk–1)p〉.

The right-hand side term in the previous equality is very similar to the term Sk
i in (22),

which was studied thoroughly in the proof of Theorem 6. Therefore we get the similar to
(23) estimate

∣∣Rk∣∣ ≤ 1
2

α

p + 1
τ 2〈∣∣Uk+1 – Uk–1∣∣, 1

〉 ≤ τ 3(∥∥Uk
t
∥∥

L1,h
+

∥∥Uk
t̄

∥∥
L1,h

)
C7 < C8τ

3, (30)

i.e. the error Hk
h (Uk , V k+1/2) – Hk–1

h (Uk–1, V k–1/2) between two consecutive values of the
Hamiltonian is estimated from above by O(τ 3).

We proceed as in the proof of Theorem 6, i.e. we sum the equalities (29) for k = 1 to K
to obtain the difference between the Hamiltonian at the last time K and the Hamiltonian
at the initial moment HK

h (UK , V K+1/2) – H0
h(U0, V 1/2). Summing the errors between two

consecutive levels obtained in (30), we get the overall error of order O(Kτ 3) = O(Tτ 2) and
complete the proof of statement (i).

The proof of statement (ii) goes the same way as the proof of Theorem 8(i) and therefore
we omit it. �

We conclude that schemes FDS-S and FDS-M both conserve the discrete Hamiltonian
approximately with O(h2 + τ 2) global error.

5 Numerical results and discussion
In this section we present numerical results about the properties of the schemes FDS-S
and FDS-M. Nested grids are used to estimate the accuracy and the convergence of the
numerical solution to the exact one, as well as the behavior of the discrete momentum
and the discrete energy. We analyze numerically the preservation of the discrete energy,
computed by Eq. (26), and the discrete momentum, evaluated by (17).

In all computations the discrete mass (16) is preserved with O(10–14) error. Therefore
the results about the mass conservation are not included in the tables.

All numerical results are obtained in the case of quadratic nonlinearity (f (u) = αu2). The
proposed schemes are tested on two problems typical for the DDE:
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Problem 1 (Propagation of a solitary wave) Let the parameters of the problem (4) be α = 3,
β1 = 1.5, β2 = 0.5, c = 2, and the initial conditions be

u(x, 0) = ϕ(x, 0; c), v
(

x,
τ

2

)
= –cϕ

(
x,

τ

2
; c

)
.

Here ϕ(x, t; c) is the exact solitary wave solution given by (7). The propagation of the nu-
merical solution in time (obtained by FDS-S) is plotted on Fig. 1.

Table 1 and Table 2 show the numerical results for the scheme FDS-S and for the scheme
FDS-M, respectively. The numerical parameters of the FDS are x ∈ [–80, 80], T = 20,
t ∈ [0, T]. The maximal differences ψh between the exact solution (7) and the numeri-
cal solutions are given in the column Error ψh. The order of convergence is calculated by
κ = log2( ψh

ψh/2
).

In the columns Energy the discrete energy at the final time HK
h and the absolute value of

the difference between the initial energy H0
h and the final energy HK

h , |H0
h – HK

h | are given.

Figure 1 The propagation of one solitary wave

Table 1 Error, energy and momentum for Problem 1 using FDS-S

h = τ Error Energy Momentum

ψh κ HK
h |H0

h – H
K
h | MK

h |M0
h –M

K
h|

0.1 3.5 ∗ 10–3 32.92502487 4.9 ∗ 10–5 –18.88936152 1.9 ∗ 10–5

0.05 8.6 ∗ 10–4 2.00 32.93570500 3.1 ∗ 10–6 –18.90247949 1.2 ∗ 10–6

0.025 2.1 ∗ 10–4 2.00 32.93838765 1.9 ∗ 10–7 –18.90575959 7.5 ∗ 10–8

0.0125 5.4 ∗ 10–5 2.00 32.93905910 1.1 ∗ 10–8 –18.90657966 4.3 ∗ 10–9

0.00625 1.3 ∗ 10–5 2.00 32.93922701 8.1 ∗ 10–11 –18.90678468 1.2 ∗ 10–10

Table 2 Error, energy and momentum for Problem 1 using FDS-M

h = τ Error Energy Momentum

ψh κ HK
h |H0

h – H
K
h | MK

h |M0
h –M

K
h|

0.1 8.0 ∗ 10–3 32.92488059 5.4 ∗ 10–5 –18.88938087 4.3 ∗ 10–10

0.05 2.0 ∗ 10–3 2.00 32.93569601 3.4 ∗ 10–6 –18.90248070 4.2 ∗ 10–10

0.025 5.0 ∗ 10–4 2.00 32.93838709 2.2 ∗ 10–7 –18.90575967 4.3 ∗ 10–10

0.0125 1.3 ∗ 10–4 2.00 32.93905907 1.4 ∗ 10–8 –18.90657966 4.4 ∗ 10–10

0.00625 3.1 ∗ 10–5 2.00 32.93922701 1.8 ∗ 10–9 –18.90678468 4.9 ∗ 10–10
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Similarly we give the discrete momentum at the final time MK
h and the error between

the values of the momentum at the initial and the final time, |M0
h – MK

h |, in the last two
columns.

The numerical results show that the computed solution is very close to the exact one
with a maximal error ψh of order 10–5 for the smallest steps h = τ = 0.00625. The presented
experiments show second order of convergence for both schemes.

Problem 2 (Interaction of two solitary waves) In this example we simulate interaction of
two solitary waves running in opposite directions with different velocities, c1 = 1.1 and
c2 = –1.3. The initial data of problem (4) are

u(x, 0) = ϕ(x + 30, 0; c1) + ϕ(x – 40, 0; c2),

v
(

x,
τ

2

)
= –c1ϕ

(
x + 30,

τ

2
; c1

)
– c2ϕ

(
x – 40,

τ

2
; c2

)
,

and α = 3, β1 = 1.5, β2 = 0.5. The snapshots of the numerical solution (obtained by FDS-M)
at different evolution times are plotted on Fig. 2.

Table 3 and Table 4 show the numerical results for the scheme FDS-S and for the scheme
FDS-M, for x ∈ [–160, 160] and T = 80. There is no exact solution to Problem 2, there-
fore the error ψh and the order of convergence κ are evaluated by the following expres-

Figure 2 The interaction of two solitary waves

Table 3 Error, energy and momentum for Problem 2 using FDS-S

h = τ Error Energy Momentum

ψh κ HK
h |H0

h – H
K
h | MK

h |M0
h –M

K
h|

0.4 1.02626203 3.6 ∗ 10–6 0.69289524 2.9 ∗ 10–5

0.2 1.02895892 4.0 ∗ 10–7 0.69512790 1.4 ∗ 10–6

0.1 1.1 ∗ 10–2 2.00 1.02964231 7.5 ∗ 10–8 0.69569642 1.4 ∗ 10–8

0.05 2.6 ∗ 10–3 2.00 1.02981375 1.7 ∗ 10–8 0.69583920 2.7 ∗ 10–8

0.025 6.6 ∗ 10–4 2.00 1.02985665 4.2 ∗ 10–9 0.69587494 8.1 ∗ 10–9

0.0125 1.6 ∗ 10–4 2.00 1.02986738 1.0 ∗ 10–9 0.69588387 2.1 ∗ 10–9

0.00625 4.1 ∗ 10–5 2.00 1.02987006 3.1 ∗ 10–10 0.69588611 4.9 ∗ 10–10
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Table 4 Error, energy and momentum for Problem 2 using FDS-M

h = τ Error Energy Momentum

ψh κ HK
h |H0

h – H
K
h | MK

h |M0
h –M

K
h|

0.4 1.02593880 1.7 ∗ 10–4 0.69286589 2.8 ∗ 10–13

0.2 1.02893447 1.4 ∗ 10–5 0.69512648 2.9 ∗ 10–13

0.1 4.0 ∗ 10–2 1.92 1.02964003 1.6 ∗ 10–6 0.69569643 2.9 ∗ 10–13

0.05 1.1 ∗ 10–2 1.98 1.02981343 2.7 ∗ 10–7 0.69583923 3.8 ∗ 10–13

0.025 2.7 ∗ 10–3 1.99 1.02985658 6.0 ∗ 10–8 0.69587494 2.1 ∗ 10–12

0.0125 6.7 ∗ 10–4 2.00 1.02986736 1.4 ∗ 10–8 0.69588388 7.5 ∗ 10–12

0.00625 1.7 ∗ 10–4 2.00 1.02987005 3.5 ∗ 10–9 0.69588611 3.7 ∗ 10–11

sions:

ψh/4 =
(‖U[h] – U[h/2]‖)2

‖U[h] – U[h/2]‖ – ‖U[h/2] – U[h/4]‖ , κ = log2

( ‖U[h] – U[h/2]‖
‖U[h/2] – U[h/4]‖

)
.

The remaining quantities in Table 3 and Table 4 are the same as in Table 1 and Ta-
ble 2.

The results about the error and the order of convergence are similar to those in Prob-
lem 1. The maximal error ψh is of order 10–5 for FDS-S and 10–4 for FDS-M with steps
h = τ = 0.00625. The energy is preserved approximately up to 10–10 for FDS-S and up to
10–9 for FDS-M.

The calculations given in Table 1 through Table 4 demonstrate the second rate of con-
vergence O(h2 + τ 2) of the discrete solution obtained by FDS-S or by FDS-M to the exact
solution.

The scheme FDS-M conserves the discrete momentum with O(10–10) accuracy for so-
lution of Problem 1 and up to O(10–13) for the solution of Problem 2.

The discrete energy is preserved with error O(10–8) for Problem 1 at final time T = 20
and with error O(10–10) for Problem 2 at final time T = 80.

Moreover, the analysis of the errors |M0
h – MK

h | and |H0
h – HK

h | on nested meshes shows
that these errors decrease four times between meshes with step h = τ and h

2 = τ
2 . Thus

the results in Theorem 6 and Theorem 8 for approximate conservation of the discrete
momentum and the discrete energy with O(h2 + τ 2) global error are confirmed numeri-
cally.

Remark 2 As a first step in the construction of our symplectic FDS-S we approximate the
continuous Hamiltonian system (4) by the semi-discrete in space Hamiltonian system (8).
The discrete mass

Ĩ t
h(U) =

N∑
i=1

hUi(t)

and the semi-discrete Hamiltonian (9) are invariants of (8). It is well-known, that linear
first integrals and some quadratic first integrals of a special form are exactly preserved
by the Störmer–Verlet method (see e.g. [13, Theorems 3.3 and 3.5]), while, in general,
quadratic first integrals are not exactly preserved by the same method (see [13, Exam-
ple 3.4]).
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In our case the discrete mass is a linear first integral and, hence, it is exactly preserved
(see Theorem 4). The semi-discrete Hamiltonian (9) is not a quadratic invariant of the
mentioned above special form; moreover, it is nonlinear w.r.t. Ui due to the nonlinearity
F(Ui). Thus, one should not expect the exact preservation of the Hamiltonian (9). How-
ever, we prove in Theorem 8 that it is approximately preserved with a O(τ 2) global error.

A natural approximation to the continuous momentum (6) on the semi-discrete level is

M̃h(U, V)(t) =
N∑

i=1

h
{

Ui(t)Vi(t) + β1Ux̂,i(t)Vx̂,i(t)
}

. (31)

Direct calculations show that M̃h is not an invariant of the system (8) due to the necessity
to approximate the nonlinear term ∂xf (u) in (4). Hence, we do not expect that the semi-
discrete momentum (31) will be exactly preserved after applying a symplectic integration
method to (8). However, we prove in Theorem 6 that the solution to the symplectic scheme
FDS-S approximately preserves the discrete momentum (17) with O(h2) global error.

6 Conclusion
Two new finite difference schemes for double dispersion equations are introduced and
studied. The schemes give second order of approximation to the exact solution at the final
time T . The linear stability requirement is not restrictive—it is τ = O(h) (see (15)). The
algorithm for evaluation of the numerical solution is explicit.

The scheme FDS-S preserves exactly the symplectic structure of the discrete solution
and the discrete mass and conserves approximately with O(h2 + τ 2) global error the dis-
crete momentum and the discrete energy. The scheme FDS-M preserves exactly the dis-
crete momentum and the discrete mass and approximately with O(h2 + τ 2) global error
the discrete energy.

Note that the discrete mass is preserved exactly by both FDS. Moreover, the schemes
show good long time behavior.

The two new schemes are also compared to the early studied scheme FDS-E, which
preserves exactly the discrete energy and the discrete mass.

This way we are given a variety of FDS, such that each one of them preserves two of the
discrete invariants exactly and approximately with global error O(h2 + τ 2) the remaining
invariants.
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