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Abstract
Ultrashort pulse propagation in optical transmission lines and phenomena in particle
physics can be investigated via the cubic–quintic Ginzburg–Landau equation and the
Phi-4 equation, respectively. The main objective of this paper is to construct exact
traveling wave solutions of the (2 + 1)-dimensional cubic–quintic Ginzburg–Landau
equation and the Phi-4 equation of space-time fractional orders in the sense of the
conformable fractional derivative. The method employed to solve the
Ginzburg–Landau equation and the Phi-4 equation are the modified Kudryashov
method and the (G′/G, 1/G)-expansion method, respectively. Several types of exact
analytical solutions are obtained including reciprocal of exponential function
solutions, hyperbolic function solutions, trigonometric function solutions and rational
function solutions. Graphical representations and physical explanations of some of
the obtained solutions are demonstrated using a range of fractional orders. All of the
solutions have been verified by substitution into their corresponding equations with
the aid of a symbolic software package. These methods are simple and efficient for
solving the proposed equations.

Keywords: Conformable fractional derivative; Nonlinear space-time fractional
complex Ginzburg–Landau equation; Nonlinear space-time fractional Phi-4 equation;
Modified Kudryashov method; (G′/G, 1/G)-expansion method

1 Introduction
The investigation of exact solutions of nonlinear partial differential equations (NPDEs)
plays an important role in study of physical phenomena in various scientific and engi-
neering fields, such as biology, chemical kinetics, optical fiber, plasma physics and oceanic
phenomena. Obtaining analytical and exact solutions of NPDEs for the above fields is
important in analyzing the behaviors of the considered problems. Examples of recent
developments in finding analytical and exact solutions for NPDEs are as follows. Guo
and Lin used the ansatz method (e.g., a quadratic function or a linear combination of a
quadratic and an exponential function) to obtain exact solutions of the (2+1)-dimensional
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Date–Jimbo–Kashiwara–Miwa (DJKM) equation [1]. Wazwaz and Kaur obtained optical
solitons and singular soliton solutions of the self-focusing nonlinear Schrödinger (NLS)
equation using the variational iteration method (VIM) [2]. Naghshband et al. analytically
solved the generalized quintic complex Ginzburg–Landau equation using the homotopy
analysis method (HAM) [3]. Seadawy employed the reductive perturbation method to
construct solitary traveling wave solutions of the two-dimensional nonlinear Kadomtsev–
Petviashvili (KP) dynamic equation in dust-acoustic plasmas [4] and the nonlinear three-
dimensional modified Zakharov–Kuznetsov (mZK) equation [5]. Mahmood and Yousif
found novel analytical solutions for the modified Kawahara equation using the residual
power series method [6]. Seadawy applied the auxiliary equation of the direct algebraic
method to construct traveling wave solutions of the higher-order nonlinear Schrödinger
equation [7]. In addition, the well-known efficient methods for constructing exact so-
lutions of NPDEs, which have been utilized in this research field, are the Exp-function
method [8], the (G′/G)-expansion method [9], the first integral method [10], and the func-
tion transformation method [11].

In recent years, fractional-order differential equations (FDEs) associated with fractional
derivatives such as the Riemann–Liouville derivative [12], the Caputo derivative [12],
the Caputo–Fabrizio derivative [13] and Jumarie’s modified Riemann–Liouville derivative
[14] have been applied to numerous research areas such as applied mathematics, engineer-
ing, physics and finance. This is because the behavior of many systems shows after effects
or memory which can be better explained using fractional-order derivatives. Thus, FDEs
are expansively used to model various complex phenomena. Many effective methods used
to solve nonlinear differential equations of integer order are generalized to solve FDEs an-
alytically and numerically such as the ADM [15], the VIM [16], the finite element method
[17], and the predictor-corrector scheme or PECE (predictor, evaluate, corrector and eval-
uate) method [18]. In particular, the (G′/G, 1/G)-expansion method [19–22], the modified
Kudryashov method [23–26], the improved extended tanh–coth method [27] are used to
get exact solutions of nonlinear fractional partial differential equations (NFPDEs).

In this paper, we are interested in using the modified Kudryashov method and the
(G′/G, 1/G)-expansion method to solve two partial differential equations arising in physics
and engineering problems. Here a review of the modified Kudryashov method is briefly
given as follows. Ege and Misirli [23] used the method to solve the space-time fractional
modified Benjamin–Bona–Mahony and potential Kadomtsev–Petviashvili equations. Za-
yed and Alurrfi [24] applied the modified Kudryashov method to seventh-order nonlin-
ear partial differential equations including the Sawada–Kotera–Ito equation, the Kaup–
Kupershmidt equation and the Lax equation. Hosseini et al. [25] employed the method to
solve the conformable time-fractional Klein–Gordon equations with quadratic and cubic
nonlinear terms. The fractional generalized reaction Duffing model equation, the frac-
tional biological population model and the fractional diffusion reaction equation were
solved via the modified Kudryashov method [26]. For the (G′/G, 1/G)-expansion method,
Muhammad and Syed [19] applied the method to obtain exact solutions of the positive
Gardner-KP equation. Demiray et al. [20] used the (G′/G, 1/G)-expansion method to solve
the new Hamiltonian amplitude equation and the Broer–Kaup equation. Zayed and Alur-
rfi [21] employed this method to solve two nonlinear Schrödinger equations. The method
was used to find exact solutions of the (3 + 1)-dimensional space-time fractional Jimbo–
Miwa equation by Sirisubtawee et al. [22].
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We will apply the two methods mentioned above to construct exact solutions for the
following two conformable space-time fractional order partial differential equations. The
first one is the fractional (2 + 1)-dimensional cubic–quintic Ginzburg–Landau equation
which will be solved using the modified Kudryashov method. The second problem is the
nonlinear fractional Phi-4 equation for which the (G′/G, 1/G)-expansion method will be
used. Some recent work utilizing the conformable fractional derivative in real world prob-
lems such the Burgers–KdV equation, the KdV–Zakharov–Kuznetsev equation, the un-
stable Schrödinger equation, and the resonant nonlinear Schrödinger equation have been
studied in [28–30]. In addition, exact solutions to equations associated with the above two
problems have been found using many methods. Some examples are as follows. For the
(2 + 1)-dimensional nonlinear cubic–quintic Ginzburg–Landau equation, Shi et al. [31]
used a novel identical rewriting of the differential equation method and the Exp-function
method to construct solitary solutions and periodic solutions of the equation. Zayed and
Alurrfi [21] obtained traveling wave solutions using the (G′/G, 1/G)-expansion method.
The new extended auxiliary equation method was applied to construct many new types
of Jacobi elliptic function solutions for the equation by Zayed and Alurrfi [32]. The new
mapping method was employed for finding many other new exact solutions of the equa-
tion by Zayed and Al-Nowehy [33] and they concluded that this method and the extended
auxiliary equation method are efficient techniques for finding exact solutions of NPDEs
in mathematical physics. For the Phi-4 equation, Akter and Akbar [34] implemented the
modified simple equation (MSE) method to find a solitary wave solution of the equa-
tion. Tariq and Akram [35] utilized the tanh method along with the fractional complex
transform to solve the time fractional Phi-4 equation. Khan et al. [36] applied the (G′/G)-
expansion method to attain new solitary wave solutions of the space-time fractional Phi-4
equation in the sense of the modified Riemann–Liouville fractional operator. Akram [37]
used the modified Kudryashov method and the exp(–Φ(ξ )) method to extract the exact
solutions of the nonlinear fractional Phi-4 equation in the sense of the conformable time-
fractional derivative.

Here the space-time fractional (2 + 1)-dimensional cubic–quintic Ginzburg–Landau
equation and nonlinear fractional Phi-4 equation in the sense of the conformable frac-
tional derivative, for which we wish to obtain exact solutions, are as follows.

1. The space-time fractional (2 + 1)-dimensional cubic–quintic Ginzburg–Landau
equation [33] is written as

iDδ
zu +

1
2

D2β
x u +

1
2

(β1 – i)D2α
τ u + iu + (1 – ir1)u|u|2 + ir2u|u|4 = 0,

0 < δ,β ,α ≤ 1, (1)

where Dη
s u is the conformable fractional derivative of u with respect to s of order η.

The equation describes the propagation of optical pulses in optic fibers in which the
complex function u = u(x, z, τ ) is a slowly varying envelop of the electric field, the
parameters β1 < 0, r1 and r2 are real constant, and the variables z and x are the
propagation and transverse coordinates, respectively. The variable τ = t – z

V0
is the

so-called reduced time, where t is the physical time, and V0 is the group velocity of
the carrier wave.
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2. The conformable space-time fractional Phi-4 equation is expressed as [36]

D2α
t u – D2β

x u + m2u + nu3 = 0, 0 < α,β ≤ 1, (2)

where Dη
s u denotes the conformable fractional derivative of u with respect to s of

order η and m, n are real constants. The equation has played an important role in
particle and nuclear physics.

The rest of this paper is organized as follows. In Sect. 2, the definition of the conformable
fractional derivative and some of its important properties are given. In Sect. 3, we pro-
vide the main steps of the modified Kudryashov method and the (G′/G, 1/G)-expansion
method. The applications of the two methods to the mentioned fractional-order problems
are presented in Sect. 4. In Sect. 5, graphs and physical explanations of some selected exact
solutions of the two equations are described. Some conclusions and discussions are given
in Sect. 6.

2 The conformable fractional derivative and its properties
In this section, the definition of the conformable fractional derivative and its vital proper-
ties are given as follows.

Definition 1 Given a function f : [0,∞) →R. Then the conformable fractional derivative
of f of order α is defined by [26, 38]

Dα
t f (t) = lim

ε→0

f (t + εt1–α) – f (t)
ε

, for all t > 0, 0 < α ≤ 1. (3)

If the limit in Eq. (3) exists, then we say that f is α-conformable differentiable at a point
t > 0.

Theorem 1 Let α ∈ (0, 1], and f (t), g(t) be α-conformable differentiable at a point t > 0,
then

Dα
t (λ) = 0, where λ = constant,

Dα
t
(
tμ

)
= μtμ–α , for all μ ∈R,

Dα
t
(
af (t) + bg(t)

)
= aDα

t f (t) + bDα
t g(t), for all a, b ∈R,

Dα
t
(
f (t)g(t)

)
= f (t)Dα

t g(t) + g(t)Dα
t f (t),

Dα
t

(
f (t)
g(t)

)
=

g(t)Dα
t f (t) – f (t)Dα

t g(t)
g(t)2 .

Remark 1 Conformable fractional derivatives of some important functions are as follows
[38].

(1) Dα
t (ect) = ct1–αect , c ∈R.

(2) Dα
t (sin bt) = bt1–α cos bt, b ∈R.

(3) Dα
t (cos bt) = –bt1–α sin bt, b ∈R.

(4) Dα
t ( 1

α
tα) = 1.

(5) Dα
t (f (t)) = t1–α df (t)

dt , provided that f (t) is differentiable.
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Theorem 2 Let f : (0,∞) → R be a function such that f is differentiable and α-
conformable differentiable. Also, let g be a differentiable function defined in the range of f .
Then

Dα
t (f ◦ g)(t) = t1–αf ′(g(t)

)
g ′(t),

where the prime notation (′) denotes the classical derivative.

3 Methods
Consider a nonlinear fractional evolution partial differential equation in three indepen-
dent variables t, x, and y as follows:

F
(
u, Dα

t u, Dβ
x u, Dγ

y u, D2α
t u, Dα

t Dβ
x u, Dα

t Dγ
y u, . . .

)
= 0, 0 < α,β ,γ ≤ 1, (4)

where Dα
t u, Dβ

x u, and Dγ
y u are the conformable derivatives of a dependent variable u with

respect to independent variables t, x, and y. F is a polynomial of the unknown function
u = u(x, y, t) and its various partial derivatives in which the highest-order derivatives and
nonlinear terms are associated. Using the following traveling wave transformation:

u(x, y, t) = u(ξ ), ξ =
kxβ

β
+

lyγ

γ
+

ctα

α
, (5)

where k, l, and c are constants to be determined later, Eq. (4) is reduced to an ODE in
u = u(ξ ),

P
(
u, u′, u′′, . . .

)
= 0, (6)

where P is a polynomial of u(ξ ) and its various derivatives and the prime notation (′) de-
notes the derivative with respect to ξ .

3.1 The modified Kudryashov method
The main steps of the modified Kudryashov method are as follows [23–26].

Step 1. We assume that the exact solutions of Eq. (6) can be expressed in the following
form:

u(ξ ) =
N∑

i=0

aiQ(ξ )i, (7)

where the coefficients ai (i = 0, 1, . . . , N – 1) and aN �= 0 are constants to be determined
later and the function Q is of the form

Q(ξ ) =
1

1 + daξ
, where d is an arbitrary constant. (8)

Q(ξ ) satisfies the following differential equation:

Q′(ξ ) =
[
Q2(ξ ) – Q(ξ )

]
ln a, (9)
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where a > 0, a �= 1. If a = e, then the method reduces to the Kudryashov method which has
been proposed by many authors [39–41].

Step 2. The value of the positive integer N in Eq. (7) can be computed by balancing the
highest-order nonlinear term with the highest-order derivative in u(ξ ) occurring in Eq. (6).
If the degree of u(ξ ) is Deg[u(ξ )] = N , then the degree of the other terms can be expressed
as

Deg

[
dqu(ξ )

dξ q

]
= N + q, Deg

[
(
u(ξ )

)p
(

dqu(ξ )
dξ q

)s]
= Np + s(N + q). (10)

Remark 2 In some nonlinear equations, if the balance number N is not a positive inte-
ger (e.g., a fraction or a negative integer), then a special transformation is required. The
approaches to setting such a transformation can be found in [21, 42].

Step 3. We substitute the result of Eq. (7) into Eq. (6) with the aid of Eq. (9), then we obtain
polynomials in Q(ξ ). Collecting all coefficients of like power (i.e., Q(ξ )i, i = 0, 1, 2, . . . , M,
where M is some positive integer) of the resulting polynomials and setting them to zero,
we obtain a system of algebraic equations which can be solved using a symbolic software
package to get the unknowns ai (i = 0, 1, . . . , N ), k, l, and c.

Step 4. We substitute the obtained unknown values from Step. 3 together with the func-
tion Q(ξ ) in Eq. (8) into Eq. (7) to get the exact solutions of Eq. (4) with ξ in Eq. (5).

3.2 The (G′/G, 1/G)-expansion method
Before we give the main steps of the (G′/G, 1/G)-expansion method, it is necessary to in-
troduce the following concept [19–22]. Consider the following second-order linear ODE:

G′′(ξ ) + λG(ξ ) = μ, (11)

where the prime notation (′) denotes the derivative with respect to ξ and where λ, μ are
constants. We then set the functions φ and ψ as follows:

φ(ξ ) =
G′(ξ )
G(ξ )

, ψ(ξ ) =
1

G(ξ )
. (12)

Equations (11) and (12) can be converted into the following system of two nonlinear or-
dinary differential equations:

φ′ = –φ2 + μψ – λ, ψ ′ = –φψ . (13)

The solutions of Eq. (11) can be categorized into the following three cases.
Case 1: If λ < 0, then the general solution of (11) is of the form

G(ξ ) = A1 sinh(ξ
√

–λ) + A2 cosh(ξ
√

–λ) +
μ

λ
, (14)

and we have

ψ2 =
–λ

λ2σ1 + μ2

(
φ2 – 2μψ + λ

)
, (15)

where A1 and A2 are arbitrary constants and σ1 = A2
1 – A2

2.
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Case 2: If λ > 0, then the general solution of (11) can be given as

G(ξ ) = A1 sin(ξ
√

λ) + A2 cos(ξ
√

λ) +
μ

λ
, (16)

and we have the following associated relation:

ψ2 =
λ

λ2σ2 – μ2

(
φ2 – 2μψ + λ

)
, (17)

where A1 and A2 are arbitrary constants and σ2 = A2
1 + A2

2.
Case 3: If λ = 0, then the general solution of (11) can be written as

G(ξ ) =
μ

2
ξ 2 + A1ξ + A2, (18)

and the corresponding relation is

ψ2 =
1

A2
1 – 2μA2

(
φ2 – 2μψ

)
, (19)

where A1 and A2 are arbitrary constants.
The main steps of the (G′/G, 1/G)-expansion method [19–22] are as follows.
Step 1. Suppose that the solution to Eq. (6) can be expressed in terms of a polynomial of

the two variables φ and ψ as

u(ξ ) = a0 +
N∑

j=1

ajφ
j +

N∑

j=1

bjφ
j–1ψ , (20)

where a0, aj, and bj (j = 1, 2, . . . , N ) are constants to be determined later with a2
N + b2

N �= 0
and where the functions φ = φ(ξ ) and ψ = ψ(ξ ) are implicitly related to Eq. (11) via the
relations in Eq. (12).

Step 2. We find the value of the positive integer N which can be computed by balancing
the highest-order derivative and the nonlinear terms in Eq. (6). Suppose that the degree
of u(ξ ) is Deg[u(ξ )] = N , then the degree of other terms will be given by Eq. (10).

Step 3. Substituting the result from Eq. (20) into Eq. (6) with the aid of Eq. (13) and
Eq. (15), the function P in Eq. (6) can be converted into a polynomial in φ and ψ , in which
the degree of ψ will be one. Equating each coefficient of the resulting polynomial to zero,
we obtain a system of algebraic equations, which can be solved using a symbolic com-
putational package, for the unknowns a0, aj, bj (j = 1, 2, . . . , N ), k, l, c, μ, λ (< 0), A1, and
A2. Hence, the exact solutions of Eq. (4) generated by this step with the transformation in
Eq. (5) are obtained in terms of hyperbolic functions.

Step 4. In the same manner as Step 3, substituting the result from Eq. (20) into Eq. (6)
with the aid of Eq. (13) and Eq. (17) for λ > 0, we can obtain the exact solutions of Eq. (4) by
using the transformation in Eq. (5). The obtained exact solutions in this step are in terms
of trigonometric functions.

Step 5. Similar to Step 3, substituting the result from Eq. (20) into Eq. (6) with the aid of
Eq. (13) and Eq. (19) for λ = 0, we can get the traveling wave solutions of Eq. (4) with the
aid of the transformation in Eq. (5). The resulting exact solutions in this step are obtained
in terms of rational functions.
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4 Exact solutions to NFPDEs
In this section, we will apply the modified Kudryashov method to find the exact traveling
wave solutions of the space-time fractional (2 + 1)-dimensional cubic–quintic Ginzburg–
Landau equation as given by Eq. (1) and use the (G′/G, 1/G)-expansion method to obtain
exact solutions of the conformable space-time fractional Phi-4 equation as given by Eq. (2).

4.1 Obtaining exact solutions of Eq. (1) using the modified Kudryashov method
In order to solve Eq. (1), we assume that the exact solution has the following form:

u(x, z, τ ) = w(x, τ )ei[ kzδ
δ

+ϕ(x,τ )], (21)

where w(x, τ ) and ϕ(x, τ ) are real-valued functions of x and τ . The parameter k is a real
constant and the parameter δ is as defined in Eq. (1). Substituting Eq. (21) into Eq. (1)
and then separating the real and imaginary parts of the resulting equation, we obtain the
following equations:

Re : –kw –
w(Dβ

x ϕ)2

2
+

D2β
x w
2

–
β1w(Dα

τ ϕ)2

2
+

β1D2α
τ w

2
+

wD2α
τ ϕ

2

+ Dα
τ wDα

τ ϕ + w3 = 0, (22)

Im : –
D2α

τ w
2

+
wD2β

x ϕ

2
+ Dβ

x wDβ
x ϕ +

β1wD2α
τ ϕ

2
+ β1Dα

τ wDα
τ ϕ + w

+
w(Dα

τ ϕ)2

2
– r1w3 + r2w5 = 0, (23)

where the notation Dκ
γ v is the conformable fractional derivative of order κ of v with respect

to γ .
Let

w(x, τ ) = w(ξ ), where ξ =
p0xβ

β
–

p1τ
α

α
,

ϕ(x, τ ) = ϕ(η), where η =
q0xβ

β
–

q1τ
α

α
.

(24)

The parameters p0, p1, q0 and q1 in Eq. (24) are real constants to be determined later. We
substitute Eq. (24) into Eqs. (22) and (23) to obtain

(
–k –

q2
0(ϕ′)2

2
–

β1q2
1(ϕ′)2

2
+

q2
1ϕ

′′

2

)
w +

(
p2

0
2

+
β1p2

1
2

)
w′′ + p1q1ϕ

′w′ + w3 = 0, (25)

(p0q0 + β1p1q1)ϕ′w′ +
(

q2
0ϕ

′′

2
+

β1q2
1ϕ

′′

2
+

q2
1(ϕ′)2

2
+ 1

)
w

–
p2

1w′′

2
– r1w3 + r2w5 = 0, (26)

where the prime notation (′) of w and ϕ denotes the derivative of w and ϕ with respect to
ξ and η, respectively.
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Setting q1 = q0√
–β1

, p1 = p0√
–β1

, and then mathematically manipulating them, we have the
following relations:

(p2
0 + β1p2

1)
2

= 0, p0q0 + β1p1q1 = 0,
(q2

0 + β1q2
1)

2
= 0. (27)

Using Eq. (27), Eqs. (25) and (26) can be reduced to

(
1
2

q2
1ϕ

′′ – k
)

w + p1q1ϕ
′w′ + w3 = 0, (28)

(
1
2

q2
1
(
ϕ′)2 + 1

)
w –

1
2

p2
1w′′ – r1w3 + r2w5 = 0. (29)

Let ϕ(η) = η where η is given in Eq. (24), then

ϕ′ = 1, ϕ′′ = 0. (30)

Using Eq. (30), Eq. (28) is reduced to

w′ =
kw – w3

p1q1
, and then w′′ =

(k – 3w2)w′

p1q1
. (31)

From Eq. (31), we obtain

w′′ =
(k – 3w2)(kw – w3)

p2
1q2

1
⇒

(
k
q1

)2

w –
4k
q2

1
w3 +

3
q2

1
w5 – p2

1w′′ = 0. (32)

Using Eq. (30), Eq. (29) can be written as

(
q2

1 + 2
)
w – 2r1w3 + 2r2w5 – p2

1w′′ = 0. (33)

Comparing the coefficients of Eqs. (32) and (33), we get the following relations:

k2

q2
1

= q2
1 + 2, r1 =

2k
q2

1
, 2r2 =

3
q2

1
. (34)

Simplifying Eq. (34), we obtain

k =
3r1

4r2
,

9r2
1

16r2
2

= q2
1
(
q2

1 + 2
)
, (35)

where the parameters r1 and r2 must satisfy the relation 3r2
1 = 16r2 + 12.

Substituting the above expressions for k and q1 into Eq. (32) (or (33)), we attain an ODE
as follows:

3r2
1w – 16r1r2w3 + 16r2

2w5 – 8r2p2
1w′′ = 0. (36)

We multiply both sides of Eq. (36) by w′ and then integrate the resulting equation with
respective to ξ to obtain

3
2

r2
1w2 – 4r1r2w4 +

8
3

r2
2w6 – 4r2p2

1
(
w′)2 + k0 = 0, (37)
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where k0 is a constant of integration. Using Eq. (10) to balance the terms (w′)2 and w6 in
Eq. (37), we get N = 1

2 . According to Remark 2 in Sect. 3, we let v(ξ ) be a new function
satisfying the following transformation:

w(ξ ) = v(ξ )
1
2 . (38)

Putting Eq. (38) into Eq. (37), we get the following ODE in the variable v:

k0v +
3
2

r2
1v2 – 4r1r2v3 +

8
3

r2
2v4 – r2p2

1
(
v′)2 = 0. (39)

Again using Eq. (10) to balance the terms (v′)2 and v4 in Eq. (39), we obtain N = 1. There-
fore, the solution form of Eq. (39) is

v(ξ ) = a0 + a1Q(ξ ), (40)

where a0, a1 ( �= 0) are constants to be determined later. Substituting Eq. (40) along with
Eq. (9) into Eq. (39) and equating all the coefficients of like power of Q(ξ ) to be zero, we
find the following algebraic system:

Q(ξ )4 :
8
3

r2
2a4

1 – r2p2
1a2

1(ln a)2 = 0,

Q(ξ )3 : –4r1r2a3
1 + 2r2p2

1a2
1(ln a)2 +

32
3

r2
2a0a3

1 = 0,

Q(ξ )2 : –12r1r2a0a2
1 +

3
2

r2
1a2

1 + 16r2
2a2

0a2
1 – r2p2

1a2
1(ln a)2 = 0,

Q(ξ )1 : 3r2
1a0a1 – 12r1r2a2

0a1 + k0a1 +
32
3

r2
2a3

0a1 = 0,

Q(ξ )0 : k0a0 – 4r1r2a3
0 +

3
2

r2
1a2

0 +
8
3

r2
2a4

0 = 0.

(41)

Solving system (41) with the aid of the Maple package program, we obtain the following
cases.

Case 1:

a0 = 0, a1 =
3r1

4r2
, p1 = ±

√
6
r2

r1

2 ln a
, k0 = 0, (42)

where r2 > 0.
Using Eqs. (8), (21), (24), (38), (40), and (42), we have the exact solution of Eq. (1) as

follows:

u1(x, z, t) =
[

3r1

4r2

(
1

1 + daξ

)] 1
2

ei( 3r1zδ
4r2δ

+

√
–3β1
2r2
β

xβ –

√
3

2r2
α τα ), (43)

where ξ = ±
√

–6β1
r2

r1

2β ln a xβ ∓
√

6
r2

r1

2α ln a τα .
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Case 2:

a0 =
3r1

4r2
, a1 = –

3r1

4r2
, p1 = ±

√
6
r2

r1

2 ln a
, k0 = 0, (44)

where r2 > 0.
Using Eqs. (8), (21), (24), (38), (40), and (44), we get the traveling wave solution of Eq. (1)

as follows:

u2(x, z, t) =
[

3r1

4r2

(
1 –

1
(1 + daξ )

)] 1
2

ei( 3r1zδ
4r2δ

+

√
–3β1
2r2
β

xβ –

√
3

2r2
α τα ), (45)

where ξ = ±
√

–6β1
r2

r1

2β ln a xβ ∓
√

6
r2

r1

2α ln a τα .

4.2 Obtaining exact solutions of Eq. (2) using the (G′/G, 1/G)-expansion method
We apply the traveling wave transformation

u(x, t) = u(ξ ), ξ =
kxβ

β
–

ctα

α
, (46)

where k and c are arbitrary constants. Using Theorem 2 and the above transformation,
the conformable fractional-order derivatives of u in Eq. (2) become

D2α
t u(x, t) = c2u′′, D2β

x u(x, t) = k2u′′.

Hence, Eq. (2) is reduced to the following ODE in the variable u = u(ξ ):

(
c2 – k2)u′′ + nu3 + m2u = 0, (47)

where the prime notation (′) denotes the derivative with respect to ξ .
Applying the formulas in Eq. (10) to balance the highest-order derivative and nonlinear

terms, i.e., u′′ and u3 in Eq. (47), we obtain N = 1. Hence the solution form of Eq. (47) is

u(ξ ) = a0 + a1φ(ξ ) + b1ψ(ξ ), (48)

where the constant coefficients a0, a1, and b1 are to be determined later, subject to the
inequality a2

1 + b2
1 �= 0. There are three cases of the function G(ξ ) associated with the func-

tions φ(ξ ) and ψ(ξ ) of the solution in Eq. (48) depending on the sign of λ, as described in
Sect. 3.

Case 1 (Hyperbolic function solutions): If λ < 0, we substitute Eq. (48) into Eq. (47) and
utilize Eqs. (13) and (15) so that the left-hand side of Eq. (47) becomes a polynomial in
φ(ξ ) and ψ(ξ ). Setting all of the coefficients of this resulting polynomial to be zero, we
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obtain the following system of nonlinear algebraic equations in a0, a1, b1, k, c, μ and λ:

φ3 : λ4na3
1σ

2
1 + 2c2λ4a1σ

2
1 – 2k2λ4a1σ

2
1 + 2λ2μ2na3

1σ1 + 4c2λ2μ2a1σ1 + μ4na3
1

– 4k2λ2μ2a1σ1 – 3λ3na1b2
1σ1 + 2c2μ4a1 – 2k2μ4a1 – 3λμ2na1b2

1 = 0,

φ2 : 3λ4na0a2
1σ

2
1 + 6λ2μ2na0a2

1σ1 + c2λ3μb1σ1 – k2λ3μb1σ1 – 3λ3na0b2
1σ1

+ 3μ4na0a2
1 + c2λμ3b1 – k2λμ3b1 – 2λ2μnb3

1 – 3λμ2na0b2
1 = 0,

φ2ψ : 3λ4na2
1b1σ

2
1 + 2c2λ4b1σ

2
1 – 2k2λ4b1σ

2
1 + 6λ2μ2na2

1b1σ1 + 4c2λ2μ2b1σ1

– 4k2λ2μ2b1σ1 – λ3nb3
1σ1 + 3μ4na2

1b1 + 2c2μ4b1 – 2k2μ4b1 – λμ2nb3
1 = 0,

φ : 2c2λ5a1σ
2
1 – 2k2λ5a1σ

2
1 + 3λ4na2

0a1σ
2
1 + 4c2λ3μ2a1σ1 – 4k2λ3μ2a1σ1

+ λ4m2a1σ
2
1 – 3λ4na1b2

1σ1 + 6λ2μ2na2
0a1σ1 + 2c2λμ4a1 – 2k2λμ4a1

+ 2λ2m2μ2a1σ1 – 3λ2μ2na1b2
1 + 3μ4na2

0a1 + m2μ4a1 = 0,

φψ : –3c2λ4μa1σ
2
1 + 3k2λ4μa1σ

2
1 + 6λ4na0a1b1σ

2
1 – 6c2λ2μ3a1σ1 – 3c2μ5a1

+ 6λ3μna1b2
1σ1 + 12λ2μ2na0a1b1σ1 + 3k2μ5a1 + 6λμ3na1b2

1 + 6μ4na0a1b1

+ 6k2λ2μ3a1σ1 = 0,

ψ : c2λ5b1σ
2
1 – k2λ5b1σ

2
1 + 3λ4na2

0b1σ
2
1 + λ4m2b1σ

2
1 – λ4nb3

1σ1 + 3μ4na2
0b1

+ 6λ2μ2na2
0b1σ1 – c2λμ4b1 + k2λμ4b1 + 2λ2m2μ2b1σ1 + 3λ2μ2nb3

1 + m2μ4b1

+ 6λμ3na0b2
1 + 6λ3μna0b2

1σ1 = 0,

φ0 : λ4na3
0σ

2
1 + c2λ4μb1σ1 – k2λ4μb1σ1 + λ4m2a0σ

2
1 – 3λ4na0b2

1σ1 + m2μ4a0

+ c2λ2μ3b1 – k2λ2μ3b1 – 2λ3μnb3
1 + 2λ2m2μ2a0σ1 – 3λ2μ2na0b2

1 + μ4na3
0

+ 2λ2μ2na3
0σ1 = 0.

(49)

Solving the above algebraic system using the Maple package program, we get the following
results.

Result 1

a0 = 0, a1 = ±
√

–2n(c2 – k2)
n

, b1 = 0, λ = –
m2

2(c2 – k2)
, μ = 0, (50)

where c2 > k2, n < 0 and m is an arbitrary constant.
From Eqs. (14), (48), and (50), we obtain the exact solution of Eq. (2) as follows:

u1(x, t) = ±
√

–2n(c2 – k2)
n

×
[√

m2

2(c2 – k2)

(A1 cosh(ξ
√

m2

2(c2–k2) ) + A2 sinh(ξ
√

m2

2(c2–k2) )

A1 sinh(ξ
√

m2

2(c2–k2) ) + A2 cosh(ξ
√

m2

2(c2–k2) )

)]
, (51)

where ξ is defined in Eq. (46).
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Result 2

a0 = 0, a1 = 0, b1 = ±
√

2nσ1m
n

, λ =
m2

(c2 – k2)
, μ = 0, (52)

where c2 < k2, nσ1 > 0 and m is an arbitrary constant.
From Eqs. (14), (48), and (52), we have the exact solution of Eq. (2) as follows:

u2(x, t) =
±√

2nσ1m

n(A1 sinh(ξ
√

– m2

(c2–k2) ) + A2 cosh(ξ
√

– m2

(c2–k2) ))
, (53)

where ξ is defined in Eq. (46) and σ1 = A2
1 – A2

2 �= 0.

Result 3

a0 = 0, a1 = ±
√

–2n(c2 – k2)
2n

, b1 = ±
√–nσ1m

n
,

λ = –
2m2

(c2 – k2)
, μ = 0,

(54)

where c2 > k2, n < 0, σ1 > 0 and m is an arbitrary constant.
From Eqs. (14), (48), and (54), we deduce the traveling wave solution of Eq. (2) as follows:

u3(x, t) = ±
√

–2n(c2 – k2)
2n

×
[√

2m2

(c2 – k2)

(A1 cosh(ξ
√

2m2

(c2–k2) ) + A2 sinh(ξ
√

2m2

(c2–k2) )

A1 sinh(ξ
√

2m2

(c2–k2) ) + A2 cosh(ξ
√

2m2

(c2–k2) )

)]

±
√–nσ1m

n(A1 sinh(ξ
√

2m2

(c2–k2) ) + A2 cosh(ξ
√

2m2

(c2–k2) ))
, (55)

where ξ is defined in Eq. (46) and σ1 = A2
1 – A2

2.

Result 4

a0 = 0, a1 = ±
√

–2n(c2 – k2)
2n

,

b1 = ±
√

–n(c4μ2 – 2c2k2μ2 + k4μ2 + 4m4σ1)
2nm

, λ = –
2m2

(c2 – k2)
,

(56)

where c2 ≥ 2k2, n < 0, m �= 0, σ1 ≥ 0 and μ is an arbitrary constant.
From Eqs. (14), (48), and (56), we obtain the exact solution of Eq. (2) as follows:

u4(x, t) = ±
√

–2n(c2 – k2)
2n

×
[√

2m2

(c2 – k2)

(A1 cosh(ξ
√

2m2

(c2–k2) ) + A2 sinh(ξ
√

2m2

(c2–k2) )

A1 sinh(ξ
√

2m2

(c2–k2) ) + A2 cosh(ξ
√

2m2

(c2–k2) )

)]
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±
√

–n(c4μ2 – 2c2k2μ2 + k4μ2 + 4m4σ1)

2nm(A1 sinh(ξ
√

2m2

(c2–k2) ) + A2 cosh(ξ
√

2m2

(c2–k2) ))
, (57)

where ξ is defined in Eq. (46) and σ1 = A2
1 – A2

2.

Case 2 (Trigonometric function solutions): If λ > 0, we substitute Eq. (48) into Eq. (47)
and utilize Eqs. (13) and (17) so that the left-hand side of Eq. (47) becomes a polynomial
in φ(ξ ) and ψ(ξ ). Setting all of the coefficients of the resulting polynomial to be zero, we
get the system of nonlinear algebraic equations in a0, a1, b1, k, c, μ and λ as follows:

φ3 : λ4na3
1σ

2
2 + 2c2λ4a1σ

2
2 – 2k2λ4a1σ

2
2 – 2λ2μ2na3

1σ2 – 4c2λ2μ2a1σ2 + μ4na3
1

+ 3λ3na1b2
1σ2 + 2c2μ4a1 – 2k2μ4a1 – 3λμ2na1b2

1 + 4k2λ2μ2a1σ2 = 0,

φ2 : 3λ4na0a2
1σ

2
2 – 6λ2μ2na0a2

1σ2 – c2λ3μb1σ2 + k2λ3μb1σ2 + 3λ3na0b2
1σ2

+ 3μ4na0a2
1 + c2λμ3b1 – k2λμ3b1 – 2λ2μnb3

1 – 3λμ2na0b2
1 = 0,

φ2ψ : 3λ4na2
1b1σ

2
2 + 2c2λ4b1σ

2
2 – 2k2λ4b1σ

2
2 – 6λ2μ2na2

1b1σ2 – 4c2λ2μ2b1σ2

+ λ3nb3
1σ2 + 3μ4na2

1b1 + 2c2μ4b1 – 2k2μ4b1 – λμ2nb3
1 + 4k2λ2μ2b1σ2 = 0,

φ : 2c2λ5a1σ
2
2 – 2k2λ5a1σ

2
2 + 3λ4na2

0a1σ
2
2 – 4c2λ3μ2a1σ2 + 4k2λ3μ2a1σ2

+ 3λ4na1b2
1σ2 – 6λ2μ2na2

0a1σ2 + 2c2λμ4a1 – 2k2λμ4a1 – 2λ2m2μ2a1σ2

– 3λ2μ2na1b2
1 + 3μ4na2

0a1 + m2μ4a1 + λ4m2a1σ
2
2 = 0,

φψ : –3c2λ4μa1σ
2
2 + 3k2λ4μa1σ

2
2 + 6λ4na0a1b1σ

2
2 + 6c2λ2μ3a1σ2 – 6k2λ2μ3a1σ2

– 6λ3μna1b2
1σ2 – 12λ2μ2na0a1b1σ2 + 3k2μ5a1 + 6λμ3na1b2

1 + 6μ4na0a1b1

– 3c2μ5a1 = 0,

ψ : c2λ5b1σ
2
2 – k2λ5b1σ

2
2 + 3λ4na2

0b1σ
2
2 + λ4m2b1σ

2
2 + λ4nb3

1σ2 – 6λ3μna0b2
1σ2

– 6λ2μ2na2
0b1σ2 – c2λμ4b1 + k2λμ4b1 – 2λ2m2μ2b1σ2 + 3λ2μ2nb3

1

+ 6λμ3na0b2
1 + 3μ4na2

0b1 + m2μ4b1 = 0,

φ0 : λ4na3
0σ

2
2 – c2λ4μb1σ2 + k2λ4μb1σ2 + λ4m2a0σ

2
2 + 3λ4na0b2

1σ2 – 2λ2μ2na3
0σ2

+ c2λ2μ3b1 – k2λ2μ3b1 – 2λ3μnb3
1 – 2λ2m2μ2a0σ2 – 3λ2μ2na0b2

1 + μ4na3
0

+ m2μ4a0 = 0.

(58)

By solving the above algebraic system using the Maple package program, we obtain the
following results.

Result 1

a0 = 0, a1 = ±
√

–2n(c2 – k2)
n

, b1 = 0, λ = –
m2

2(c2 – k2)
, μ = 0, (59)

where c2 < k2, n > 0 and m is an arbitrary constant.
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From Eqs. (16), (48), and (59), we obtain the traveling wave solution of Eq. (2) as fol-
lows:

u1(x, t) = ±
√

–2n(c2 – k2)
n

×
[√

–
m2

2(c2 – k2)

(A1 cos(ξ
√

– m2

2(c2–k2) ) – A2 sin(ξ
√

– m2

2(c2–k2) )

A1 sin(ξ
√

– m2

2(c2–k2) ) + A2 cos(ξ
√

– m2

2(c2–k2) )

)]
, (60)

where ξ is defined in Eq. (46).

Result 2

a0 = 0, a1 = 0, b1 = ±
√

–2nσ2m
n

, λ =
m2

(c2 – k2)
, μ = 0, (61)

where c2 > k2, n < 0 and m is an arbitrary constant.
From Eqs. (16), (48), and (61), we get the exact solutions of Eq. (2) as follows:

u2(x, t) =
±√

–2nσ2m

n(A1 sin(ξ
√

m2

(c2–k2) ) + A2 cos(ξ
√

m2

(c2–k2) ))
, (62)

where ξ is defined in Eq. (46) and σ2 = A2
1 + A2

2.

Result 3

a0 = 0, a1 = ±
√

–2n(c2 – k2)
2n

, b1 = ±
√nσ2m

n
,

λ = –
2m2

(c2 – k2)
, μ = 0,

(63)

where c2 < k2, n > 0 and m is an arbitrary constant.
From Eqs. (16), (48), and (63), we have the exact solution of Eq. (2) as follows:

u3(x, t) = ±
√

–2n(c2 – k2)
2n

×
[√

–
2m2

(c2 – k2)

(A1 cos(ξ
√

– 2m2

(c2–k2) ) – A2 sin(ξ
√

– 2m2

(c2–k2) )

A1 sin(ξ
√

– 2m2

(c2–k2) ) + A2 cos(ξ
√

– 2m2

(c2–k2) )

)]

±
√nσ2m

n(A1 sin(ξ
√

– 2m2

(c2–k2) ) + A2 cos(ξ
√

– 2m2

(c2–k2) ))
, (64)

where ξ is defined in Eq. (46) and σ2 = A2
1 + A2

2.
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Result 4

a0 = 0, a1 = ±
√

–2n(c2 – k2)
2n

,

b1 = ±
√

–n(c4μ2 – 2c2k2μ2 + k4μ2 – 4m4σ2)
2nm

, λ = –
2m2

(c2 – k2)
,

(65)

where c2 < k2, n > 0, m �= 0 and μ is an arbitrary constant.
From Eqs. (16), (48), and (65), we obtain the exact solution of Eq. (2) as follows:

u4(x, t) = ±
√

–2n(c2 – k2)
2n

×
[√

–
2m2

(c2 – k2)

(A1 cos(ξ
√

– 2m2

(c2–k2) ) – A2 sin(ξ
√

– 2m2

(c2–k2) )

A1 sin(ξ
√

– 2m2

(c2–k2) ) + A2 cos(ξ
√

– 2m2

(c2–k2) )

)]

±
√

–n(c4μ2 – 2c2k2μ2 + k4μ2 – 4m4σ2)

2nm(A1 sin(ξ
√

– 2m2

(c2–k2) ) + A2 cos(ξ
√

– 2m2

(c2–k2) ))
, (66)

where ξ is defined in Eq. (46) and σ2 = A2
1 + A2

2.

Case 3 (Rational function solutions): If λ = 0, we substitute Eq. (48) into Eq. (47) and
utilize Eqs. (13) and (19) so that left-hand side of Eq. (47) turns out to be a polynomial in
φ(ξ ) and ψ(ξ ). Setting all of the coefficients of this resulting polynomial to zero, we obtain
the system of nonlinear algebraic equations in a0, a1, b1, k, c and μ as follows:

φ3 : 4μ2nA2
2a3

1 – 4μnA2
1A2a3

1 + nA4
1a3

1 + 8c2μ2A2
2a1 – 8c2μA2

1A2a1 + 2c2A4
1a1

– 8k2μ2A2
2a1 + 8k2μA2

1A2a1 – 2k2A4
1a1 – 6μnA2a1b2

1 + 3nA2
1a1b2

1 = 0,

φ2 : 12μ2nA2
2a0a2

1 – 12μnA2
1A2a0a2

1 + 3nA4
1a0a2

1 + 2c2μ2A2b1 – c2μA2
1b1

– 2k2μ2A2b1 + k2μA2
1b1 – 6μnA2a0b2

1 + 3nA2
1a0b2

1 – 2μnb3
1 = 0,

φ2ψ : 12μ2nA2
2a2

1b1 – 12μnA2
1A2a2

1b1 + 3nA4
1a2

1b1 + 8c2μ2A2
2b1 – 8c2μA2

1A2b1

+ 2c2A4
1b1 – 8k2μ2A2

2b1 + 8k2μA2
1A2b1 – 2k2A4

1b1 – 2μnA2b3
1 + nA2

1b3
1 = 0,

φ : 12μ2nA2
2a2

0a1 – 12μnA2
1A2a2

0a1 + 3nA4
1a2

0a1 + 4m2μ2A2
2a1 – 4m2μA2

1A2a1

+ m2A4
1a1 = 0,

φψ : –12c2μ3A2
2a1 + 12c2μ2A2

1A2a1 – 3c2μA4
1a1 + 12k2μ3A2

2a1 – 12k2μ2A2
1A2a1

+ 3k2μA4
1a1 + 24μ2nA2

2a0a1b1 – 24μnA2
1A2a0a1b1 + 6nA4

1a0a1b1

+ 12μ2nA2a1b2
1 – 6μnA2

1a1b2
1 = 0,

ψ : 12μ2nA2
2a2

0b1 – 12μnA2
1A2a2

0b1 + 3nA4
1a2

0b1 – 4c2μ3A2b1 + 2c2μ2A2
1b1

+ 4k2μ3A2b1 – 2k2μ2A2
1b1 + 4m2μ2A2

2b1 – 4m2μA2
1A2b1 + m2A4

1b1

+ 12μ2nA2a0b2
1 – 6μnA2

1a0b2
1 + 4μ2nb3

1 = 0,

φ0 : 4μ2nA2
2a3

0 – 4μnA2
1A2a3

0 + nA4
1a3

0 + 4m2μ2A2
2a0 – 4m2μA2

1A2a0 + m2A4
1a0 = 0.

(67)
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Using the Maple package program to solve the above algebraic system, we obtain the fol-
lowing results.

Result 1

a0 = 0, a1 = 0, b1 = ±
√

–2n(c2 – k2)A1

n
, μ = 0, m = 0, (68)

where n(c2 – k2) < 0 and A1 �= 0.
From Eqs. (18), (48), and (68), we get the exact solutions of Eq. (2) as follows:

u1(x, t) = ±
√

–2n(c2 – k2)A1

n(ξA1 + A2)
, (69)

where ξ is defined in Eq. (46) and A2 is an arbitrary constant.

Result 2

a0 = 0, a1 = ±
√

–2n(c2 – k2)
2n

,

b1 = ±
√

2n(2c2μA2 – c2A2
1 – 2k2μA2 + k2A2

1)
2n

, m = 0,

(70)

where n(c2 – k2) < 0, n(2c2μA2 – c2A2
1 – 2k2μA2 + k2A2

1) > 0 and μ is an arbitrary constant.
From Eqs. (18), (48), and (70), we attain the traveling wave solution of Eq. (2) as follows:

u2(x, t) =
√

–2n(c2 – k2)(μξ + A1)
2n( μ

2 ξ 2 + A1ξ + A2)
±

√
2n(2c2μA2 – c2A2

1 – 2k2μA2 + k2A2
1)

2n( μ

2 ξ 2 + A1ξ + A2)
, (71)

where ξ is defined in Eq. (46).

5 Graphical representations and their physical explanations for selected
solutions

In this section, we will provide some graphical representations of the exact solutions of
the space-time fractional (2 + 1)-dimensional cubic–quintic Ginzburg–Landau equation
as in Eq. (1) and the space-time fractional Phi-4 equation as in Eq. (2). Additionally, we will
also discuss their physical explanations. The selected exact explicit solutions of Eq. (1) are
plotted on –10 ≤ x ≤ 10 and –5 ≤ τ ≤ 5 while the variable z is temporarily ignored, i.e.,
z = 0. The selected solutions of Eq. (2) are portrayed on –10 ≤ x ≤ 10 and –5 ≤ t ≤ 5. The
fractional orders α, β of both equations are varied among 1, 0.9 and 0.8. The graphical
results of the selected solutions of each problem are described below.

The fixed values r1 = 2
√

5, r2 = 3, β1 = –1, d = 1, a = 2 and the variation of α, β ∈
{1, 0.9, 0.8} are used to plot the real part of the exact solution u2(x, z, τ ) in Eq. (45) of Eq. (1),
which is constructed using the modified Kudryashov method. The graphs of its real part
are shown in Fig. 1. They represent the oscillatory wave solutions.

Graphical representations are portrayed below using the selected exact solutions of
Eq. (2) constructed from the (G′/G, 1/G)-expansion method. Using the fixed values m = 2,
n = –3, k = 1, c = 9, A1 = 1, and A2 = 3, the exact solutions u1(x, t) in Eq. (51) corresponding
to the variation of α, β are plotted in Fig. 2 as follows. The solution u1(x, t) with α = β = 1
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Figure 1 Associated plots for the real part of u2(x, z,τ ) in Eq. (45) of Eq. (1) on –10 ≤ x ≤ 10 and –5≤ τ ≤ 5
using the modified Kudryashov method

Figure 2 Associated plots of u1(x, t) in Eq. (51) of Eq. (2) on –10 ≤ x ≤ 10 and –5≤ t ≤ 5 using the
(G′/G, 1/G)-expansion method
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Figure 3 Associated plots of u2(x, t) in Eq. (53) of Eq. (2) on –10 ≤ x ≤ 10 and –5≤ t ≤ 5 using the
(G′/G, 1/G)-expansion method

describing the kink-shaped soliton solution is depicted in Fig. 2(a). The graphs of the solu-
tion u1(x, t) with α = β = 0.9 and α = 0.9, β = 0.8, demonstrating the discontinuous kink-
shaped soliton solutions, are presented in Figs. 2(b) and (c), respectively. The graph of
|u1(x, t)| with α = 0.9, β = 0.8 is shown in Fig. 2(d).

For the fixed values m = 2, n = –3, k = 9, c = 1, A1 = 1, and A2 = 3, the exact solutions
u2(x, t) in Eq. (53) of Eq. (2) corresponding to the variation of α, β ∈ {1, 0.9, 0.8} are scruti-
nized. The solution u2(x, t) with α = β = 1 describing the anti-soliton solution is plotted in
Fig. 3(a). The graphs of the solution u2(x, t) with α = β = 0.9 and α = 0.9, β = 0.8 indicating
the discontinuous the anti-soliton solution are presented in Figs. 3(b) and (c), respectively.
The graph of |u2(x, t)| with α = 0.9, β = 0.8 is plotted in Fig. 3(d).

In Fig. 4(a), we have presented the singular kink-shaped soliton solutions obtained from
the solution u3(x, t) in Eq. (55) when the parameter values m = 1, n = –3, k = 1, c = 9,
A1 = 3, and A2 = 1 and the fractional orders α = β = 1 are used. Using the same parameter
values as above but α = β = 0.9 and α = 0.9, β = 0.8, the singular single-soliton solution
and the singular multiple-soliton solution for u3(x, t) in Eq. (55) are plotted in Figs. 4(b)
and (c), respectively. We can see that their graphs are not plotted on the entire domain
since these solutions are real only on a certain part of the domain. The graph of |u3(x, t)|
with α = 0.9, β = 0.8 is shown in Fig. 4(d).

For the fixed values m = 2, n = –3, k = 9, c = 1, A1 = 1, and A2 = 3, the graphs of the
exact solutions u2(x, t) in Eq. (62) of Eq. (2) corresponding to the variation of α, β are
investigated. The solution u2(x, t) with α = β = 1 describing the singular multiple-soliton
solution is depicted in Fig. 5(a). The solutions u2(x, t) with α = β = 0.9 and α = 0.9, β =
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Figure 4 Associated plots of u3(x, t) in Eq. (55) of Eq. (2) on –10 ≤ x ≤ 10 and –5≤ t ≤ 5 using the
(G′/G, 1/G)-expansion method

Figure 5 Associated plots of u2(x, t) in Eq. (62) of Eq. (2) on –10 ≤ x ≤ 10 and –5≤ t ≤ 5 using the
(G′/G, 1/G)-expansion method
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Figure 6 Associated plots of u1(x, t) in Eq. (69) of Eq. (2) on –10 ≤ x ≤ 10 and –5≤ t ≤ 5 using the
(G′/G, 1/G)-expansion method

0.8 describing the singular multiple-soliton solution are presented in Figs. 5(b) and (c),
respectively. The graph of |u2(x, t)| with α = 0.9, β = 0.8 is plotted in Fig. 5(d).

For the fixed values m = 2, n = –3, k = 9, c = 1, A1 = 1, and A2 = 3, the graphs of the
exact solution u1(x, t) in Eq. (69) of Eq. (2) corresponding to the variation of α, β are dis-
played. The solution u2(x, t) with α = β = 1 describing the kink-shaped soliton solutions is
depicted in Fig. 6(a). The solutions u1(x, t) with α = β = 0.9 and α = 0.9, β = 0.8, showing
the singular single-soliton solution, are presented in Figs. 6(b) and (c), respectively. The
graph of |u1(x, t)| with α = 0.9, β = 0.8 is shown in Fig. 6(d).

6 Conclusions
In this article, we have determined many explicit exact solutions of the nonlinear con-
formable space-time fractional complex Ginzburg–Landau equation as given by Eq. (1) us-
ing the modified Kudryashov method and of the conformable space-time fractional Phi-4
equation as given by Eq. (2) using the (G′/G, 1/G)-expansion method. Some of the obtained
solutions are distinct from those found previously via different methods. The fractional
complex transform and the symbolic computation package Maple 17 have been used to
assist the methods for obtaining the exact solutions of the problems. The exact solutions
of Eq. (1) obtained by the modified Kudryashov method are the product of the reciprocal
of an exponential function and the exponential function of a purely imaginary function.
For Eq. (2), many exact solutions, including hyperbolic function solutions, trigonometric
function solutions and rational function solutions, are constructed using the (G′/G, 1/G)-
expansion method. Some of these exact solutions have been graphically characterized in
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terms of a variety of distinct physical structures such as an oscillatory wave solution, a
kink-shaped soliton solution, a singular single-soliton solution, a singular multiple-soliton
solution and an anti-soliton solution. Some of our obtained exact solutions are similar
to the solutions in [36] which was solved using the (G′/G)-expansion method. However,
our solutions are the generalization of their solutions because the (G′/G, 1/G)-expansion
method can be reduced to the (G′/G)-expansion method by setting the parameter μ in
Eq. (11) and the coefficient bj in Eq. (20) to be zero. Therefore, the (G′/G, 1/G)-expansion
method is an extension of the (G′/G)-expansion method. The applications of these so-
lutions have been found in many physical phenomena such as optical fibers and nuclear
physics. All of our results obtained by the two methods have been attained and verified by
substituting them back into the original problems with the aid of the Maple 17 package
program. Since the two methods are powerful, systematic and reliable for obtaining the
exact solutions of the equations, they could be applied efficiently for a great many NPDEs
including fractional-order ones arising in mathematical physics.
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