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Abstract
We consider a Wong–Zakai process, which is the difference of a Wiener-like process.
We then prove that there are random attractors for non-autonomous
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zero.
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1 Introduction
Given a Wiener process, its δ-difference is called a Wong–Zakai process [40, 41]. Such
difference noise was often used to study stochastic equations as an approximation of white
noise [15, 17, 19, 28, 30, 31].

In this paper, we consider a so-called Wiener-like process. Let

Ω = C0(R,R) =
{
ω ∈ C(R,R) : ω(0) = 0, lim

t→±∞
ω(t)

t
= 0

}
(1.1)

and equip it with the Fréchet metric and the Borel σ -algebra F = B(Ω). Then the shift
θt : Ω → Ω , ω(·) �→ ω(· + t) – ω(t) is measurable for each t ∈R.

We then take an arbitrary probability measure P on the measurable space (Ω ,F ). On the
probability space (Ω ,F , P), we obtain a stochastic process given by W (t,ω) = ω(t), which is
called a Wiener-like process [21]. If P is a Wiener measure, then the corresponding process
is just the standard Wiener process; see [1, 3–5, 7, 24, 44].

In other words, a Wiener-like process only satisfies the properties on the right-hand side
of (1.1). We do not require other properties (such as increment independence and Gauss
distribution) of a Wiener process.
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For each δ > 0 (the case of δ < 0 is similar), the δ-difference of the Wiener-like process
determines the Wong–Zakai process given by

Gδ(t,ω) := Gδ(θtω) =
1
δ

(
ω(t + δ) – ω(t)

)
, ∀t ∈R,ω ∈ Ω . (1.2)

The difference process is not a Wiener-like process since Gδ(0,ω) = ω(δ)/δ �= 0. However,
by (1.1), we have Gδ(·,ω) ∈ C(R,R) and Gδ(θtω)/t → 0 as t → ±∞.

Recently, Lu and Wang [27] (see also [13, 14, 38]) have studied both the existence and ap-
proximation of random attractors for the reaction–diffusion equation driven by difference
noise of a Wiener process.

In this paper, we consider the complex Ginzburg–Landau equation perturbed by differ-
ence noise of a Wiener-like process:

∂uδ

∂t
–

(
λ + iμ(t)

)
	uδ = γ uδ –

(
κ + iβ(t)

)|uδ|2uδ + f (t, x) + uδGδ(θtω), (1.3)

uδ(t, 0) = uδ(t, 1) = 0, uδ(τ , x) = uδ,τ (x), t ≥ τ , x ∈ I , (1.4)

where I = (0, 1) ⊂ R, λ,γ ,κ > 0, μ,β ∈ Cb(R,R) and f ∈ L2
loc(R,L2(I)).

The first aim in this paper is to establish a random attractor Aδ for the problem (1.3)–
(1.4). In view of both the non-autonomous and the random nature, the attractor is actually
a bi-parametric set formulated by Aδ = {Aδ(τ ,ω)} and called a pullback random attractor,
which was first introduced by Crauel et al. [8] and by Wang [32] independently, with de-
velopments [2, 9, 10, 18, 20, 26, 36, 37, 42, 43, 45].

The second aim is to prove the upper semi-continuity of the attractors:

lim
δ→0

distL2(O)
(
Aδ(τ ,ω),A0(τ ,ω)

)
= 0, ∀τ ∈R,ω ∈ Ω , (1.5)

where A0 is the random attractor for the following limiting equation perturbed by the
Wiener-like process:

∂u
∂t

–
(
λ + iμ(t)

)
	u = γ u –

(
κ + iβ(t)

)|u|2u + f (t, x) + u ◦ dW
dt

(1.6)

with the same initial-boundary conditions as in (1.4).
By an abstract combined result on both existence and upper semi-continuity of random

attractors, given by Li et al. [23] (also see [12]), we have to verify three aspects: (a) the
convergence of the solution operators from Eqs. (1.3) to (1.6), (b) the equi-absorption of
the systems for all small size δ of difference noise and (c) the equi-asymptotic compactness
in small size.

It is worth pointing out that all uniform estimates depend on the convergence of Gδ(θtω)
as δ → 0. However, since the Wiener-like process ω(·) may be nowhere differential, it is
easy from (1.2) to see that Gδ(θtω) generally diverges as δ → 0. Instead of this convergence,
we must prove a convergence in the sense of the integrals ofGδ(θtω), which can be deduced
from the convergence of the Wiener-like process as given in (1.1).



Wang et al. Advances in Difference Equations        (2019) 2019:224 Page 3 of 17

2 Uniform absorption in size for approximate equations
2.1 The cocycle generated from the approximate equation
A standard method can show the well-posed property of the problem (1.3)–(1.4) and the
existence of a family of cocycles given by Φδ : R+ ×R× Ω ×L

2(I) → L
2(I),

Φδ(t, τ ,ω)uδ,τ = uδ(t + τ , τ , θ–τω, uδ,τ ). (2.1)

The same method as in [11] can show the measurability of Φδ in ω, and the cocycle prop-
erty (see [32]) can be deduced from the uniqueness of solutions.

We consider a universe D of all tempered bi-parametric sets in L
2(I), that is, for D =

{D(τ ,ω) : τ ∈R,ω ∈ Ω}, we have D ∈D if and only if

lim
t→∞ e–αt∥∥D(τ – t, θ–tω)

∥∥2 = 0, ∀α > 0, τ ∈R,ω ∈ Ω , (2.2)

where the norm of a set means the maximum of L2-norms of all elements.
In order to obtain a D-pullback absorption set, we make some assumptions.

Assumption F f ∈ L2
loc(R,L2(I)) and there is a α0 > 0 such that

∫ 0

–∞
eα0s∥∥f (s, ·)∥∥2 ds < ∞, (2.3)

lim
t→∞ e–αt

∫ 0

–∞
eα0s(∥∥f (s – t, ·)∥∥2)ds = 0, ∀α > 0. (2.4)

We also need the following convergence from the Wong–Zakai process to a Wiener-like
process.

Lemma 2.1 Let τ ∈R, ω ∈ Ω and T > 0. Then

lim
δ→0

sup
t∈[τ ,τ+T]

∣∣∣∣
∫ t

0
Gδ(θsω) ds – ω(t)

∣∣∣∣ = 0. (2.5)

Moreover, for each ε > 0, there exist δ0(ε,ω) > 0 and C0(ε,ω) > 0 such that

∣∣∣∣
∫ t

0
Gδ(θsω) ds

∣∣∣∣ ≤ ε|t| + C0(ε,ω), ∀t ∈R, δ ∈ (0, δ0]. (2.6)

Proof By the mean value theorem, there is a rt,δ ∈ [t, t + δ] such that

∣∣∣∣1
δ

∫ t+δ

t
ω(s) ds – ω(t)

∣∣∣∣ =
∣∣ω(rt,δ) – ω(t)

∣∣.

By (1.1), ω(·) is continuous and thus uniformly continuous on [τ , τ + T + 1], which implies
that

lim
δ→0

sup
t∈[τ ,τ+T]

∣∣∣∣1
δ

∫ t+δ

t
ω(s) ds – ω(t)

∣∣∣∣ = 0 and lim
δ→0

1
δ

∣∣∣∣
∫ δ

0
ω(s) ds

∣∣∣∣ = 0
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in view of ω(0) = 0. Therefore, by the definition (1.2),

sup
t∈[τ ,τ+T]

∣∣∣∣
∫ t

0
Gδ(θsω) ds – ω(t)

∣∣∣∣

≤ sup
t∈[τ ,τ+T]

∣∣∣∣1
δ

∫ t+δ

t
ω(s) ds – ω(t)

∣∣∣∣ +
1
δ

∣∣∣∣
∫ δ

0
ω(s) ds

∣∣∣∣ → 0

as δ → 0. Hence, (2.5) holds true.
Given now ε > 0, there is a δ1 ∈ (0, 1] such that

sup
0<|δ|≤δ1

∣∣∣∣1
δ

∫ δ

0
ω(s) ds

∣∣∣∣ ≤ ε.

By (1.1), |ω(s)/s| ≤ ε for all |s| ≥ s0 – 1 with a large s0(ε). Then, for all |t| ≥ s0 and δ ∈ (0, δ1],
there is a rt,δ with |rt,δ – t| ≤ |δ| such that

∣∣∣∣1
δ

∫ t+δ

t
ω(s) ds

∣∣∣∣ =
∣∣ω(rt,δ)

∣∣ =
∣∣∣∣ω(rt,δ)

rt,δ

∣∣∣∣|rt,δ| ≤ ε
(|t| + 1

)
.

By (1.2), we find that, for all |t| ≥ s0 and 0 < |δ| ≤ δ1,

∣∣∣∣
∫ t

0
Gδ(θrω) dr

∣∣∣∣ ≤
∣∣∣∣1
δ

∫ t+δ

t
ω(s) ds

∣∣∣∣ +
∣∣∣∣1
δ

∫ δ

0
ω(s) ds

∣∣∣∣ ≤ ε
(|t| + 2

)
.

By (2.5), there is δ0 ∈ (0, δ1] such that, for all |t| ≤ s0 and δ ∈ (0, δ0],

∣∣∣∣
∫ t

0
Gδ(θrω) dr

∣∣∣∣ ≤ sup
|s|≤s0

∣∣∣∣
∫ s

0
Gδ(θrω) dr – ω(s)

∣∣∣∣ + sup
|s|≤s0

∣∣ω(s)
∣∣ ≤ ε + C(ω).

Therefore, (2.6) holds true for all t ∈R.
In order to prove that the absorption is uniform in size, we consider a change of variables:

vδ(t, τ ,ω) = g–1
δ (t,ω)uδ(t, τ ,ω), where gδ(t,ω) = e

∫ t
0 Gδ (θrω) dr. (2.7)

Then from (1.3) we obtain a random equation:

∂vδ

∂t
–

(
λ + iμ(t)

)
	vδ = γ vδ – g2

δ (t,ω)
(
κ + iβ(t)

)|vδ|2vδ + g–1
δ (t,ω)f (t, ·) (2.8)

with vδ ≡ 0 on ∂I and vδ(τ ) = vδ,τ = gδ(τ ,ω)uδ,τ .
By Lemma 2.1 and the inequality |ea – eb| ≤ e|a|+|b||b – a|, we have

lim
δ→0

sup
t∈[τ ,τ+T]

(∣∣gδ(t,ω) – eω(t)∣∣ +
∣∣g–1

δ (t,ω) – e–ω(t)∣∣) = 0. (2.9)

�

2.2 Uniform absorption in size for approximate equations
Lemma 2.2 For each δ > 0, Dδ ∈D, τ ∈R and ω ∈ Ω , there are Tδ := T(Dδ , τ ,ω) ≥ 1 such
that, for all t ≥ Tδ and uδ,τ–t ∈Dδ(τ – t, θ–tω),

∥∥uδ(τ , τ – t, θ–τω, uδ,τ–t)
∥∥2 ≤ Rδ(τ ,ω) + 1, (2.10)
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where uδ is a solution of the problem (1.3), and for a positive constant c1,

Rδ(τ ,ω) := c1

∫ 0

–∞
e2α0s–2

∫ s
0 Gδ (θrω) dr(∥∥f (s + τ )

∥∥2 + 1
)

ds. (2.11)

Proof We multiply Eq. (2.8) with the conjugate function vδ and then take the real part to
obtain

1
2

d
ds

‖vδ‖2 + λ‖∇vδ‖2 = γ ‖vδ‖2 – κg2
δ (s,ω)‖vδ‖4

4 + g–1
δ (s,ω) Re(f , vδ), (2.12)

where ‖ · ‖4 denotes the norm in L
4(I). The Young inequality gives

g–1
δ (s,ω)

∣∣Re
(
f (s), vδ

)∣∣ ≤ α0‖vδ‖2 + cg–2
δ (s,ω)

∥∥f (s)
∥∥2,

where α0 is the number in Assumption F. By the Young inequality again,

(γ + 2α0)‖vδ‖2 –
κ

2
g2
δ (s,ω)‖vδ‖4

4 ≤ c
(|O|)g–2

δ (s,ω).

So, we can rewrite (2.12) for the solution vδ(s) = vδ(s, τ – t, θ–τω, vδ,τ–t):

d
ds

‖vδ‖2 + 2α0‖vδ‖2 + λ‖∇vδ‖2 + κg2
δ (s, θ–τω)‖vδ‖4

4

≤ c1g–2
δ (s, θ–τω)

(∥∥f (s)
∥∥2 + 1

)
. (2.13)

Multiplying (2.13) by e2α0s and then integrating over (τ – t, τ ), we obtain

∥∥vδ(τ , τ – t, θ–τω, vδ,τ–t)
∥∥2 + λ

∫ τ

τ–t
e2α0(s–τ )∥∥∇vδ(s, τ – t, θ–τω, vδ,τ–t)

∥∥2 ds

+ κ

∫ τ

τ–t
e2α0(s–τ )g2

δ (s, θ–τω)
∥∥vδ(s, τ – t, θ–τω, vδ,τ–t)

∥∥4
4 ds

≤ e–2α0t‖vδ,τ–t‖2 + c1

∫ τ

τ–t
e2α0(s–τ )g–2

δ (s, θ–τω)
(∥∥f (s)

∥∥2 + 1
)

ds. (2.14)

By the change of variables (2.7), we have vδ,τ–t = g–1
δ (τ , θ–τω)uδ,τ–t and

∥∥uδ(τ , τ – t, θ–τω, vδ,τ–t)
∥∥2 = g2

δ (τ , θ–τω)
∥∥vδ(τ , τ – t, θ–τω, vδ,τ–t)

∥∥2

≤ e–2α0t‖uδ,τ–t‖2 + I, (2.15)

where

I := c1g2
δ (τ , θ–τω)

∫ τ

τ–t
e2α0(s–τ )g–2

δ (s, θ–τω)
(∥∥f (s)

∥∥2 + 1
)

ds

= c1

∫ τ

τ–t
e2α0(s–τ )+2

∫ τ
0 Gδ (θr–τ ω) dr–2

∫ s
0 Gδ (θr–τ ω) dr(∥∥f (s)

∥∥2 + 1
)

ds

= c1

∫ τ

τ–t
e2α0(s–τ )–2

∫ s–τ
0 Gδ (θrω) dr(∥∥f (s)

∥∥2 + 1
)

ds

≤ c1

∫ 0

–∞
e2α0s–2

∫ s
0 Gδ (θrω) dr(∥∥f (s + τ )

∥∥2 + 1
)

ds =: Rδ(τ ,ω).
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On the other hand, since uδ,τ–t ∈Dδ(τ – t, θ–τω), there is Tδ = T(Dδ , τ ,ω) such that, for all
t ≥ Tδ ,

e–2α0t‖uδ,τ–t‖2 ≤ e–2α0t∥∥Dδ(τ – t, θ–τω)
∥∥2 ≤ 1.

Substituting the above estimates into (2.15), we obtain (2.10) as desired. �

In addition, by (2.14) and (2.15), we have, for all t ≥ Tδ and uδ,τ–t ∈Dδ(τ – t, θ–τω),
∫ τ

τ–t
e2α0(s–τ )∥∥∇vδ(s, τ – t, θ–τω, vδ,τ–t)

∥∥2 ds

≤ g–2
δ (τ , θ–τω)

(
e–2α0t‖uδ,τ–t‖2 + I

) ≤ c(Rδ(τ ,ω) + 1)
g2
δ (τ , θ–τω)

. (2.16)

Similarly, we have the following useful estimate:
∫ τ

τ–t
e2α0(s–τ )g2

δ (s, θ–τω)
∥∥vδ(s, τ – t, θ–τω, vδ,τ–t)

∥∥4
4 ds

≤ c
(
Rδ(τ ,ω) + 1

)
g–2
δ (τ , θ–τω). (2.17)

Proposition 2.3 Under the Assumption F, for each δ > 0, the cocycle Φδ has a closed, D-
pullback random absorbing set Kδ ∈ D in L

2(I), given by

Kδ(τ ,ω) :=
{

w ∈ L
2(I) : ‖w‖2 ≤ Rδ(τ ,ω) + 1

}
, ∀(τ ,ω) ∈ R× Ω , (2.18)

where Rδ(τ ,ω) is given in (2.11) and satisfies

lim
δ→0

Rδ(τ ,ω) = c1

∫ 0

–∞
e2α0s–2ω(s)(∥∥f (s + τ )

∥∥2 + 1
)

ds =: R0(τ ,ω). (2.19)

Proof We first prove that each Rδ(τ ,ω) is finite. Notice that the formula (2.6) in Lemma 2.1
holds true for every δ > 0. Hence, for each ε > 0 and ω ∈ Ω , there is a Cδ(ε,ω) > 0 such that

∣∣∣∣
∫ s

0
Gδ(θrω) dr

∣∣∣∣ ≤ ε|s| + Cδ(ε,ω), ∀s ∈R. (2.20)

By taking ε = α0
2 , there is a Cδ(ω) such that

Rδ(τ ,ω) := c1

∫ 0

–∞
e2α0s–2

∫ s
0 Gδ (θrω) dr(∥∥f (s + τ )

∥∥2 + 1
)

ds

≤ c1e2Cδ (ω)
∫ 0

–∞
eα0s(∥∥f (s + τ )

∥∥2 + 1
)

ds.

By (2.3) in Assumption F,

∫ 0

–∞
eα0s∥∥f (s + τ )

∥∥2 ds =
∫ τ

–∞
eα0(s–τ )∥∥f (s)

∥∥2 ds

= e–α0τ

∫ 0

–∞
eαs∥∥f (s)

∥∥2 ds + e–α0τ

∫ τ

0
eα0s∥∥f (s)

∥∥2 ds < +∞

and thus Rδ(τ ,ω) is finite.
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The mapping ω → Rδ(τ ,ω) is obviously measurable and thus Kδ is a family of random
sets. By Lemma 2.2, Kδ is a D-pullback absorbing set for Φδ .

We then prove Kδ ∈ D. Indeed, for any α > 0, we take ε = min{ α
5 , α0

2 } in (2.20), then, by
(2.4) in Assumption F, as t → +∞, i.e. as t̃ = t – τ → +∞,

e–αtRδ(τ – t, θ–tω)

= c1e–αt
∫ 0

–∞
e2α0s–2

∫ s
0 Gδ (θr–tω) dr(∥∥f (s + τ – t)

∥∥2 + 1
)

ds

≤ c1e4Cδ (ω)e–αt
∫ 0

–∞
e2α0s+2ε(t–s)+2εt(∥∥f (s + τ – t)

∥∥2 + 1
)

ds

= c1e4Cδ (ω)e–(α–4ε)(t̃+τ )
∫ 0

–∞
e(2α0–2ε)s(∥∥f (s – t̃)

∥∥2 + 1
)

ds → 0

in view of the facts that α – 4ε > 0 and 2α0 – 2ε ≥ α0.
Finally, we show the convergence (2.19). By (2.6) in Lemma 2.1, there are δ0 > 0 and

C0(ω) > 0 (independent of δ) such that

sup
δ∈(0,δ0]

∣∣∣∣
∫ s

0
Gδ(θrω) dr

∣∣∣∣ ≤ α

2
|s| + C0(ω), ∀s ∈ R. (2.21)

Hence, by taking the supremum of Rδ(τ ,ω) on δ ∈ (0, δ0], we have

sup
δ∈(0,δ0]

∫ 0

–∞
e2αs–2

∫ s
0 Gδ (θrω) dr(∥∥f (s + τ )

∥∥2 + 1
)

ds

≤ e2C0(ω)
∫ 0

–∞
eαs(∥∥f (s + τ )

∥∥2 + 1
)

ds < +∞.

Hence, by (2.5) in Lemma 2.1, the Lebesgue controlled convergence theorem gives

lim
δ→0

Rδ(τ ,ω) = c1

∫ 0

–∞
lim
δ→0

e2α0s–2
∫ s

0 Gδ (θrω) dr(∥∥f (s + τ )
∥∥2 + 1

)
ds

= c1

∫ 0

–∞
e2α0s–2ω(s)(∥∥f (s + τ )

∥∥2 + 1
)

ds = R0(τ ,ω). �

3 Uniform compactness in size for approximate equations
3.1 Uniformly asymptotic compactness
Lemma 3.1 For each Dδ ∈ D, τ ∈ R and ω ∈ Ω , let Tδ ≥ 1 be the entrance time in
Lemma 2.2. Then there is a δ0 > 0 such that, for all δ ∈ (0, δ0], t ≥ Tδ and uδ,τ–t ∈ Dδ(τ –
t, θ–tω),

∥∥∇uδ(τ , τ – t, θ–τω, vδ,τ–t)
∥∥2 ≤ eΥ (M0(τ ,ω))(R0(τ ,ω)+2) < +∞, (3.1)

where Υ (y) = a4y4 + a2y2 + a0 (y > 0) with positive coefficients, R0(τ ,ω) is given in (2.19)
and

M0(τ ,ω) := sup
s∈[τ–1,τ ]

e±(ω(s–τ )–ω(–τ )). (3.2)
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Proof We multiply Eq. (2.8) by –	vδ = –	vδ and then take the real part to find

1
2

d
ds

‖∇vδ‖2 + λ‖	vδ‖2

= γ ‖∇vδ‖2 + g2
δ (s,ω) Re

(
κ + iβ(t)

)(|vδ|2vδ ,	vδ

)
– g–1

δ (s,ω) Re
(
f (s),	vδ

)
. (3.3)

By the Young inequality we obtain

g–1
δ (s,ω)

∣∣Re
(
f (s),	vδ

)∣∣ ≤ λ

4
‖	vδ‖2 + c3g–2

δ (s,ω)
∥∥f (s)

∥∥2.

Since I is a 1D-domain, by the compactness of Sobolev embedding and the interpolation
inequality, we have the following inequality (see Temam [29]):

‖∇w‖2
4 ≤ c‖∇w‖(‖w‖2 + ‖	w‖2) 1

2 , ∀w ∈H
1
0(I) ∩H

2(I).

By the initial assumption, β ∈ Cb(R,R) and thus β0 := supt∈R |β(t)| < +∞. Hence,

∣∣Re
(
κ + iβ(t)

)(|vδ|2vδ ,	vδ

)∣∣
=

∣∣∣∣Re
(
κ + iβ(t)

)∫
I

(
2|vδ|2|∇vδ|2 + v2

δ∇vδ · ∇vδ

)
dx

∣∣∣∣
≤ 3(κ + β0)

∫
I

|vδ|2|∇vδ|2 dx

≤ c‖vδ‖2
4‖∇vδ‖2

4

≤ c‖vδ‖2
4‖∇vδ‖

(‖vδ‖2 + ‖	vδ‖2) 1
2 ,

which together with the Poincaré inequality implies that

g2
δ (s,ω)

∣∣Re
(
κ + iβ(t)

)(|vδ|2vδ ,	vδ

)∣∣
≤ λ

4
(‖vδ‖2 + ‖	vδ‖2) + cg4

δ (s,ω)‖vδ‖4
4‖∇vδ‖2

≤ λ

4
‖	vδ‖2 + c

(
1 + g4

δ (s,ω)‖vδ‖4
4
)‖∇vδ‖2.

Substituting it into (3.3) at the sample θ–τω, we obtain

d
ds

‖∇vδ‖2 ≤ c4
(
1 + g4

δ (s, θ–τω)‖vδ‖4
4
)‖∇vδ‖2 + c3g–2

δ (s, θ–τω)
∥∥f (s)

∥∥2.

By the uniform Gronwall lemma [29] (also see [25, 36] for the non-autonomous version),
we obtain

∥∥∇vδ(τ , τ – t, θ–τω, vδ,τ–t)
∥∥2 ≤ eI1+I2(δ)(I3(δ) + I4(δ)

)
, (3.4)
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where I1 := c4
∫ τ

τ–1 ds = c4 and

I2(δ) := c4

∫ τ

τ–1
g4
δ (s, θ–τω)

∥∥vδ(s, τ – t, θ–τω, vδ,τ–t)
∥∥4

4 ds,

I3(δ) :=
∫ τ

τ–1

∥∥∇vδ(s, τ – t, θ–τω, vδ,τ–t)
∥∥2 ds,

I4(δ) := c3

∫ τ

τ–1
g–2
δ (s, θ–τω)

∥∥f (s)
∥∥2 ds.

We will use (2.17) to estimate I2(δ). Indeed, by (2.9),

gδ(s, θ–τω) = e
∫ s

0 Gδ (θr–τ ω) dr

= e
∫ s–τ

0 Gδ (θrω) dr–
∫ –τ

0 Gδ (θrω) dr → eω(s–τ )–ω(–τ )

as δ → 0 uniformly in s ∈ [τ – 1, τ ]. Hence, there is a δ1 > 0 such that

sup
δ∈(0,δ1]

sup
s∈[τ–1,τ ]

gδ(s, θ–τω) ≤ sup
s∈[τ–1,τ ]

eω(s–τ )–ω(–τ ) + 1 ≤ M0(τ ,ω) + 1, (3.5)

where M0(τ ,ω) is defined by (3.2). So, for all δ ∈ (0, δ1] and t ≥ 1,

I2(δ) ≤ c4e2α0 sup
s∈[τ–1,τ ]

g2
δ (s, θ–τω)

×
∫ τ

τ–1
e2α0(s–τ )g2

δ (s, θ–τω)
∥∥vδ(s, τ – t, θ–τω, vδ,τ–t)

∥∥4
4 ds

≤ c
(
M2

0(τ ,ω) + 1
)∫ τ

τ–t
e2α(s–τ )g2

δ (s, θ–τω)
∥∥vδ(s, τ – t, θ–τω, vδ,τ–t)

∥∥4
4 ds.

By (2.17), for all δ ∈ (0, δ1], t ≥ Tδ and uδ,τ–t ∈Dδ(τ – t, θ–tω),

I2(δ) ≤ c
(
M2

0(τ ,ω) + 1
)(

Rδ(τ ,ω) + 1
)
(τ ,ω)g–2

δ (τ , θ–τω).

By the convergence (2.19), Rδ(τ ,ω) ≤ R0(τ ,ω)+1 for all δ ∈ (0, δ2] with δ2 ≤ δ1. By the same
method as in (3.5), there is a δ3 ∈ (0, δ2] such that, for all δ ∈ (0, δ3],

sup
s∈[τ–1,τ ]

g–1
δ (s, θ–τω) ≤ sup

s∈[τ–1,τ ]
e–(ω(s–τ )–ω(–τ )) + 1 ≤ M0(τ ,ω) + 1. (3.6)

Hence, for all δ ∈ (0, δ3], t ≥ Tδ and uδ,τ–t ∈Dδ(τ – t, θ–tω),

I2(δ) ≤ Υ
(
M0(τ ,ω)

)(
R0(τ ,ω) + 2

)
, (3.7)

where Υ (·) denotes the fourth-order polynomial with positive coefficients.
Similarly, by (2.16), there is a δ4 ∈ (0, δ3] such that, for all δ ∈ (0, δ4], t ≥ Tδ and uδ,τ–t ∈

Dδ(τ – t, θ–tω),

I3(δ) ≤ Υ
(
M0(τ ,ω)

)(
R0(τ ,ω) + 1

)
. (3.8)
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By (3.6) and the Assumption F, we have

sup
δ∈(0,δ3]

I4(δ) ≤ Υ
(
M0(τ ,ω)

)∫ τ

τ–1

∥∥f (s)
∥∥2 ds ≤ Υ

(
M0(τ ,ω)

)(
R0(τ ,ω) + 1

)
. (3.9)

We substitute (3.7)–(3.9) into (3.4) to find that, for all δ ∈ (0, δ4], t ≥ Tδ and uδ,τ–t ∈Dδ(τ –
t, θ–tω),

sup
δ∈(0,δ5]

∥∥∇vδ(τ , τ – t, θ–τω, vδ,τ–t)
∥∥2 ≤ eΥ (M0(τ ,ω))(R0(τ ,ω)+2). (3.10)

By using the relationship

uδ(τ , τ – t, θ–τω, uδ,τ–t) = g2
δ (τ , θ–τω)vδ(τ , τ – t, θ–τω, vδ,τ–t),

we see from (3.5) and (3.10) that (3.3) holds true for all δ ∈ (0, δ4], t ≥ Tδ and uδ,τ–t ∈
Dδ(τ – t, θ–tω). �

3.2 Random attractors for the equation with difference noise
A bi-parametric set Aδ = {Aδ(τ ,ω)} ∈ D is called a D-pullback random attractor for the
cocycle Φδ if Aδ is random, compact, invariant and D-pullback attracting. The details and
existence criteria can be found in [26, 32, 33].

Theorem 3.2 Each Ginzburg–Landau equation with δ-difference noise possesses a unique
D-pullback random attractor Aδ = {Aδ(τ ,ω)} in L

2(I).

Proof By Proposition 2.3, the cocycle Φδ has a D-pullback random absorbing set Kδ =
{Kδ(τ ,ω)} ∈D.

We prove that for each δ > 0 the cocycle Φδ is D-pullback asymptotically compact in
L

2(I). Indeed, let tn → +∞ and uδ,τ–tn ∈Dδ(τ – tn, θ–tnω) with Dδ ∈ D, τ ∈ R and ω ∈ Ω .
Then, by the same method as in Lemma 3.1, there is a large N ∈N such that, for all n ≥ N ,

∥∥∇uδ(τ , τ – tn, θ–τω, uδ,τ–tn )
∥∥2 ≤ eΥ (Mδ (τ ,ω))(Rδ (τ ,ω)+1) < +∞,

where, by the continuity of Gδ ,

Mδ(τ ,ω) := sup
s∈[τ–1,τ ]

e± ∫ s
0 Gδ (θr–τ ω) dr < +∞.

Therefore, the sequence

{
Φδ(tn, τ – tn, θ–tnω)uδ,τ–tn

}
=

{
uδn (τ , τ – tn, θ–τω, uδ,τ–tn )

}
(3.11)

is bounded in H
1
0(I). By the compactness of the Sobolev embedding H

1
0(I) ↪→ L

2(I), the
sequence has a convergent subsequence in L

2(I). By the abstract result in [26, 32], there
is a D-pullback random attractor such that {Aδ(τ ,ω) ⊂ {Kδ(τ ,ω). �
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3.3 Random attractors for the equation with Wiener-like noise
We now consider the Ginzburg–Landau equation (1.6) with Wiener-like noise. Let

v(t, τ ,ω, vτ ) = e–ω(t)u(t, τ ,ω, uτ ). (3.12)

We obtain a random equation:

∂v
∂t

–
(
λ + iμ(t)

)
	v = γ v – e2ω(t)(κ + iβ(t)

)|v|2v + e–ω(t)f (t, x), (3.13)

with the initial-boundary conditions

v(t, 0) = v(t, 1) = 0, v(τ , x) = vτ (x), x ∈ I , t ≥ τ , (3.14)

where vτ (x) = e–ω(τ )uτ (x). As in [35], it is standard to show that problem (3.13)–(3.14) has
a unique solution

v(·, τ ,ω, vτ ) ∈ C
(
[τ ,∞), L2(I)

) ∩ L2
loc

(
[τ ,∞), H1

0 (I)
)
.

Passing to the variable u, we obtain a cocycle Φ0 : R+ × R × Ω × L
2(I) → L

2(I) for the
stochastic equation (1.6), given by

Φ0(t, τ ,ω, uτ ) = u(t + τ , τ , θ–τω, uτ ) = eω(t)–ω(–τ )v(t + τ , τ , θ–τω, vτ ). (3.15)

The same method as given in Proposition 2.3 shows that the cocycle Φ0 has aD-pullback
random absorbing set K0 ∈D in the space L

2(I), given by

K0(τ ,ω) :=
{

w ∈ L
2(I) : ‖w‖2 ≤ R0(τ ,ω) + 2

}
, ∀(τ ,ω) ∈R× Ω , (3.16)

where R0(τ ,ω) is just the limit of Rδ(τ ,ω) as given in (2.19).
By the same method as given in Lemma 3.1, one can show that the cocycle Φ0 has an-

other D-pullback absorbing set K̃0(τ ,ω) ⊂H
1
0(I), given by

K̃0(τ ,ω) :=
{

w ∈H
1
0(I) : ‖∇w‖2 ≤ eΥ (M0(τ ,ω))(R0(τ ,ω)+2)}. (3.17)

By the compactness of the Sobolev embedding, Φ0 is D-pullback asymptotically compact.
So, we obtain

Theorem 3.3 The Ginzburg–Landau equation with Wiener-like noise possesses a unique
D-pullback random attractor A0 = {A0(τ ,ω)} in L

2(I).

4 Upper semi-continuity of random attractors
We need to prove the convergence from Φδ to Φ0 as δ → 0.

Lemma 4.1 Let uδ and u be the solutions of (1.3) and (1.6) with initial data uδ,τ , uτ ∈
L

2(I), respectively. If ‖uδ,τ – uτ‖ → 0 as δ → 0, then

lim
δ→0

sup
t∈[τ ,τ+T]

∥∥uδ(t, τ ,ω, uδ,τ ) – u(t, τ ,ω, uτ )
∥∥ = 0, ∀T > 0. (4.1)
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Proof For each δ ∈ (0, δ0] with the positive number δ0 in Lemma 3.1, we define

ξδ(t) := vδ(t, τ ,ω, vδ,τ ) – v(t, τ ,ω, vτ ), t ∈ [τ , τ + T]. (4.2)

By the difference between Eqs. (2.8) and (3.13), we obtain

∂ξδ

∂t
–

(
λ + iμ(t)

)
	ξδ

= γ ξδ +
(
e–

∫ t
0 Gδ (θrω) dr – e–ω(t))f (t, ·)

–
(
κ + iβ(t)

)(
e2

∫ t
0 Gδ (θrω) dr|vδ|2vδ – e2ω(t)|v|2v

)
. (4.3)

Multiplying (4.3) with ξδ and taking the real part, we obtain

1
2

d
dt

‖ξδ‖2 + λ‖∇ξδ‖2

= γ ‖ξδ‖2 +
(
e–

∫ t
0 Gδ (θrω) dr – e–ω(t))(f (t), ξδ

)

– Re
[(

κ + iβ(t)
)(

e2
∫ t

0 Gδ (θrω) dr|vδ|2vδ – e2ω(t)|v|2v, ξδ

)]
. (4.4)

We split the last term of (4.4) to obtain

(
e2

∫ t
0 Gδ (θrω) dr|vδ|2vδ – e2ω(t)|v|2v, ξδ

)

=
(
e2

∫ t
0 Gδ (θrω) dr – e2ω(t))(|vδ|2vδ , ξδ

)
+ e2ω(t)(|vδ|2vδ – |v|2v, ξδ

)
. (4.5)

By the Gagliardo–Nirenberg inequality, ‖w‖4
4 ≤ c‖w‖2‖∇w‖2, we have

∣∣(|vδ|2vδ , ξδ

)∣∣ ≤ c‖ξδ‖4
4 + ‖vδ‖4

4 ≤ c
(‖∇vδ‖2 + ‖∇v‖2)‖ξδ‖2 + ‖vδ‖4

4. (4.6)

By Lemma 2.1 or (2.9), we have, as δ → 0,

Cδ,1(T) := sup
t∈[τ ,τ+T]

∣∣e2
∫ t

0 Gδ (θrω) dr – e2ω(t)∣∣ → 0,

Cδ,2(T) := sup
t∈[τ ,τ+T]

∣∣e–
∫ t

0 Gδ (θrω) dr – e–ω(t)∣∣ → 0,

which further implies

sup
δ∈(0,δ0]

sup
t∈[τ ,τ+T]

(
e2

∫ t
0 Gδ (θrω) dr + e–2

∫ t
0 Gδ (θrω) dr) ≤ C(T) < +∞.

Hence, by (4.6) and β ∈ Cb(R,R),

∣∣Re
(
κ + iβ(t)

)(
e2

∫ t
0 Gδ (θrω) dr – e2ω(t))(|vδ|2vδ , ξδ

)∣∣
≤ C(T)

(‖∇vδ‖2 + ‖∇v‖2)‖ξδ‖2 + Cδ,1(T)‖vδ‖4
4. (4.7)
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Furthermore, on the 1D-domain, we have the Agmon inequality, ‖w‖2∞ ≤ c‖w‖‖∇w‖ for
w ∈ H

1
0(I), and thus

∣∣(|vδ|2vδ – |v|2v, ξδ

)∣∣ =
∣∣∣∣
∫
O

(|vδ|2vδ – |v|2v
)
ξδ dx

∣∣∣∣
=

∣∣∣∣
∫
O

|vδ|2|ξδ|2 + vδv|ξδ|2 + v2(ξδ)2 dx
∣∣∣∣

≤
∫
O

(|vδ|2 + |vδ||v| + |v|2)|ξδ|2 dx

≤ 3
2

∫
O

(|vδ|2 + |v|2)|ξδ|2 dx

≤ 3
∫
O

|ξδ|4 dx +
9
2

∫
O

|v|2|ξδ|2 dx

≤ 3‖ξδ‖4
4 +

9
2
‖v‖2

∞‖ξδ‖2

≤ c
(‖∇vδ‖2 + ‖∇v‖2)‖ξδ‖2 + c‖v‖‖∇v‖‖ξδ‖2

≤ c
(‖∇vδ‖2 + ‖∇v‖2)‖ξδ‖2. (4.8)

Hence, for all t ∈ [τ , τ + T],

∣∣Re
(
κ + iβ(t)

)
e2ω(t)(|vδ|2vδ – |v|2v, ξδ

)∣∣
≤ C(T)

(‖∇vδ‖2 + ‖∇v‖2)‖ξδ‖2. (4.9)

By (4.5), (4.7) and (4.9), we have

∣∣Re
[(

κ + iβ(t)
)(

e2
∫ t

0 Gδ (θrω) dr|vδ|2vδ – e2ω(t)|v|2v, ξδ

)]∣∣
≤ C(T)

(‖∇vδ‖2 + ‖∇v‖2)‖ξδ‖2 + Cδ,1(T)‖vδ‖4
4. (4.10)

On the other hand, the Young inequality gives

∣∣(e–
∫ t

0 Gδ (θrω) dr – e–ω(t))(f (t), ξδ

)∣∣ ≤ 1
4
‖ξδ‖2 + C2

δ,2(T)
∥∥f (t)

∥∥2. (4.11)

We substitute (4.10) and (4.11) into (4.4) to obtain

d
dt

‖ξδ‖2 ≤ C0
(‖∇vδ‖2 + ‖∇v‖2 + 1

)‖ξδ‖2 + Cδ

(‖vδ‖4
4 +

∥∥f (t)
∥∥2), (4.12)

where Cδ = Cδ,1(T) + C2
δ,2(T) → 0 as δ → 0.

By applying the Gronwall inequality on (4.12), we obtain, for all t ∈ [τ , τ + T],

∥∥ξδ(t)
∥∥2 ≤ eC0

∫ τ+T
τ (‖∇vδ (r)‖2+‖∇v(r)‖2+1) dr

×
(

‖ξτ ,δ‖2 + Cδ

∫ τ+T

τ

(∥∥vδ(s)
∥∥4

4 +
∥∥f (s)

∥∥2)ds
)

. (4.13)
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By (2.16)–(2.17) in Lemma 2.2, there is a δ0 > 0 such that

sup
δ∈(0,δ0]

∫ τ+T

τ

(∥∥∇vδ(r, τ ,ω, vτ )
∥∥2 +

∥∥vδ(r)
∥∥4

4

)
dr ≤ C(T) < +∞.

Since v ∈ L2(τ , τ + T ,H1
0(I), we have

∫ τ+T

τ

∥∥∇v(r, τ ,ω, vτ )
∥∥2
H2 ds ≤ C(T , τ ,ω) < +∞. (4.14)

Noticing that f is locally integrable, we have, for all δ ∈ (0, δ0],

sup
t∈[τ ,τ+T]

∥∥ξδ(t)
∥∥2 ≤ C(T)

(‖ξτ ,δ‖2 + Cδ

)
. (4.15)

By Lemma 2.1 and ‖uδ,τ – uτ‖ → 0 as δ → 0, we have

‖ξτ ,δ‖2 = ‖vτ ,δ – vτ‖2 ≤ e–2
∫ τ

0 Gδ (θrω) dr‖uτ ,δ – uτ‖2

+ e–2
∫ τ

0 Gδ (θrω) dr(e2
∫ τ

0 Gδ (θrω) dr – e2ω(τ ))e–2ω(τ )‖uτ‖2 → 0

as δ → 0. On the other hand,

uδ(t, τ ,ω, uδ,τ ) – u(t, τ ,ω, uτ ) = e
∫ t

0 Gδ (θrω) drvδ(t) – eω(t)v(t)

= e
∫ t

0 Gδ (θrω) drξδ(t) +
(
e
∫ t

0 Gδ (θrω) dr – eω(t))v(t, τ ,ω, vτ ).

Notice Cδ → 0 in (4.15), we finish the proof. �

Remark In a two-dimensional domain, the estimates in (4.8) may not be true and so we
cannot prove the convergence of the system. This is the reason why we restrict the equa-
tion on the one-dimensional domain. In fact, the existence of a random attractor holds
true in a two-dimensional domain.

Finally, we show the upper semi-continuity of attractors as the size of noise tends to
zero, which is different from the case of varying density of noise [6, 16, 22, 39].

Theorem 4.2 Let Aδ and A0 be random attractors for Ginzburg–Landau equations with
difference noise and Wiener-like noise, as given in Theorems 3.2 and 3.3, respectively. Then

lim
δ→0

distL2(I)
(
Aδ(τ ,ω),A0(τ ,ω)

)
= 0, ∀τ ∈R,ω ∈ Ω . (4.16)

Proof By all previous uniform estimates, the abstract results as given in [23, 34] seems to
be applied. However, we give a direct proof for completeness.

Suppose (4.16) is not true, then there are ε0 > 0, δn → 0 and zn ∈ Aδn (τ ,ω) with τ ∈ R,
ω ∈ Ω such that

distL2(I)
(
zn,A0(τ ,ω)

) ≥ ε0, ∀n ∈N. (4.17)
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We assume without loss of generality that δn ≤ δ0(τ ,ω) for all n ∈ N, where δ0 is given
in Lemma 3.1. For each fixed n ∈ N, we have Aδn ∈ D, let Tδn = T(Aδn , τ ,ω) as given in
Lemma 3.1. By the invariance of Aδn and by Lemma 3.1,

zn ∈Aδn (τ ,ω) = Φδn (Tδn , τ – Tδn , θ–Tδn ω)Aδn (τ – Tδn , θ–Tδn ω) ⊂ K̃0(τ ,ω),

where K̃0(τ ,ω) is the bounded ball in H
1
0(I), as given in (3.17). By the compactness of the

Sobolev embedding, K̃0(τ ,ω) is pre-compact in L
2(I) and thus, passing to a subsequence,

we can assume that ‖zn – z0‖ → 0 for some z0 ∈ L
2(I).

Next, we intend to prove z0 ∈ A0(τ ,ω), which will be a contradiction with (4.17). For
m = 1, the invariance shows that there are y1

n ∈Aδn (τ – 1, θ–1ω) such that

Φδn (1, τ – 1, θ–1ω)y1
n = zn, ∀n ∈ N.

By the same method as above, there is a N ∈N such that δn ≤ δ0(τ – 1, θ–1ω) for all n ≥ N
and thus Lemma 3.1 gives

{
y1

n : n ≥ N
} ⊂ K̃0(τ – 1, θ–1ω).

By the compactness of the Sobolev embedding, the sequence {y1
n} has a convergent sub-

sequence {y1
n1} such that

∥∥y1
n1 – y1∥∥ → 0, for some y1 ∈ L

2(I).

Repeating this process, there are ym
n,m–1 ∈Aδn,m–1 (τ – m, θ–mω) such that

Φδn,m–1 (m, τ – m, θ–mω)ym
n,m–1 = zn,m–1, ∀n ∈N,

and, for an index subsequence {nm} of {n, m – 1},

∥∥ym
nm – ym∥∥ → 0, for some ym ∈ L

2(I).

We consider the diagonal subsequence {nn} of {n} to obtain

∥∥ym
nn – ym∥∥ → 0, and Φδnn (m, τ – m, θ–mω)ym

nn = znn (→ z0).

By the convergence (4.1) in Lemma 4.1, we have

znn → Φ0(m, τ – m, θ–mω)ym and so Φ0(m, τ – m, θ–mω)ym = z0.

On the other hand, by Proposition 2.3,

∥∥ym∥∥2 ≤ lim sup
n→∞

∥∥Aδnn (τ – m, θ–mω)
∥∥2

≤ lim sup
n→∞

Rδnn (τ – m, θ–mω) + 1 ≤ R0(τ – m, θ–mω) + 2.



Wang et al. Advances in Difference Equations        (2019) 2019:224 Page 16 of 17

Since R0(τ ,ω) + 2 is tempered (i.e. K0 ∈D), it follows from the attraction of A0 that

dist
(
z0,A0(τ ,ω)

)
= dist

(
Φ0(m, τ – m, θ–mω)ym,A0(τ ,ω)

) → 0

as m → ∞. Hence, z0 ∈A0(τ ,ω) as desired. �
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