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1 Introduction
Consider the first-order linear differential equation with several variable deviating argu-
ments of either delayed (DDE)

x′(t) +
m∑

i=1

pi(t)x
(
τi(t)

)
= 0, t ≥ t0, (E)

or advanced type (ADE)

x′(t) –
m∑

i=1

qi(t)x
(
σi(t)

)
= 0, t ≥ t0, (E′)

where pi, qi, 1 ≤ i ≤ m, are functions of nonnegative real numbers, and τi, σi, 1 ≤ i ≤ m,
are functions of positive real numbers satisfying

τi(t) < t, t ≥ t0 and lim
t→∞ τi(t) = ∞, 1 ≤ i ≤ m, (1.1)

and

σi(t) > t, t ≥ t0, 1 ≤ i ≤ m, (1.2)

respectively.
By a solution of (E) or (E′) we mean a function absolutely continuous on [t0,∞) satisfying

(E) or (E′) for almost all t ≥ t0.
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A solution of (E) or (E′) is oscillatory if it is neither eventually positive nor eventually
negative. If there exists an eventually positive or eventually negative solution, then the
equation is nonoscillatory. An equation is oscillatory if all its solutions oscillate.

The problem of establishing sufficient conditions for the oscillation of all solutions of
equations (E) or (E′) has been studied extensively. The reader is referred to [1–23] and
the references cited therein. Most of this work though involves the special case where the
arguments are nondecreasing, while only a small fraction of these papers deal with the
general case where the arguments are not necessarily monotone. See, for example, [1–7,
13, 14] and the references cited therein. The general case is significant not only from the
mathematical standpoint, but for its applications in the real world as well. This is because
there are always natural disturbances, for example, noise in communication systems, that
affect all the parameters of the equation, and therefore the fair (from a mathematical point
of view) monotone arguments become non-monotone almost always.

The objective of this paper is to derive new sufficient conditions for all solutions of (E)
and (E′) to be oscillatory when the arguments are not necessarily monotone. Our results
essentially improve several known criteria existing in the literature, which are briefly re-
viewed below for the reader’s convenience.

Throughout this paper, we are going to use the following notation:

P(t) :=
m∑

i=1

pi(t), α := lim inf
t→∞

∫ t

τ (t)
P(s) ds,

Q(t) :=
m∑

i=1

qi(t), β := lim inf
t→∞

∫ σ (t)

t
Q(s) ds,

and

D(ω) :=

⎧
⎨

⎩
0, if ω > 1/e,
1–ω–

√
1–2ω–ω2
2 , if ω ∈ [0, 1/e],

where τ (t) := max1≤i≤m{τi(t)} and σ (t) := min1≤i≤m{σi(t)}.

1.1 DDEs (chronological review)
It follows from Remark 2.7.3 in [20] that if τi, 1 ≤ i ≤ m, are nondecreasing and

lim sup
t→∞

∫ t

τ (t)
P(s) ds > 1, (1.3)

then every solution of (E) oscillates. This result is similar to Theorem 2.1.3 [20] which is
a special case of the result by Ladas, Lakshmikantham, and Papadakis [17].

In 1978, Ladde [19] and in 1982, Ladas and Stavroulakis [18] proved that if

α >
1
e

, (1.4)

then every solution of (E) oscillates.
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In 1984, Hunt and Yorke [11] proved that if τi are nondecreasing, t –τi(t) ≤ τ0, 1 ≤ i ≤ m,
and

lim inf
t→∞

m∑

i=1

pi(t)
(
t – τi(t)

)
>

1
e

, (1.5)

then every solution of (E) oscillates.
Suppose that τi, 1 ≤ i ≤ m, are not necessarily monotone. Set

hi(t) := sup
t0≤s≤t

τi(s) and h(t) := max
1≤i≤m

hi(t), t ≥ t0. (1.6)

Clearly, hi, h are nondecreasing and τi(t) ≤ hi(t) ≤ h(t) < t for all t ≥ t0.
In 2016, Braverman, Chatzarakis, and Stavroulakis [1] proved that if, for some r ∈N,

lim sup
t→∞

∫ t

h(t)

m∑

i=1

pi(ζ )ar
(
h(t), τi(ζ )

)
dζ > 1, (1.7)

or

lim inf
t→∞

∫ t

h(t)

m∑

i=1

pi(ζ )ar
(
h(t), τi(ζ )

)
dζ >

1
e

, (1.8)

where

a1(t, s) := exp

{∫ t

s
P(ζ ) dζ

}
,

ar+1(t, s) := exp

{∫ t

s

m∑

i=1

pi(ζ )ar
(
ζ , τi(ζ )

)
dζ

}
,

then every solution of (E) oscillates.
Several improvements have been made to the above conditions, see [3–5, 7] to arrive at

the recent forms [4]

lim sup
t→∞

∫ t

h(t)
P(s) exp

(∫ h(t)

τ (s)
P(u) exp

(∫ u

τ (u)
W�(ξ ) dξ

)
du

)
ds > 1, (1.9)

lim sup
t→∞

∫ t

h(t)
P(s) exp

(∫ h(t)

τ (s)
P(u) exp

(∫ u

τ (u)
W�(ξ ) dξ

)
du

)
ds > 1 – D(α), (1.10)

lim inf
t→∞

∫ t

h(t)
P(s) exp

(∫ h(s)

τ (s)
P(u) exp

(∫ u

τ (u)
W�(ξ ) dξ

)
du

)
ds >

1
e

, (1.11)

where

W�(t) := P(t)
[

1 +
∫ t

τ (t)
P(s) exp

(∫ t

τ (s)
P(u) exp

(∫ u

τ (u)
W�–1(ξ ) dξ

)
du

)
ds

]

with

W0(t) := P(t)
[

1 +
∫ t

τ (t)
P(s) exp

(∫ t

τ (s)
P(ω) exp

(
λ0

∫ ω

τ (ω)
P(u) du

)
dω

)
ds

]
,

where λ0 is the smaller root of the transcendental equation λ = eαλ.
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1.2 ADEs (chronological review)
For (E′), the dual condition of (1.3) is

lim sup
t→∞

∫ σ (t)

t
Q(s) ds > 1, (1.12)

where σi, 1 ≤ i ≤ m, are nondecreasing (see [20], paragraph 2.7).
In 1978, Ladde [19] and in 1982, Ladas and Stavroulakis [18] proved that if

β >
1
e

, (1.13)

then every solution of (E′) oscillates.
In 1990, Zhou [23] proved that if σi(t) – t ≤ σ0, 1 ≤ i ≤ m, and

lim inf
t→∞

m∑

i=1

qi(t)
(
σi(t) – t

)
>

1
e

, (1.14)

then every solution of (E′) oscillates; see also [8, Corollary 2.6.12].
Suppose that σi, 1 ≤ i ≤ m, are not necessarily monotone. Set

ρi(t) := inf
s≥t

σi(s) and ρ(t) := min
1≤i≤m

ρi(t), t ≥ t0. (1.15)

Clearly, ρi, ρ are nondecreasing and σi(t) ≥ ρi(t) ≥ ρ(t) > t for all t ≥ t0.
In 2016, Braverman, Chatzarakis, and Stavroulakis [1] proved that if, for some r ∈N,

lim sup
t→∞

∫ ρ(t)

t

m∑

i=1

qi(ζ )br
(
ρ(t),σi(ζ )

)
dζ > 1, (1.16)

or

lim inf
t→∞

∫ ρ(t)

t

m∑

i=1

qi(ζ )br
(
ρ(t),σi(ζ )

)
dζ >

1
e

, (1.17)

where

b1(t, s) := exp

{∫ s

t
Q(ζ ) dζ

}
,

br+1(t, s) := exp

{∫ s

t

m∑

i=1

qi(ζ )br
(
ζ ,σi(ζ )

)
dζ

}
,

then every solution of (E′) oscillates.
Several improvements have been made to the above conditions, see [3–5, 7] to arrive at

the recent forms [4]

lim sup
t→∞

∫ ρ(t)

t
Q(s) exp

(∫ σ (s)

ρ(t)
Q(u) exp

(∫ σ (u)

u
S�(ξ ) dξ

)
du

)
ds > 1, (1.18)
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lim sup
t→∞

∫ ρ(t)

t
Q(s) exp

(∫ σ (s)

ρ(t)
Q(u) exp

(∫ σ (u)

u
S�(ξ ) dξ

)
du

)
ds > 1 – D(β), (1.19)

lim inf
t→∞

∫ ρ(t)

t
Q(s) exp

(∫ σ (s)

ρ(s)
Q(u) exp

(∫ σ (u)

u
S�(ξ ) dξ

)
du

)
ds >

1
e

, (1.20)

where

S�(t) := Q(t)
[

1 +
∫ σ (t)

t
Q(s) exp

(∫ σ (s)

t
Q(u) exp

(∫ σ (u)

u
S�–1(ξ ) dξ

)
du

)
ds

]

with

S0(t) := Q(t)
[

1 +
∫ σ (t)

t
Q(s) exp

(∫ σ (s)

t
Q(ω) exp

(
λ0

∫ σ (ω)

ω

Q(u) du
)

dω

)
ds

]
,

where λ0 is the smaller root of the transcendental equation λ = eβλ.

2 Main results
2.1 DDEs
New sufficient conditions are established for the oscillation of all solutions of (E) using
an iterative method. These conditions, involving lim sup and lim inf, significantly improve
several results in the literature.

We now cite two lemmas which will be used to prove the main results. Their proofs are
similar to those of Lemmas 2.1.1, 2.1.3, and 2.1.2 in [8], respectively.

Lemma 1 Let h be as in (1.6). Then

lim inf
t→∞

∫ t

τ (t)
P(s) ds = lim inf

t→∞

∫ t

h(t)
P(s) ds. (2.1)

Lemma 2 Let α ∈ (0, 1/e], x be an eventually positive solution of (E), and h be as in (1.6).
Then

lim inf
t→∞

x(t)
x(h(t))

≥ D(α) (2.2)

and

lim inf
t→∞

x(h(t))
x(t)

≥ λ0, (2.3)

where λ0 is the smaller root of the transcendental equation λ = eαλ.

On the basis of the above lemmas, we present the following results. Without loss of
generality, we deal only with eventually positive solutions of (E) (or (E′)) since, under our
assumptions, if x is a solution, so is –x.

Theorem 1 Let α ∈ (0, 1/e] and h be as in (1.6). Assume that, for some � ∈N,

lim sup
t→∞

∫ t

h(t)
P(s) exp

(∫ h(t)

τ (s)
P(u) exp

(∫ u

τ (u)
B�(ξ ) dξ

)
du

)
ds > 1, (2.4)
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where

B�(t) := P(t)
[

1 +
∫ t

τ (t)
P(s) exp

(∫ t

τ (s)
P(u) exp

(∫ u

τ (u)
B�–1(ξ ) dξ

)
du

)
ds

]
(2.5)

with

B0(t) := P(t)
[

1

+
∫ t

τ (t)
P(s) exp

(∫ t

τ (s)
P(y) exp

(∫ y

τ (y)
P(ω) exp

(
λ0

∫ ω

τ (ω)
P(u) du

)
dω

)
dy

)
ds

]
,

and λ0 is the smaller root of the transcendental equation λ = eαλ. Then every solution of
(E) oscillates.

Proof Assume the opposite. Let x be an eventually positive solution of (E). Then there
exists a t1 > t0 such that x(t) > 0 and x(τi(t)) > 0 for all t ≥ t1 and 1 ≤ i ≤ m. Thus, by virtue
of (E),

x′(t) = –
m∑

i=1

pi(t)x
(
τi(t)

) ≤ 0 for all t ≥ t1,

which implies that x is an eventually nonincreasing function of positive numbers.
Dividing (E) by x(t) > 0 and integrating the resulting equality on [τ (t), t], we deduce that

∫ t

τ (t)

x′(u)
x(u)

du = –
∫ t

τ (t)

m∑

i=1

pi(u)
x(τi(u))

x(u)
du,

or

∫ t

τ (t)

x′(u)
x(u)

du ≤ –
∫ t

τ (t)

( m∑

i=1

pi(u)

)
x(τ (u))

x(u)
du,

or

∫ t

τ (t)

x′(u)
x(u)

du ≤ –
∫ t

τ (t)
P(u)

x(τ (u))
x(u)

du.

Therefore,

x
(
τ (t)

) ≥ x(t) exp

(∫ t

τ (t)
P(u)

x(τ (u))
x(u)

du
)

. (2.6)

Combining (E) and (2.6), we arrive at

0 = x′(t) +
m∑

i=1

pi(t)x
(
τi(t)

) ≥ x′(t) + P(t)x
(
τ (t)

)

≥ x′(t) + P(t)x(t) exp

(∫ t

τ (t)
P(u)

x(τ (u))
x(u)

du
)

. (2.7)
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Dividing (2.7) by x(t) > 0 and integrating the resulting inequality on [τ (t), t], we obtain

∫ t

τ (t)

x′(ω)
x(ω)

dω ≤ –
∫ t

τ (t)
P(ω) exp

(∫ ω

τ (ω)
P(u)

x(τ (u))
x(u)

du
)

dω

or

x
(
τ (t)

) ≥ x(t) exp

(∫ t

τ (t)
P(ω) exp

(∫ ω

τ (ω)
P(u)

x(τ (u))
x(u)

du
)

dω

)
. (2.8)

Combining (E) and (2.8), we have

x′(t) + P(t)x(t) exp

(∫ t

τ (t)
P(ω) exp

(∫ ω

τ (ω)
P(u)

x(τ (u))
x(u)

du
)

dω

)
≤ 0. (2.9)

Dividing (2.9) by x(t) > 0 and integrating the resulting inequality on [τ (s), t], we get

∫ t

τ (s)

x′(y)
x(y)

dy ≤ –
∫ t

τ (s)
P(y) exp

(∫ y

τ (y)
P(ω) exp

(∫ ω

τ (ω)
P(u)

x(τ (u))
x(u)

du
)

dω

)
dy

or

x
(
τ (s)

)

≥ x(t) exp

(∫ t

τ (s)
P(y) exp

(∫ y

τ (y)
P(ω) exp

(∫ ω

τ (ω)
P(u)

x(τ (u))
x(u)

du
)

dω

)
dy

)
. (2.10)

Integrating (E) from τ (t) to t, using (2.10), multiplying by P(t), and taking into account the
fact that x′(t) ≤ –P(t)x(τ (t)), we conclude that

0 ≥ x′(t) + P(t)x(t)

+ P(t)x(t)
∫ t

τ (t)
P(s) exp

(∫ t

τ (s)
P(y)

× exp

(∫ y

τ (y)
P(ω) exp

(∫ ω

τ (ω)
P(u)

x(τ (u))
x(u)

du
)

dω

)
dy

)
ds.

It follows from τ (u) ≤ h(u) that

0 ≥ x′(t) + P(t)x(t)

+ P(t)x(t)
∫ t

τ (t)
P(s) exp

(∫ t

τ (s)
P(y)

× exp

(∫ y

τ (y)
P(ω) exp

(∫ ω

τ (ω)
P(u)

x(h(u))
x(u)

du
)

dω

)
dy

)
ds.
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By virtue of (2.3), for each ε > 0 and for sufficiently large t, the last inequality becomes

0 ≥ x′(t)

+ P(t)
[

1 +
∫ t

τ (t)
P(s) exp

(∫ t

τ (s)
P(y)

× exp

(∫ y

τ (y)
P(ω) exp

(
(λ0 – ε)

∫ ω

τ (ω)
P(u) du

)
dω

)
dy

)
ds

]
x(t)

or

x′(t) + B0(t, ε)x(t) ≤ 0 (2.11)

with

B0(t, ε) := P(t)
[

1 +
∫ t

τ (t)
P(s) exp

(∫ t

τ (s)
P(y)

× exp

(∫ y

τ (y)
P(ω) exp

(
(λ0 – ε)

∫ ω

τ (ω)
P(u) du

)
dω

)
dy

)
ds

]
.

Applying the Grönwall inequality in (2.11), we obtain

x
(
τ (u)

) ≥ x(u) exp

(∫ u

τ (u)
B0(ξ , ε) dξ

)
. (2.12)

Dividing (E) by x(t) > 0, integrating the resulting equality on [τ (s), t] and using (2.12), we
deduce that

–
∫ t

τ (s)

x′(u)
x(u)

du ≥
∫ t

τ (s)
P(u)

x(τ (u))
x(u)

du ≥
∫ t

τ (s)
P(u) exp

(∫ u

τ (u)
B0(ξ , ε) dξ

)
du

or

x
(
τ (s)

) ≥ x(t) exp

(∫ t

τ (s)
P(u) exp

(∫ u

τ (u)
B0(ξ , ε) dξ

)
du

)
. (2.13)

Integrating (E) from τ (t) to t and using (2.13), we obtain

x(t) – x
(
τ (t)

)
+ x(t)

∫ t

τ (t)
P(s) exp

(∫ t

τ (s)
P(u) exp

(∫ u

τ (u)
B0(ξ , ε) dξ

)
du

)
ds ≤ 0.

Multiplying the last inequality by P(t), we have

P(t)x(t) – P(t)x
(
τ (t)

)
+ P(t)x(t)

∫ t

τ (t)
P(s) exp

(∫ t

τ (s)
P(u) exp

(∫ u

τ (u)
B0(ξ , ε) dξ

)
du

)
ds

≤ 0,

which, in view of x′(t) ≤ –P(t)x(τ (t)), reduces to

x′(t) + P(t)x(t) + P(t)x(t)
∫ t

τ (t)
P(s) exp

(∫ t

τ (s)
P(u) exp

(∫ u

τ (u)
B0(ξ , ε) dξ

)
du

)
ds ≤ 0.
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Hence, for sufficiently large t,

x′(t) + P(t)
[

1 +
∫ t

τ (t)
P(s) exp

(∫ t

τ (s)
P(u) exp

(∫ u

τ (u)
B0(ξ , ε) dξ

)
du

)
ds

]
x(t) ≤ 0

or

x′(t) + B1(t, ε)x(t) ≤ 0,

where

B1(t, ε) := P(t)
[

1 +
∫ t

τ (t)
P(s) exp

(∫ t

τ (s)
P(u) exp

(∫ u

τ (u)
B0(ξ , ε) dξ

)
du

)
ds

]
.

Following the above procedures, we can inductively construct the inequalities

x′(t) + B�(t, ε)x(t) ≤ 0, � ∈N,

where

B�(t, ε) := P(t)
[

1 +
∫ t

τ (t)
P(s) exp

(∫ t

τ (s)
P(u) exp

(∫ u

τ (u)
B�–1(ξ , ε) dξ

)
du

)
ds

]

and

x
(
τ (s)

) ≥ x
(
h(t)

)
exp

(∫ h(t)

τ (s)
P(u) exp

(∫ u

τ (u)
B�(ξ , ε) dξ

)
du

)
. (2.14)

Integrating (E) from h(t) to t and using (2.14), we arrive at

x(t) – x
(
h(t)

)
+ x

(
h(t)

)∫ t

h(t)
P(s) exp

(∫ h(t)

τ (s)
P(u) exp

(∫ u

τ (u)
B�(ξ , ε) dξ

)
du

)
ds

≤ 0. (2.15)

If we omit x(t) > 0, then (2.15) becomes

x
(
h(t)

)[∫ t

h(t)
P(s) exp

(∫ h(t)

τ (s)
P(u) exp

(∫ u

τ (u)
B�(ξ , ε) dξ

)
du

)
ds – 1

]
< 0,

which means that

lim sup
t→∞

∫ t

h(t)
P(s) exp

(∫ h(t)

τ (s)
P(u) exp

(∫ u

τ (u)
B�(ξ , ε) dξ

)
du

)
ds ≤ 1.

This inequality contradicts (2.4) due to the fact that ε may be taken arbitrarily small. The
proof is complete. �

Theorem 2 Let α ∈ (0, 1/e] and h be as in (1.6). If, for some � ∈N,

lim sup
t→∞

∫ t

h(t)
P(s) exp

(∫ h(t)

τ (s)
P(u) exp

(∫ u

τ (u)
B�(ξ ) dξ

)
du

)
ds > 1 – D(α), (2.16)

where B� is as in (2.5), then every solution of (E) oscillates.
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Proof Let x be an eventually positive solution of (E). As in the proof of Theorem 1, (2.15)
holds, that is,

x(t) – x
(
h(t)

)
+ x

(
h(t)

)∫ t

h(t)
P(s) exp

(∫ h(t)

τ (s)
P(u) exp

(∫ u

τ (u)
B�(ξ , ε) dξ

)
du

)
ds ≤ 0,

which yields

∫ t

h(t)
P(s) exp

(∫ h(t)

τ (s)
P(u) exp

(∫ u

τ (u)
B�(ξ , ε) dξ

)
du

)
ds ≤ 1 –

x(t)
x(h(t))

,

and hence

lim sup
t→∞

∫ t

h(t)
P(s) exp

(∫ h(t)

τ (s)
P(u) exp

(∫ u

τ (u)
B�(ξ , ε) dξ

)
du

)
ds

≤ 1 – lim inf
t→∞

x(t)
x(h(t))

. (2.17)

It follows from Lemma 2 that inequality (2.2) is satisfied. So, by virtue of (2.2) and (2.17),

lim sup
t→∞

∫ t

h(t)
P(s) exp

(∫ h(t)

τ (s)
P(u) exp

(∫ u

τ (u)
B�(ξ , ε) dξ

)
du

)
ds ≤ 1 – D(α).

This inequality contradicts (2.16) due to the fact that ε may be taken arbitrarily small. The
proof is complete. �

Theorem 3 Let α ∈ (0, 1/e] and h be as in (1.6). If, for some � ∈N,

lim inf
t→∞

∫ t

h(t)
P(s) exp

(∫ h(s)

τ (s)
P(u) exp

(∫ u

τ (u)
B�(ξ ) dξ

)
du

)
ds >

1
e

, (2.18)

where B� is as in (2.5), then every solution of (E) oscillates.

Proof As above, assume that (E) has a nonoscillatory solution x which is eventually posi-
tive. Then there exists a t1 > t0 such that x(t) > 0, x(τi(t)) > 0, 1 ≤ i ≤ m, for all t ≥ t1. Thus,
by (E), we have

x′(t) = –
m∑

i=1

pi(t)x
(
τi(t)

) ≤ 0 for all t ≥ t1,

which implies that x is an eventually nonincreasing function of positive numbers. More-
over, as in the proof of Theorem 1, (2.14) is fulfilled.

Dividing (E) by x(t) and integrating the resulting equality from h(t) to t, we deduce that

ln

(
x(h(t))

x(t)

)
=

∫ t

h(t)

m∑

i=1

pi(s)
x(τi(s))

x(s)
ds

≥
∫ t

h(t)

( m∑

i=1

pi(s)

)
x(τ (s))

x(s)
ds =

∫ t

h(t)
P(s)

x(τ (s))
x(s)

ds
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≥
∫ t

h(t)
P(s)

x(h(s))
x(s)

exp

(∫ h(s)

τ (s)
P(u) exp

(∫ u

τ (u)
B�(ξ , ε) dξ

)
du

)
ds

≥
∫ t

h(t)
P(s) exp

(∫ h(s)

τ (s)
P(u) exp

(∫ u

τ (u)
B�(ξ , ε) dξ

)
du

)
ds. (2.19)

It follows from (2.18) that there exists a constant c > 0 such that, for all sufficiently large t,

∫ t

h(t)
P(s) exp

(∫ h(s)

τ (s)
P(u) exp

(∫ u

τ (u)
B�(ξ ) dξ

)
du

)
ds ≥ c >

1
e

.

Choose c′ such that c > c′ > 1/e. For every ε > 0 satisfying c – ε > c′, we get

∫ t

h(t)
P(s) exp

(∫ h(s)

τ (s)
P(u) exp

(∫ u

τ (u)
B�(ξ , ε) dξ

)
du

)
ds ≥ c – ε > c′ >

1
e

. (2.20)

Hence, we derive from (2.19) and (2.20) that

ln

(
x(h(t))

x(t)

)
≥ c′,

which yields

x(h(t))
x(t)

≥ ec′ ≥ ec′ > 1,

and so

x
(
h(t)

) ≥ (
ec′)x(t).

Repeating the above steps, it follows by induction that, for any positive integer k,

x(h(t))
x(t)

≥ (
ec′)k for sufficiently large t.

Since ec′ > 1, there is a k ∈N satisfying k > 2(ln 2– ln c′)/(1+ ln c′) such that, for t sufficiently
large,

x(h(t))
x(t)

≥ (
ec′)k >

(
2
c′

)2

. (2.21)

Taking the integral on [h(t), t], which is not less than c′, we split the interval into two parts
where integrals are not less than c′/2, let tm ∈ (h(t), t) be the splitting point:

∫ tm

h(t)
P(s) exp

(∫ h(s)

τ (s)
P(u) exp

(∫ u

τ (u)
B�(ξ , ε) dξ

)
du

)
ds ≥ c′

2
,

∫ t

tm

P(s) exp

(∫ h(s)

τ (s)
P(u) exp

(∫ u

τ (u)
B�(ξ , ε) dξ

)
du

)
ds ≥ c′

2
.

(2.22)
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Integrating (E) from tm to t, we arrive at

0 = x(t) – x(tm) +
∫ t

tm

m∑

i=1

pi(s)x
(
τi(s)

)
ds

≥ x(t) – x(tm) +
∫ t

tm

P(s)x
(
τ (s)

)
ds

≥ x(t) – x(tm) + x
(
h(t)

)∫ t

tm

P(s) exp

(∫ h(s)

τ (s)
P(u) exp

(∫ u

τ (u)
B�(ξ , ε) dξ

)
du

)
ds

> –x(tm) + x
(
h(t)

)∫ t

tm

P(s) exp

(∫ h(s)

τ (s)
P(u) exp

(∫ u

τ (u)
B�(ξ , ε) dξ

)
du

)
ds.

This, along with the second inequality in (2.22), implies that

x(tm) >
c′

2
x
(
h(t)

)
. (2.23)

Similarly, integrating (E) from h(t) to tm and subsequently applying (2.14), we conclude
that

x(tm) – x
(
h(t)

)
+ x

(
h(tm)

)∫ tm

h(t)
P(s) exp

(∫ h(s)

τ (s)
P(u) exp

(∫ u

τ (u)
B�(ξ , ε) dξ

)
du

)
ds ≤ 0.

If we omit x(tm) > 0 in the left-hand side, then the strict inequality becomes valid:

–x
(
h(t)

)
+ x

(
h(tm)

)∫ tm

h(t)
P(s) exp

(∫ h(s)

τ (s)
P(u) exp

(∫ u

τ (u)
B�(ξ , ε) dξ

)
du

)
ds < 0.

This, along with the first inequality in (2.22), yields

x
(
h(t)

)
>

c′

2
x
(
h(tm)

)
. (2.24)

Combining inequalities (2.23) and (2.24), we obtain

x
(
h(tm)

)
<

2
c′ x

(
h(t)

)
<

(
2
c′

)2

x(tm),

which contradicts (2.21). This completes the proof. �

2.2 ADEs
Similar oscillation criteria can easily be derived for the (dual) advanced differential equa-
tion (E′). The proofs are omitted due to the fact that they are quite similar to those of the
delay equation.

Theorem 4 Let β ∈ (0, 1/e] and ρ be as in (1.15). If, for some � ∈N,

lim sup
t→∞

∫ ρ(t)

t
Q(s) exp

(∫ σ (s)

ρ(t)
Q(u) exp

(∫ σ (u)

u
Φ�(ξ ) dξ

)
du

)
ds > 1, (2.25)
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where

Φ�(t) := Q(t)
[

1 +
∫ σ (t)

t
Q(s) exp

(∫ σ (s)

t
Q(u) exp

(∫ σ (u)

u
Φ�–1(ξ ) dξ

)
du

)
ds

]
(2.26)

with

Φ0(t) := Q(t)
[

1 +
∫ σ (t)

t
Q(s) exp

(∫ σ (s)

t
Q(y)

× exp

(∫ σ (y)

y
Q(ω) exp

(
λ0

∫ σ (ω)

ω

Q(u) du
)

dω

)
dy

)
ds

]
,

and λ0 is the smaller root of the transcendental equation λ = eβλ, then every solution of (E′)
oscillates.

Theorem 5 Let β ∈ (0, 1/e] and ρ be as in (1.15). If, for some � ∈N,

lim sup
t→∞

∫ ρ(t)

t
Q(s) exp

(∫ σ (s)

ρ(t)
Q(u) exp

(∫ σ (u)

u
Φ�(ξ ) dξ

)
du

)
ds > 1 – D(β), (2.27)

where Φ� is as in (2.26), then every solution of (E′) oscillates.

Theorem 6 Let β ∈ (0, 1/e] and ρ be as in (1.15). If, for some � ∈N,

lim inf
t→∞

∫ ρ(t)

t
Q(s) exp

(∫ σ (s)

ρ(s)
Q(u) exp

(∫ σ (u)

u
Φ�(ξ ) dξ

)
du

)
ds >

1
e

, (2.28)

where Φ� is as in (2.26), then every solution of (E′) oscillates.

3 Examples
The examples provided in this section illustrate cases where the results of the present pa-
per ensure oscillations, whereas the previously known results fail to apply in these equa-
tions. Moreover, these examples show the improvement attained by the obtained condi-
tions over the known ones. The calculations performed have been produced in MATLAB.

Example 1 Consider the DDE

x′(t) +
523

6250
x
(
τ1(t)

)
+

523
25,000

x
(
τ2(t)

)
= 0, t ≥ 0, (3.1)

with (see Fig. 1(a))

τ1(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

–t + 12k – 2, if t ∈ [6k, 6k + 1],

4t – 18k – 7, if t ∈ [6k + 1, 6k + 2],

0.5t + 3k, if t ∈ [6k + 2, 6k + 4],

–6t + 42k + 26, if t ∈ [6k + 4, 6k + 5],

8t – 42k – 44, if t ∈ [6k + 5, 6k + 6],

and τ2(t) = τ1(t) – 0.5,

where k ∈N0 and N0 is the set containing all nonnegative integers.
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Figure 1 The graphs of τ1(t) and h1(t)

By (1.6), we see (Fig. 1(b)) that

h1(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

6k – 2, if t ∈ [6k, 6k + 1.25],

4t – 18k – 7, if t ∈ [6k + 1.25, 6k + 2],

0.5t + 3k, if t ∈ [6k + 2, 6k + 4],

6k + 2, if t ∈ [6k + 4, 6k + 5.75],

8t – 42k – 44, if t ∈ [6k + 5.75, 6k + 6],

and h2(t) = h1(t) – 0.5,

and consequently,

h(t) = max
1≤i≤2

{
hi(t)

}
= h1(t) and τ (t) = max

1≤i≤2
τi(t) = τ1(t).

It is easy to see that

α = lim inf
t→∞

∫ t

τ (t)

2∑

i=1

pi(s) ds = lim inf
k→∞

∫ 6k+2

6k+1

(
523

6250
+

523
25,000

)
ds = 0.1046;

and therefore, the smaller root of e0.1046λ = λ is λ0 = 1.12486.
Observe that the function F� : R0 →R+ defined as

F�(t) =
∫ t

h(t)
P(s) exp

(∫ h(t)

τ (s)
P(u) exp

(∫ u

τ (u)
B�(ξ ) dξ

)
du

)
ds

attains its maximum at t = 6k + 5.75, k ∈N0, for every � ∈N. In particular,

F1(t = 6k + 5.75) =
∫ 6k+5.75

6k+2
P(s) exp

(∫ 6k+2

τ (s)
P(u) exp

(∫ u

τ (u)
B1(ξ ) dξ

)
du

)
ds 	 1.043,



Chatzarakis et al. Advances in Difference Equations        (2019) 2019:233 Page 15 of 20

and thus

lim sup
t→∞

F1(t) 	 1.043 > 1.

That is, condition (2.4) of Theorem 1 is satisfied for � = 1, which implies that every solution
of (3.1) oscillates.

Observe, however, that

lim sup
k→∞

∫ 6k+5.75

6k+2

(
523

6250
+

523
25,000

)
ds = 0.39225 < 1,

α = 0.1046 <
1
e

,

and

lim inf
t→∞

2∑

i=1

pi(t)
(
t – τi(t)

)

= lim inf
t→∞

[
523

6250
(
t – τ1(t)

)
+

523
25,000

(
t –

(
τ1(t) – 0.5

))]

= lim inf
t→∞

[
523

5000
(
t – τ1(t)

)
+

523
50,000

]

= lim inf
t→∞

[
523

5000
(
t – τ1(t)

)]
+

523
50,000

=
523

5000
· lim inf

t→∞
(
t – τ1(t)

)
+

523
50,000

=
523

5000
· 1 +

523
50,000

= 0.11506 <
1
e

.

Note that the function Dr : R0 →R+ defined as

Dr(t) =
∫ t

h(t)

2∑

i=1

pi(ζ )ar
(
h(t), τi(ζ )

)
dζ

attains its maximum at t = 6k + 5.75 and its minimum at t = 6k + 2, k ∈ N0, for every r ∈N.
In particular,

D1(t = 6k + 5.75) =
∫ 6k+5.75

6k+2

2∑

i=1

pi(ζ )a1
(
6k + 2, τi(ζ )

)
dζ

=
∫ 6k+4

6k+2

[
p1(ζ )a1

(
6k + 2, τ1(ζ )

)
+ p2(ζ )a1

(
6k + 2, τ2(ζ )

)]
dζ

+
∫ 6k+5

6k+4

[
p1(ζ )a1

(
6k + 2, τ1(ζ )

)
+ p2(ζ )a1

(
6k + 2, τ2(ζ )

)]
dζ

+
∫ 6k+5.75

6k+5

[
p1(ζ )a1

(
6k + 2, τ1(ζ )

)
+ p2(ζ )a1

(
6k + 2, τ2(ζ )

)]
dζ

	 0.4803,
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D1(t = 6k + 2) =
∫ 6k+2

6k+1

2∑

i=1

pi(ζ )a1
(
6k + 1, τi(ζ )

)
dζ

=
∫ 6k+2

6k+1

[
p1(ζ )a1

(
6k + 1, τ1(ζ )

)
+ p2(ζ )a1

(
6k + 1, τ2(ζ )

)]
dζ

	 0.1313.

Hence,

lim sup
t→∞

D1(t) 	 0.4803 < 1,

lim inf
t→∞ D1(t) 	 0.1313 < 1/e.

Finally, using algorithms on MATLAB software, we obtain

lim sup
t→∞

∫ t

h(t)
P(s) exp

(∫ h(t)

τ (s)
P(u) exp

(∫ u

τ (u)
W1(ξ ) dξ

)
du

)
ds 	 0.8157 < 1,

0.8157 < 1 – D(α) 	 0.9938,

lim inf
t→∞

∫ t

h(t)
P(s) exp

(∫ h(s)

τ (s)
P(u) exp

(∫ u

τ (u)
W1(ξ ) dξ

)
du

)
ds 	 0.1064 <

1
e

.

That is, none of conditions (1.3)–(1.5), (1.7) and (1.8) (for r = 1), and (1.9)–(1.11) (for � = 1)
is satisfied.

Comments It is worth noticing that the improvement of condition (2.4) over the corre-
sponding condition (1.3) is significant, approximately 165.9% when comparing the values
on the left-hand side of these conditions. Meanwhile, the improvement compared to con-
ditions (1.7) and (1.9) is very satisfactory, around 117.16% and 27.87%, respectively. In
addition, observe that conditions (1.7)–(1.11) do not ensure oscillations from the first it-
eration. On the contrary, condition (2.4) is fulfilled from the first iteration. This means
that this condition is better and more efficient, leading to oscillations much faster than
conditions (1.7)–(1.11).

Example 2 Consider the ADE

x′(t) –
417

5000
x
(
σ1(t)

)
–

139
2500

x
(
σ2(t)

)
= 0, t ≥ 0, (3.2)

with (see Fig. 2(a))

σ1(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

5k + 2, if t ∈ [5k, 5k + 1],

5t – 20k – 3, if t ∈ [5k + 1, 5k + 2],

–2t + 15k + 11, if t ∈ [5k + 2, 5k + 3],

3t – 10k – 4, if t ∈ [5k + 3, 5k + 4],

–t + 10k + 12, if t ∈ [5k + 4, 5k + 5],

and σ2(t) = σ1(t) + 0.5,

where k ∈N0 and N0 stands for the set containing all nonnegative integers.
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Figure 2 The graphs of σ1(t) and ρ1(t)

By (1.15), we see (Fig. 2(b)) that

ρ1(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

5k + 2, if t ∈ [5k, 5k + 1],

5t – 20k – 3, if t ∈ [5k + 1, 5k + 8/5],

5k + 5, if t ∈ [5k + 8/5, 5k + 3],

3t – 10k – 4, if t ∈ [5k + 3, 5k + 11/3],

5k + 7, if t ∈ [5k + 11/3, 5k + 5],

and ρ2(t) = ρ1(t) + 0.5,

and consequently,

ρ(t) = min
1≤i≤2

{
ρi(t)

}
= ρ1(t) and σ (t) = min

1≤i≤2

{
σi(t)

}
= σ1(t).

It is easy to see that

β = lim inf
t→∞

∫ σ (t)

t

2∑

i=1

qi(s) ds = lim inf
k→∞

∫ 5k+2

5k+1

139
1000

ds = 0.139;

and therefore, the smaller root of e0.139λ = λ is λ0 = 1.17789.
Observe that the function F� : R0 →R+ defined as

F�(t) =
∫ ρ(t)

t
Q(s) exp

(∫ σ (s)

ρ(t)
Q(u) exp

(∫ σ (u)

u
Φ�(ξ ) dξ

)
du

)
ds

attains its maximum at t = 5k + 8/5, k ∈ N0, for every � ∈ N. In particular, by using an
algorithm on MATLAB software, we obtain

F1(t = 5k + 8/5) =
∫ 5k+5

5k+8/5
Q(s) exp

(∫ σ (s)

5k+2
Q(u) exp

(∫ σ (u)

u
Φ1(ξ ) dξ

)
du

)
ds 	 0.9996,
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and so

lim inf
t→∞ F1(t) 	 0.9996 > 1 – D(β) 	 0.9886.

That is, condition (2.27) of Theorem 5 is satisfied for � = 1, and therefore every solution
of (3.2) oscillates.

Observe, however, that

lim sup
k→∞

∫ 5k+5

5k+8/5

139
1000

ds = 0.4726 < 1,

β = 0.139 <
1
e

,

lim inf
t→∞

2∑

i=1

qi(t)
(
σi(t) – t

)
= lim inf

t→∞

2∑

i=1

qi(t)
(
ρi(t) – t

)

= lim inf
t→∞

[
417

5000
(
ρ1(t) – t

)
+

139
2500

(
ρ1(t) + 0.5 – t

)]

= lim inf
t→∞

[
0.139

(
ρ1(t) – t

)
+ 0.0278

]

= lim inf
t→∞

[
0.139

(
ρ1(t) – t

)]
+ 0.0278

= 0.139 · 1 + 0.0278 = 0.1668 <
1
e

,

lim sup
t→∞

∫ ρ(t)

t

2∑

i=1

qi(ζ )b1
(
ρ(t),σi(ζ )

)
dζ

= lim sup
k→∞

∫ 5k+5

5k+8/5

2∑

i=1

qi(ζ )b1
(
5k + 5,σi(ζ )

)
dζ

= lim sup
k→∞

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫ 5k+2
5k+8/5

[
q1(ζ )b1

(
5k + 5,σ1(ζ )

)
+ q2(ζ )b1

(
5k + 5,σ2(ζ )

)]
dζ

+
∫ 5k+3

5k+2
[
q1(ζ )b1

(
5k + 5,σ1(ζ )

)
+ q2(ζ )b1

(
5k + 5,σ2(ζ )

)]
dζ

+
∫ 5k+4

5k+3
[
q1(ζ )b1

(
5k + 5,σ1(ζ )

)
+ q2(ζ )b1

(
5k + 5,σ2(ζ )

)]
dζ

+
∫ 5k+5

5k+4
[
q1(ζ )b1

(
5k + 5,σ1(ζ )

)
+ q2(ζ )b1

(
5k + 5,σ2(ζ )

)]
dζ

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

= 0.6108 < 1,

and

lim inf
t→∞

∫ ρ(t)

t

2∑

i=1

qi(ζ )b1
(
ρ(t),σi(ζ )

)
dζ

= lim inf
k→∞

∫ 5k+2

5k+1

[
q1(ζ )b1

(
5k + 2,σ1(ζ )

)
+ q2(ζ )b1

(
5k + 2,σ2(ζ )

)]
dζ

	 0.2065 < 1/e.

That is, none of conditions (1.12)–(1.14), (1.16), and (1.17) (for r = 1) is satisfied.
Finally, by using algorithms on MATLAB software, we see that none of conditions

(1.18)–(1.20) (for � = 1) is satisfied.
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Remark 1 Similarly, one can present examples to illustrate the efficiency of other main
results.
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