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1 Introduction
The aim of this paper is to propose conditions ensuring the consensus of a multi-agent sys-
tem over an arbitrary time scale. We consider continuous- and discrete-time models and
also models on time scales simultaneously consisting of both kinds of points, right-dense
and right-scattered. Under some assumptions, we prove that consensus can be achieved
exponentially if the graininess function is bounded. All theorems are still true if the grain-
iness function approaches zero. Some existing results of discrete-time consensus are par-
ticular cases of the results presented in this paper.

The leader-following problem has been investigated since 1970s. In 1974, DeGroot [1]
studied an explicitly described model that resulted in the consensus. In 2000, Krause [2,
3] discussed the model of a group of agents who have to make a joint assessment of a
certain magnitude. The coordination of groups of mobile autonomous agents based on the
nearest-neighbor rules was considered by Jadbabaie et al. [4]. Blondel et al. [5, 6], took into
account Krause’s model with state-dependent connectivity. Girejko et al. [7, 8], examined
Krause’s model on discrete time scales. In 2007 there were published two important papers
by Cucker and Smale [9, 10]. The authors considered an emergent behavior in flocks. The
Cucker–Smale model on isolated time scales was in the area of interests of Girejko et al.
[8]. Girejko, Machado, Malinowska, and Martins [11] investigated sufficient conditions
for consensus in the Cucker–Smale-type model on discrete time scales. In 2015, Wang et
al. [12] published some results for the leader-following consensus of discrete-time linear
multi-agent systems with communication noises.
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Our results generalize and improve the results obtained in [13] and [14]. In [14] consen-
sus on different types of discrete-time scales is considered under the assumption that the
feedback control gain γ is constant.

2 Basis of time scales calculus
A time scale is a model of time [15–17], where the step size is a function of time. From
mathematical point of view, it is an arbitrary nonempty closed subset T of the set R of real
numbers.

The mapping σ : T → T defined by σ (t) = inf {s ∈ T : s > t} with inf∅ = supT is called
the forward jump operator. Similarly, we define the backward jump operator ρ : T → T

by ρ(t) = sup {s ∈ T : s < t} with sup∅ = infT. The following classification of points is used
within the theory: a point t ∈ T is called right-dense, right-scattered, left-dense, and left-
scattered if σ (t) = t (for t < supT), σ (t) > t, ρ(t) = t (for t > infT), and ρ(t) < t, respectively.
We say that t is isolated if ρ(t) < t < σ (t) and that t is dense if ρ(t) = t = σ (t). The function
μ : T → [0,∞) is defined by μ(t) = σ (t) – t and called the graininess function. The delta
(or Hilger) derivative of f : T →R at a point t ∈ T

κ , where

T
κ :=

⎧
⎨

⎩

T \ (ρ(supT), supT] if supT < ∞,

T if supT = ∞,

is defined in the following way.

Definition 1 ([16]) The delta derivative f �(t) is the number (provided that it exists) with
the property that given any ε > 0, there is a neighborhood U of t (i.e., U = (t – δ, t + δ) ∩T

for some δ > 0) such that

∣
∣
(
f
(
σ (t)

)
– f (s)

)
– f �(t)

(
σ (t) – s

)∣
∣≤ ε

∣
∣σ (t) – s

∣
∣ for all s ∈ U .

Moreover, we say that f is delta (or Hilger) differentiable (or, shortly, differentiable) onT
κ

if f �(t) exists for all t ∈ T
κ . Then the function f � : Tκ → R is called the (delta) derivative

of f on T
κ .

The following definitions will be further used, too.

Definition 2 ([16]) A function f : T → R is called regulated if its right-sided limits exist
(finite) at right-dense points in T and its left-sided limits exist (finite) at left-dense points
in T. A function f : T →R is called rd-continuous if it is continuous at right-dense points
in T and its left-side limits exist (finite) at left-dense points in T.

Definition 3 ([16]) Let f : T→ R be a regulated function. We define the indefinite integral
of f by

∫
f (t)�t = F(t) + c, where c is an arbitrary constant, and F is a preantiderivative of f .

We define the Cauchy integral of f as
∫ b

a f (t)�t = F(b) – F(a) for all a, b ∈ T.

Definition 4 ([16]) We say that a function p : T →R is regressive if 1 + μ(t)p(t) �= 0 for all
t ∈ T

κ . The set of all regressive and rd-continuous functions p : T → R is denoted by R.
The set of all positively regressive elements of R is defined as R+ := {p ∈R : 1 + μ(t)p(t) >
0 for all t ∈ T}.
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Definition 5 ([16]) An N × N-matrix-valued function P on a time scale T is called re-
gressive (with respect to T) if

I + μ(t)P(t) is invertible for all t ∈ T
κ ,

where by I we denote the N × N identity matrix.

Similarly to the scalar case, the class of all regressive and rd-continuous matrix-valued
functions is denoted by R. Notice that a constant N × N matrix P is regressive iff the
eigenvalues λi of P are regressive for all 1 ≤ i ≤ N .

We use the Grönwall inequality in the proof of the main result.

Lemma 1 ([16]) Let z be rd-continuous, p ∈R+, and p(t) ≥ 0 for t ∈ T and c ∈ R. Then

z(t) ≤ c +
∫ t

T0

p(τ )z(τ )�τ for all t ∈ T

implies

z(t) ≤ cep(t, T0).

Here z(t) = ep(t, T0), T0 ∈ T, is a solution of the initial value problem

z�(t) = p(t)z(t), z(T0) = 1 on T. (1)

We assume that

infT = T0 ≥ 0 and supT = ∞,

which implies that Tκ = T.

3 Mathematical model of agents dynamics
We consider a multi-agent system consisting of N agents and the leader. The dynamics of
each agent labeled i, i = 1, 2, . . . , N , is given by the following equation:

x�
i (t) = f

(
t, xi(t)

)
+ γ (t)

N∑

j=1

aij
(
xj(t) – xi(t)

)
+ γ (t)di

(
x0(t) – xi(t)

)
, (2)

where t ∈ T, xi : T → R, and γ : T → R represent the state and the feedback control gain
at time t, respectively. Here aij ∈ R, di ∈ R, i, j = 1, 2, . . . , N , and D := diag[d1, d2, . . . , dN ]
is a diagonal matrix. Throughout this paper, we assume that aij = aji, which means that
the matrix A = [aij]N×N is symmetric. The function f : T × R → R describes nonlinear
dynamics. The leader, labeled as i = 0, for multi-agent system (2) is an isolated agent with
trajectory described by

x�
0 (t) = f

(
t, x0(t)

)
, t ∈ T. (3)
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Notice that the control law γ (t)
∑N

j=1 aij(xj(t) – xi(t)) + γ (t)di(x0(t) – xi(t)) for the ith agent
used in system (2)–(3) was studied by many authors, including Yu, Jiang, and Hu [18].

Let εi(t) = xi(t) – x0(t) denote the distance between the leader and the ith agent. From
(2)–(3) we obtain

ε�
i (t) = f

(
t, xi(t)

)
– f

(
t, x0(t)

)
+ γ (t)

N∑

j=1

aij
(
εj(t) – εi(t)

)
– γ (t)diεi(t)

for i = 1, 2, . . . , N . Setting

ε(t) =
(
ε1(t), ε2(t), . . . , εN (t)

)T ,

x(t) =
(
x1(t), x2(t), . . . , xN (t)

)T ,

and

F
(
t, x(t)

)
=
(
f
(
t, x1(t)

)
, f
(
t, x2(t)

)
, . . . , f

(
t, xN (t)

))T ,

F
(
t, x0(t)1

)
=
(
f
(
t, x0(t)

)
, f
(
t, x0(t)

)
, . . . , f

(
t, x0(t)

))T ,
(4)

system (2)–(3) takes the following form:

ε�(t) = F
(
t, x(t)

)
– F

(
t, x0(t)1

)
– γ (t)Bε(t), ε(T0) = εT0 (5)

(for details, see [19]). Here 1 is the vector (1, . . . , 1)T . Recall that B = L + D is a symmetric
matrix since A is a symmetric matrix and L is the Laplacian matrix L = [lij] with lii =

∑
j �=i aij

and lij = –aij, i, j = 1, . . . , N , i �= j.
If

(
–γ (t)B

) ∈R,

in equation (1), then by e–γ B(t, T0) we denote a solution of the initial value problem

ε�(t) = –γ (t)Bε(t), ε(T0) = 1.

By variation of constants (see [16]) the unique solution of equation (5) is given by

ε(t) = e–γ B(t, T0)εT0 +
∫ t

T0

e–γ B
(
t,σ (τ )

)(
F
(
τ , x0(τ )1

)
– F

(
τ , x(τ )

))
�τ . (6)

Definition 6 A function F : T×R
N →R

N fulfills Lipschitz condition with respect to the
second variable if there exists a positive constant L such that

∥
∥F(t, x) – F(t, y)

∥
∥≤L‖x – y‖, t ∈ T. (7)

Definition 7 We say that equation (5), where T0 ≥ 0, εT0 ∈ R
N , is exponentially stable if

there exist positive constants c and d such that, for any rd-continuous solution ε(t, T0, εT0 )
of equation (5), we have

lim
t→∞

∥
∥ε(t, T0, εT0 )

∥
∥ =: lim

t→∞
∥
∥ε(t)

∥
∥≤ c‖εT0‖ lim

t→∞ ed(t, T0) = 0.
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For some relevant result on the exponential stability in the discrete case, see [20] and
[21].

Definition 8 The multi-agent system (2)–(3) is said to achieve the leader-following con-
sensus exponentially if equation (5) is exponentially stable.

In 2005, Peterson and Raffoul [22] investigated the exponential stability of the zero
solution to systems of dynamic equations on time scales. The authors defined suitable
Lyapunov-type functions and then formulated appropriate inequalities on these functions
that guarantee that the zero solution exponentially decays to zero. For the growth of gen-
eralized exponential functions on time scales, see Bodine and Lutz [23].

4 Main results
Assume that the function F : T × R

N → R
N defined by (4) satisfies Lipschitz condition

with respect to the second variable.
Let λi, i = 1, 2, . . . , N , be the eigenvalues of the matrix B. By Ts and T

d we denote the sets
of right-scattered and right-dense points of T, respectively. Notice that since by assump-
tion supT = ∞, at least one of the sets Ts or Td must be unbounded.

Next, we rewrite the time scale T in a useful way for estimation of the norm of a solution
of the initial value problem (5) on a time scale consisting of right-scattered and right-
dense points. To avoid confusion, we underline that any interval throughout this paper is
an interval on the time scale, that is, any interval contains only points of the time scale.
Set

T1 = min
{

t : t ∈ [T0,∞) ∩T
d and [T0, t) ⊂ T

s},

T2i = inf
{

t : t ∈ [T2i–1,∞) ∩T
s and [T2i–1, t) ⊂ T

d},

T2i+1 = min
{

t : t ∈ [T2i,∞) ∩T
d and [T2i, t) ⊂ T

s}

for i = 1, 2, . . . . In case of [T2i–1,∞) ∩ T
s = ∅ for some i ∈ N we take T2i = ∞ (see Exam-

ple 9). If [T2i–1, t) ∩ T
d = [T2i–1, T2i–1) = ∅ for some i ∈ N, then we also take T2i = ∞ (see

Example 6). Analogously, if [T2i,∞) ∩ T
d = ∅ for some i ∈ N, then T2i+1 = ∞. If Tj = ∞

for some j ∈ N0, then we take Tj+i = Tj for i ∈ N and [Tj+i, Tj+i+1) = (Tj+i, Tj+i+1] = ∅ (see
Example 7). We see that if σ (T0) = T0, then T1 = T0.

Example 1 Let T = {1} ∪ [2, 3] ∪ [6,∞). Here T0 = 1, T1 = 2, T2 = 3, T3 = 6, and T4 = ∞.

We underline that T2i+1 ∈ T
d for any i ∈ N0, but it is possible that T2i /∈ T

s for some
i ∈ N0.

Example 2 Let T =
⋃∞

i=1[2i – 1, 2i] ∪ {4i + 1
j+1 : i, j ∈N}. Here T0 = 1, T1 = T0, and Ti = i for

i ∈ {2, 3, . . .}. We see that T1 = T0 ∈ T
d , T2i+1 ∈ T

d , T4i ∈ T
d , and T4i+2 ∈ T

s for i ∈N.

Example 3 Let T =
⋃∞

i=1[2i – 1, 2i] ∪ {4i + 1 – 1
j+1 : i, j ∈ N}. Here T0 = 1, Ti = i for i ∈ N,

and T2i–1 ∈ T
d and T2i ∈ T

s for i ∈N.
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We can write

T = {T0} ∪
∞⋃

j=0

(Tj, Tj+1] = {T0} ∪
∞⋃

i=0

(T2i, T2i+1] ∪ (T2i+1, T2i+2]

wherein (T2i, T2i+1) ⊂ T
s and (T2i+1, T2i+2) ⊂ T

d .
In the next lemma, for any i ∈ N, we present the estimates of the norms of matrices

e–γ B(t, T2i) for t ∈ [T2i, T2i+1) and e–γ B(t, T2i+1) for t ∈ [T2i+1, T2i+2).

Lemma 2 Suppose that, for i = 1, 2, . . . , N , the following conditions are satisfied:

γ (t)λi ∈ (0,∞) for t ∈ T, (8)

0 < δ ≤ μ(t)γ (t)λi < 1 for t ∈ T
s, where δ is a constant. (9)

Then there exists a positive real number M < 1 such that

∥
∥e–γ B(t, T2i)

∥
∥≤

∏

s∈[T2i ,t)

M for t ∈ [T2i, T2i+1), i ∈N0,

∥
∥e–γ B(t, T2i+1)

∥
∥≤M

∫ t
T2i+1

|γ (s)|ds for t ∈ [T2i+1, T2i+2), i ∈N0,

where ‖ · ‖ denotes the spectral norm of the considered matrix at the point t.

Proof Obviously, Ts ∪T
d = T. We consider two cases:

(i) t ∈ T
s;

(ii) t ∈ T
d .

In case (i), notice that since matrix B is symmetric, I –μ(t)γ (t)B is also a symmetric matrix
at the point t. Therefore ‖I – μ(t)γ (t)B‖ equals the maximum of the absolute value of
eigenvalues of the matrix I – μ(t)γ (t)B. This means that

∥
∥e–γ B(t, T2i)

∥
∥ =

∏

s∈(T2i ,t]

∥
∥I – μ(s)γ (s)B

∥
∥ =

∏

s∈(T2i ,t]

(
max

i∈{1,2,...,N}
{∣
∣1 – μ(s)γ (s)λi

∣
∣
})

for t ∈ [T2i, T2i+1). Because of the positivity of μ on T
s and condition (8), we have

|μ(s)γ (s)λi| = μ(s)γ (s)λi. Moreover, by (9), μ(s)γ (s)λi ∈ (0, 1) for i ∈ {1, 2, . . . , N}. We can
conclude

∥
∥e–γ B(t, T2i)

∥
∥ =

∏

s∈(T2i ,t]

(
1 – min

i∈{1,2,...,N}
{
μ(s)γ (s)λi

})
.

Again by (9), we have

–1 < – min
i∈{1,2,...,N}μ(s)γ (s)λi ≤ –δ < 0.

By the preceding we have

∥
∥e–γ B(t, T2i)

∥
∥≤

∏

s∈(T2i ,t]

(1 – δ) =
∏

s∈(T2i ,t]

M∗ =
∏

s∈[T2i ,t)

M∗ for t ∈ [T2i, T2i+1),

where M∗ := 1 – δ ∈ (0, 1).
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Case (ii). Condition (8) implies
(1◦) λi > 0 for any i = 1, 2, . . . , N and γ (t) > 0 for any t ∈ T

d

or
(2◦) λi < 0 for any i = 1, 2, . . . , N and γ (t) < 0 for any t ∈ T

d .
If (1◦), then

∥
∥e–γ B(t, T2i+1)

∥
∥ =

∥
∥eB∥∥–

∫ t
T2i+1

γ (s) ds =
(

max
i∈{1,2,...,N}

{
eλi
})–

∫ t
T2i+1

γ (s) ds

=
(
M∗∗)

∫ t
T2i+1

γ (s) ds =
(
M∗∗)

∫ t
T2i+1

|γ (s)|ds

for t ∈ [T2i+1, T2i+2), where M∗∗ := (maxi∈{1,2,...,N}{eλi})–1 ∈ (0, 1).
If (2◦), then

∥
∥e–γ B(t, T2i+1)

∥
∥ =

∥
∥eB∥∥–

∫ t
T2i+1

γ (s) ds =
(

max
i∈{1,2,...,N}

{
eλi
})–

∫ t
T2i+1

γ (s) ds

=
(
M∗∗)–

∫ t
T2i+1

γ (s) ds =
(
M∗∗)

∫ t
T2i+1

|γ (s)|ds

for t ∈ [T2i+1, T2i+2), where M∗∗ := maxi∈{1,2,...,N}{eλi} ∈ (0, 1).
Set M := max{M∗,M∗∗}. Obviously M ∈ (0, 1).
Hence ‖e–γ B(t, T2i)‖ ≤ ∏

s∈[T2i ,t) M for t ∈ [T2i, T2i+1) and ‖e–γ B(t, T2i+1)‖ ≤
M

∫ t
T2i+1

|γ (s)|ds for t ∈ [T2i+1, T2i+2). �

Next, we find the estimates of the norm of the matrix e–γ B(t, T0) in two cases, t ∈
[T2i, T2i+1) and t ∈ [T2i+1, T2i+2).

Lemma 3 If conditions (8)–(9) are satisfied, then

∥
∥e–γ B(t, T0)

∥
∥≤ (

M
∑i

j=1
∫ T2j

T2j–1
|γ (s)|ds)

( ∏

s∈[T0,t)∩Ts

M
)

(10)

for t ∈ [T2i, T2i+1), and

∥
∥e–γ B(t, T0)

∥
∥≤

( ∏

s∈[T0,T2i+1)∩Ts

M
)
(
M

∑i
j=1

∫ T2j
T2j–1

|γ (s)|ds+
∫ t

T2i+1
|γ (s)|ds)

(11)

for t ∈ [T2i+1, T2i+2), where i ∈N0.

Proof Let us rewrite the function e–γ B(t, T0) in the form

e–γ B(t, T0) =
( ∏

s∈[T0,T1)

(
I – μ(s)γ (s)B

)
)
(
e–B

∫ T2
T1

γ (s) ds)

·
( ∏

s∈[T2,T3)

(
I – μ(s)γ (s)B

)
)
(
e–B

∫ T4
T3

γ (s) ds)

· · ·
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·
( ∏

s∈[T2i–2,T2i–1)

(
I – μ(s)γ (s)B

)
)
(
e–B

∫ T2i
T2i–1

γ (s) ds)

·
( ∏

s∈[T2i ,t]

(
I – μ(s)γ (s)B

)
)

for t ∈ [T2i, T2i+1)

or

e–γ B(t, T0) =
( ∏

s∈[T0,T1)

(
I – μ(s)γ (s)B

)
)
(
e–B

∫ T2
T1

γ (s) ds)

·
( ∏

s∈[T2,T3)

(
I – μ(s)γ (s)B

)
)
(
e–B

∫ T4
T3

γ (s) ds)

· · ·
·
( ∏

s∈[T2i–2,T2i–1)

(
I – μ(s)γ (s)B

)
)
(
e–B

∫ T2i
T2i–1

γ (s) ds)

·
( ∏

s∈[T2i ,T2i+1)]

(
I – μ(s)γ (s)B

)
)
(
e–B

∫ t
T2i+1

γ (s) ds) for t ∈ [T2i+1, T2i+2).

By submultiplicativity of the norm, for t ∈ [T2i, T2i+1), we estimate the norm of the matrix
e–γ B(t, T0):

∥
∥e–γ B(t, T0)

∥
∥ ≤

( ∏

s∈[T0,T1)

∥
∥I – μ(s)γ (s)B

∥
∥

)
(∥
∥eB∥∥–

∫ T2
T1

|γ (s)|ds)

·
( ∏

s∈[T2,T3)

∥
∥I – μ(s)γ (s)B

∥
∥

)
(∥
∥eB∥∥–

∫ T4
T3

|γ (s)|ds)

· · ·
·
( ∏

s∈[T2i–2,T2i–1)

∥
∥I – μ(s)γ (s)B

∥
∥

)
(∥
∥eB∥∥–

∫ T2i
T2i–1

|γ (s)|ds)

·
( ∏

s∈[T2i ,t)

∥
∥I – μ(s)γ (s)B

∥
∥

)

≤
( ∏

s∈[T0,T1)

M
)
(
M

∫ T2
T1

|γ (s)|ds)
( ∏

s∈[T2,T3)

M
)
(
M

∫ T4
T3

|γ (s)|ds) · · ·

· (M
∫ T2i

T2i–1
|γ (s)|ds)

( ∏

s∈[T2i ,t)

M
)

=
( ∏

s∈[T0,t)∩Ts

M
)
(
M

∫ T2
T1

|γ (s)|ds+
∫ T4

T3
|γ (s)|ds+···+∫ T2i

T2i–1
|γ (s)|ds)

=
(
M

∑i
j=1

∫ T2j
T2j–1

|γ (s)|ds)
( ∏

s∈[T0,t)∩Ts

M
)

.

Analogously, for t ∈ [T2i+1, T2i+2), we get

∥
∥e–γ B(t, T0)

∥
∥≤

( ∏

s∈[T0,T2i+1)∩Ts

M
)
(
M

∑i
j=1

∫ T2j
T2j–1

|γ (s)|ds+
∫ t

T2i+1
|γ (s)|ds)

.
�
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Remark 1 If conditions (8)–(9) are satisfied, then

∥
∥e–γ B(t, T0)

∥
∥≤

∏

s∈[T0,t)∩Ts

M for t ∈ T.

Proof Since M ∈ (0, 1) and
∑i

j=1
∫ T2j

T2j–1
|γ (s)|ds +

∫ t
T2i+1

|γ (s)|ds ≥ 0, we get

M
∑i

j=1
∫ T2j

T2j–1
|γ (s)|ds+

∫ t
T2i+1

|γ (s)|ds ≤ 1 for t ∈ T.

From the above, inequalities (10) and (11) imply

∥
∥e–γ B(t, T0)

∥
∥≤

∏

s∈[T0,t)∩Ts

M for t ∈ [T2i, T2i+1),

∥
∥e–γ B(t, T0)

∥
∥≤

∏

s∈[T0,T2i+1)∩Ts

M for t ∈ [T2i+1, T2i+2),

where i ∈N0, and this is our claim. �

The following result concerns the scalar case of exponential function on arbitrary time
scale.

Lemma 4 Let eLM–1 (·, T0) : T→R. Then

eLM–1 (t, T0) = eLM–1 ∑i
j=1(T2j–T2j–1) ∏

s∈[T0,t)∩Ts

(
1 + μ(s)LM–1)

for t ∈ [T2i, T2i+1), and

eLM–1 (t, T0) =
∏

s∈[T0,T2i+1)∩Ts

(
1 + μ(s)LM–1) · eLM–1(

∑i
j=1(T2j–T2j–1)+(t–T2j+1))

for t ∈ [T2i+1, T2i+2), where i ∈N0.

We are now in a position to present the main theorem of this paper.

Theorem 1 Suppose that conditions (7)–(9) are satisfied and for any t ∈ T,

there exists a positive constant μ∗ such that μ(t) ≤ μ∗, (12)

lim
t→∞ eLM–1 ∑i

j=1(T2j–T2j–1)M
∑i

j=1
∫ T2j

T2j–1
|γ (s)|ds ∏

s∈[T0,t)∩Ts

(
M + μ∗L

)
= 0, (13)

and

lim
t→∞ eLM–1(

∑i
j=1(T2j–T2j–1)+(t–T2j+1))

·M
∑i

j=1
∫ T2j

T2j–1
|γ (s)|ds+

∫ t
T2i+1

|γ (s)|ds ∏

s∈[T0,T2i+1)∩Ts

(
M + μ∗L

)
= 0. (14)

Then equation (5) is exponentially stable.
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Proof Taking the norm of the both sides of equation (6), we obtain

∥
∥ε(t)

∥
∥ =

∥
∥
∥
∥e–γ B(t, T0)εT0 +

∫ t

T0

e–γ B
(
t,σ (τ )

)(
F
(
τ , x0(τ )1

)
– F

(
τ , x(τ )

))
�τ

∥
∥
∥
∥.

Using properties of the norm, we get

∥
∥ε(t)

∥
∥≤ ∥

∥e–γ B(t, T0)
∥
∥‖εT0‖ +

∥
∥
∥
∥

∫ t

T0

e–γ B
(
t,σ (τ )

)(
F
(
τ , x0(τ )1

)
– F

(
τ , x(τ )

))
�τ

∥
∥
∥
∥,

and consequently

∥
∥ε(t)

∥
∥≤ ‖εT0‖

∥
∥e–γ B(t, T0)

∥
∥ +

∫ t

T0

∥
∥e–γ B

(
t,σ (τ )

)∥
∥
∥
∥
(
F
(
τ , x0(τ )1

)
– F

(
τ , x(τ )

))∥
∥�τ .

By condition (7) we obtain

∥
∥ε(t)

∥
∥≤ ‖εT0‖

∥
∥e–γ B(t, T0)

∥
∥ + L

∫ t

T0

∥
∥e–γ B

(
t,σ (τ )

)∥
∥
∥
∥ε(τ )

∥
∥�τ .

For t ∈ [T2i, T2i+1), using (10), we estimate

∥
∥ε(t)

∥
∥ ≤ ‖εT0‖

(
M

∑i
j=1

∫ T2j
T2j–1

|γ (s)|ds) ∏

s∈[T0,t)∩Ts

M

+ L
∫ t

T0

(
M

∫ T2i
σ (τ ) |γ (s)|ds) ∏

s∈[σ (τ ),t)∩Ts

M
∥
∥ε(τ )

∥
∥�τ .

Multiplying both sides of this inequality by

(
M–

∑i
j=1

∫ T2j
T2j–1

|γ (s)|ds) ∏

s∈(T0,t)∩Ts

M–1,

we obtain

∥
∥ε(t)

∥
∥
(
M–

∑i
j=1

∫ T2j
T2j–1

|γ (s)|ds) ∏

s∈(T0,t)∩Ts

M–1

≤ ‖εT0‖M +
∫ t

T0

L
∥
∥ε(τ )

∥
∥
(
M–(

∑i
j=1

∫ T2j
T2j–1

|γ (s)|ds+
∫ σ (τ )

T2i
|γ (s)|ds)) ∏

s∈(T0,τ ]∩Ts

M–1�τ .

Since M–
∫ T0

T0
|γ (s)|ds = 1,

∥
∥ε(t)

∥
∥
(
M–

∑i
j=1

∫ T2j
T2j–1

|γ (s)|ds) ∏

s∈(T0,t)∩Ts

M–1

≤ ‖εT0‖M–
∫ T0

T0
|γ (s)|ds ·M

+
∫ t

T0

L
∥
∥ε(τ )

∥
∥
(
M–(

∑i
j=1

∫ T2j
T2j–1

|γ (s)|ds+
∫ σ (τ )

T2i
|γ (s)|ds)) ∏

s∈(T0,τ ]∩Ts

M–1�τ .
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Using σ (τ ) = τ , we get

∥
∥ε(t)

∥
∥
(
M–

∑i
j=1

∫ T2j
T2j–1

|γ (s)|ds) ∏

s∈(T0,t)∩Ts

M–1

≤ ‖εT0‖M–
∫ T0

T0
|γ (s)|ds ·M

+
∫ t

T0

L
∥
∥ε(τ )

∥
∥
(
M–(

∑i
j=1

∫ T2j
T2j–1

|γ (s)|ds+
∫ τ

T2i
|γ (s)|ds)) ∏

s∈(T0,τ ]∩Ts

M–1�τ .

By Lemma 1 this leads to the inequality

∥
∥ε(t)

∥
∥
(
M–

∑i
j=1

∫ T2j
T2j–1

|γ (s)|ds) ∏

s∈(T0,t)∩Ts

M–1 ≤ ‖εT0‖MeLM–1 (t, T0).

Using Lemma 4, we have

∥
∥ε(t)

∥
∥
(
M–

∑i
j=1

∫ T2j
T2j–1

|γ (s)|ds) ∏

s∈(T0,t)∩Ts

M–1

≤ ‖εT0‖M
(
eLM–1 ∑i

j=1(T2j–T2j–1)) ∏

s∈[T0,t)∩Ts

(
1 + μ(s)LM–1).

Hence

∥
∥ε(t)

∥
∥ ≤ ‖εT0‖

(
eLM–1 ∑i

j=1(T2j–T2j–1))

· (M
∑i

j=1
∫ T2j

T2j–1
|γ (s)|ds) ∏

s∈[T0,t)∩Ts

(
M + μ(s)L

)
.

By (12) we have

∥
∥ε(t)

∥
∥ ≤ ‖εT0‖

(
eLM–1 ∑i

j=1(T2j–T2j–1))

· (M
∑i

j=1
∫ T2j

T2j–1
|γ (s)|ds) ∏

s∈[T0,t)∩Ts

(
M + μ∗L

)
. (15)

Analogously, for t ∈ (T2i+1, T2i+2],

∥
∥ε(t)

∥
∥ ≤ ‖εT0‖

(
eLM–1 ∑i

j=1(T2j–T2j–1))

· (M
∑i

j=1
∫ T2j

T2j–1
|γ (s)|ds+

∫ t
T2i+1

|γ (s)|ds) ∏

s∈[T0,T2i+1)∩Ts

(
M + μ∗L

)
. (16)

Set

sum(i) :=
i∑

j=1

(

LM–1(T2j – T2j–1) + lnM
∫ T2j

T2j–1

∣
∣γ (s)

∣
∣ds

)

,

e∗
d(t, T0) := esum(i)

∏

s∈[T0,t)∩Ts

(
M + μ∗L

)
for t ∈ (T2i, T2i+1],
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e∗∗
d (t, T0) := esum(i)+

∫ t
T2i+1

|γ (s)|ds ∏

s∈[T0,T2i+1)∩Ts

(
M + μ∗L

)
for t ∈ (T2i+1, T2i+2]

for i ∈ N0, and

ed(t, T0) :=

⎧
⎨

⎩

e∗
d(t, T0) for t ∈ (T2i, T2i+1],

e∗∗
d (t, T0) for t ∈ (T2i+1, T2i+2].

By (13) and (14) inequalities (15) and (16) imply the thesis. �

Corollary 1 Let conditions (7)–(9) and (12) be satisfied. Moreover, suppose that

for any t ∈ T
s, there exists t̃ ∈ T

d such that t̃ > t and

for any t ∈ T
d, there exists t̃ ∈ T

s such that t̃ > t,
(17)

M + μ∗L < 1, (18)

and

lim
i→∞ esum(i) < ∞. (19)

Then equation (5) is exponentially stable.

Proof By (17) we get that t → ∞ iff i → ∞. Since 0 < M + μ∗L < 1 and M ∈ (0, 1), by
properties of the functions Mt and et condition (19) implies conditions (13) and (14).
Hence assumptions of Theorem 1 are satisfied. So, the statement holds. �

Example 4 Let

T =
∞⋃

i=3

[
i
2

,
i
2

+
1
i3

]

.

Here T
d =

⋃∞
i=3[ i

2 , i
2 + 1

i3 ) and T
s = { i

2 + 1
i3 : i ∈N, i ≥ 3},

T0 = T1 = 1.500, T2 ≈ 1.537, T3 = 2.000, . . . , μ∗ = 0.500.

Moreover, let

f (t, x) = 0.100
x
t2 , γ (t) ≡ 0.500(t – 1),

A =

⎡

⎢
⎢
⎢
⎣

0 0 1 1
0 0 0 0
1 0 0 1
1 0 1 0

⎤

⎥
⎥
⎥
⎦

, D =

⎡

⎢
⎢
⎢
⎣

0 0 0 0
0 3 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎥
⎦

in equation (5) (see Fig. 1).
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Figure 1 The topology of the leader-following multi-agent system
under the undirected graph

Hence

L =

⎡

⎢
⎢
⎢
⎣

2 0 –1 –1
0 0 0 0

–1 0 2 –1
–1 0 –1 2

⎤

⎥
⎥
⎥
⎦

and B =

⎡

⎢
⎢
⎢
⎣

2 0 –1 –1
0 3 0 0

–1 0 3 –1
–1 0 –1 3

⎤

⎥
⎥
⎥
⎦

. (20)

We have L = 0.100, λ1 = 2 –
√

2, λ2 = 2, λ3 = 3, and λ4 = 2 +
√

2. From this it follows that
λmin = min{λ1,λ2,λ3,λ4} ≈ 0.585 and

max
{

1 – 0.462 · 0.250 · 0.585, e–0.585}≤ max{0.933, 0.557} = 0.933 =: M.

From the above we get

∏

s∈Ts

(
M + μ∗L

)≈
∏

s∈Ts

0.983 = 0

and

lim
i→∞ esum(i) ≈ lim

i→∞ e
∑i

j=3(0.108j–3–0.070·0.250(i–2–2i–3+i–6)) < ∞.

All assumptions of Corollary 1 are satisfied, and thus equation (5) is exponentially stable.
System (2)–(3) achieves consensus exponentially.

In Example 4 we have

lim
i→∞ eLM–1 ∑i

j=1(T2j–T2j–1) ≈ lim
i→∞ e0.108

∑i
j=3 j–3

< ∞,

but this condition is not required for the exponential stability of (5) (see Example 5).

Remark 2 If conditions (7)–(9), (12), and (18) are satisfied and if

γ (t) ≡ γ ∈R (21)

and

LM–1 + γ lnM < 0, (22)

then equation (5) is exponentially stable.
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Proof If condition (21) holds, then

sum(i) =
i∑

j=1

(
LM–1(T2j – T2j–1) + γ (T2j – T2j–1) lnM

)

=
(
LM–1 + γ lnM

)
i∑

j=1

(T2j – T2j–1).

By (22) we see that sum(i) < 0 for any i ∈ N and esum(i) is a positive decreasing function
of the variable i ∈ N. Here

∏
s∈Ts (M + μ∗L) and esum(i) for any i ∈ N are bounded. If

the cardinality of set Ts is infinity, then lims→∞
∏

s∈Ts (M + μ∗L) = 0. If the cardinality
of set T

d is infinity, then limi→∞ esum(i) = 0. Thus, by Theorem 1, we obtain the state-
ment. �

Example 5 Let

T =
∞⋃

i=3

[
i
2

,
i
2

+
1
i

]

.

Here T
d =

⋃∞
i=3[ i

2 , i
2 + 1

i ) and T
s = { i

2 + 1
i : i ∈ N, i ≥ 3},

T0 = T1 = 1.500, T2 ≈ 1.833, T3 = 2.000, . . . ,

μ(t) =
1
2

–
t
2

+
1
2
√

t2 – 2 for t ∈ T
s, μ∗ = 0.500.

Moreover, let

f (t, x) = 0.250
sin x

t2 , γ (t) ≡ 2.000,

and let the matrix B be given by (20) in equation (5). Then L = 0.250, λmin ≈ 0.585, and

max
{

1 – 0.333 · 2.000 · 0.585, e–0.585}≤ max{0.390, 0.557} = 0.557 =: M.

Finally,

LM–1 + γ lnM≈ 0.449 – 1.170 = –0.721 < 0.

All assumptions of Remark 2 hold, and thus equation (5) is exponentially stable.

In Example 5 we have

lim
i→∞ eLM–1 ∑i

j=1(T2j–T2j–1) ≈ lim
i→∞ e0.449

∑i
j=1

1
i = ∞,

although system (2)–(3) achieves consensus exponentially.
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Corollary 2 If conditions (7)–(9) and (18) are satisfied and if

∞∑

i=0

(T2i+2 – T2i+1) < ∞, (23)

then equation (5) is exponentially stable.

Proof Since (23) holds,

esum(i) = constant.

Hence, recalling that the cardinality of the set Ts is infinity, by (18) we obtain

lim
i→∞ esum(i)

∏

s∈[T0,T2i)∩Ts

(
M + μ∗L

)

= lim
i→∞ c∗

( ∏

s∈[T0,T2i)∩Ts

(
M + μ∗L

)
)

= c∗ ∏

s∈Ts

(
M + μ∗L

)
= 0,

where c∗ = esum(i). �

For two possible cases of carrying out of assumption (23), see Examples 4 and 7.
Theorem 1 generalizes Theorem 2 [14]. In the following example we present an equa-

tion on time scale for which Theorem 2 [14] cannot be applied, but our Corollary 2 of
Theorem 1 can be.

Example 6 Let

T = {i : i ∈N} ∪
{

i +
1

j + 1
: i, j ∈N, j ≥ 2

}

.

Here T
d = {i : i ∈N} and T

s = {i + 1
j+1 : i, j ∈N, j ≥ 2},

T0 = 1, T1 = ∞, μ(t) =
(t – i)2

1 + t – i
for t ∈ T

s, μ∗ = 0.500.

Set f (t, x) = 0.250x,

γ (t) =

⎧
⎨

⎩

1
μ(t) for t ∈ T

s,

0 for t ∈ T
d,

and B is given by (20) in equation (5). We have L = 0.250, λmin = 0.585, and

max
{

1 – 1 · 0.585, e–0.585}≤ max{0.515, 0.557} = 0.557 =: M.
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Hence

∏

s∈Ts

(
M + μ∗L

)≈
∏

s∈Ts

0.682 = 0.

All assumptions of Corollary 2 are satisfied, and thus equation (5) is exponentially stable.

Since lim inft→∞ μ(t) = 0, the results obtained in [14] cannot be applied.
The following examples show two different situations concerning time scale in which

condition (23) is satisfied. In the first example, Td is a bounded set. In the second one, Td

is unbounded.

Example 7 Let

T = [1, 2] ∪ [3, 7] ∪ {n : n ∈N, n ≥ 8}.

Here T
d = [1, 2] ∪ [3, 7] is bounded, and T

s = {n : n ∈N, n ≥ 8}. We see that

T0 = 1, T1 = T0 = 1, T2 = 2, T3 = 3,

T4 = 7, T5 = 8, T6 = ∞,

μ(t) = 1 for t ∈ T
s, μ∗ = 1.

Let also

f (t, x) =
1

4
√

t
sin x, γ (t) = cos t + 2,

and let the matrix B be given by (20) in equation (5). Then L = 0.250, λmin = 0.585 and

M := max
{

1 – 1 · 1 · 0.585, e–0.585}≈ 0.557 < 1.

As a consequence,

∏

s∈Ts

(
M + μ∗L

)≈
∏

s∈Ts

0.807 = 0.

All assumptions of Corollary 2 are satisfied, and thus equation (5) is exponentially stable.
This means that the multi-agent system (2)–(3) achieves the leader-following consensus
exponentially.

Example 8 Let

T =
∞⋃

i=3

[
i
2

+
1

i + 1
,

i
2

+
1
i

]

.

Here either Td =
⋃∞

i=3[ i
2 + 1

i+1 , i
2 + 1

i ) or Ts = { i
2 + 1

i : i ∈N, i ≥ 3} is an unbounded set. We
see that

T0 = T1 = 1.750, T2 ≈ 1.833, T3 = 2.200, T4 = 2.250, . . . ,
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μ(t) =
1
2

–
2

(t +
√

t2 – 2)(2 + t +
√

t2 – 2)
for t ∈ T

s, μ∗ = 0.500.

Moreover,

f (t, x) =
x
4t

, γ (t) =
1
4

t2,

and the matrix B is given by (20) in equation (5). Then L = 0.250, λmin = 0.585, and

max
{

1 – 0.366 · 0.765 · 0.585, e–0.585} < 0.836 =: M.

Hence

∏

s∈Ts

(
M + μ∗L

)≈
∏

s∈Ts

0.961 = 0.

All assumptions of Corollary 2 are satisfied, and thus equation (5) is exponentially stable.
System (2)–(3) achieves consensus exponentially.

Notice that in Example 8 we have

lim
i→∞ eLM–1 ∑i

j=1(T2j–T2j–1) = lim
i→∞ e0.299

∑i
j=1

1
i(i+1) = e0.299 < ∞.

Remark 3 If conditions (7)–(9) are satisfied,

∞∑

j=1

∫ T2j

T2j–1

∣
∣γ (s)

∣
∣ds < ∞,

and

lim
i→∞ eLM–1 ∑i

j=1(T2j–T2j–1) ·
∏

s∈[T0,T2i)∩Ts

(
M + μ∗L

)
= 0,

then equation (5) is exponentially stable.

(See Example 4.)

Remark 4 Let conditions (7)–(9) be satisfied. If the cardinality of the set Ts is finite and
sum(i) < 0 for any i ∈N, then equation (5) is exponentially stable.

Example 9 Let

T = {1} ∪ {11} ∪ [12,∞).

Here T
d = [12,∞) is an unbounded set, whereas Ts = {1} ∪ {11} is bounded, and

T0 = 1, T1 = 12, T2 = ∞, μ(1) = 10, μ(11) = 1, μ∗ = 10.
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Let

f (t, x) = 0.1x, γ (t) = 1,

and let the matrix B be given by (20) in equation (5). Then L = 0.100, λmin ≈ 0.585, and

max
{

1 – 0.585, e–0.585} < 0.557 =: M.

Hence

sum(i) ≈ 0.180(T2 – T1) – 0.585
∫ T2

T1

ds = –0.405(T2 – T1) = –∞ < 0.

All assumptions of Remark 4 are satisfied, and thus equation (5) is exponentially stable.

Notice that in Example 9 condition (18) does not hold.
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