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Abstract
This paper is concerned with a kind of non-zero sum differential game driven by
mean-field backward stochastic differential equation (MF-BSDE) with asymmetric
information, whose novel feature is that both the state equation and the cost
functional are of mean-field type. A necessary condition and a sufficient condition for
Nash equilibrium point of the above problem are established. As applications,
a mean-field linear-quadratic (MF-LQ) problem and a financial problem are studied.
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1 Introduction
Mean-field theory has been an active research field in recent years, which has attracted
a lot of researchers to investigate this theory. Mean-field theory was independently pro-
posed by Lasry and Lions [1] and Huang et al. [2], respectively. Since then, research on
related topics and their applications has become popular among scholars. For instance,
Bensoussan et al. [3] investigated the existence and uniqueness of equilibrium strategies
of LQ mean-field games; Øksendal and Sulem [4] researched optimal control of predic-
tive mean-field equation and applied the theoretical results to solve optimal portfolio and
consumption rate problems; Wu and Liu [5] derived the maximum principle for mean-
field zero-sum stochastic differential game with partial information and applied the results
to study a portfolio game problem; Hafayed et al. [6] studied the mean-field stochastic
control problem under partial information and derived a necessary condition and a suffi-
cient condition for optimal control; Huang and Wang [7] investigated a partial information
linear-quadratic-Gauss game of larger-population system and obtained the decentralized
strategy and approximate Nash equilibrium by studying the related mean-field game. We
emphasize that the systems introduced in [3–7] are governed by forward stochastic dif-
ferential equations (SDEs).

Nonlinear BSDE was introduced by Pardoux and Peng [8]. From then on, the theory
of BSDE has made a rapid development due to its wide applications. Shen and Jiang [9]
proved the existence and uniqueness of BSDE driven by time-changed Lévy noise, where
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the generator is monotonic and general growth with respect to variable y, and Mu and Wu
[10] provided an existence result of a coupled Markovian BSDE system. Hamadène and
Lepeltier [11] discussed a stochastic zero-sum differential game of BSDE and obtained
the existence of saddle point under the bounded case and Isaacs’ condition. Wang and
Yu [12] established a necessary condition and a verification theorem for open-loop Nash
equilibrium point of non-zero sum differential game of BSDE under partial information.
Furthermore, Wang et al. [13] discussed asymmetric information LQ non-zero sum dif-
ferential game of BSDE and gave the feedback Nash equilibrium points. See also Wang
and Yu [14], Li and Yu [15] for more information.

In 2009, Buckdahn et al. [16] firstly introduced a new kind of BSDE by investigating a
special mean-field problem, which is called MF-BSDE. Then, Ma and Liu [17] studied a
partial information optimal control of infinite horizon MF-BSDE with delay, and a nec-
essary condition and a sufficient condition for optimal control were derived; Li et al. [18]
solved an LQ control problem of MF-BSDE, and the optimal control was represented by
two Riccati-type equations and a mean-field SDE. Besides, Wu and Liu [19] studied an op-
timal control problem for mean-field zero-sum stochastic differential game under partial
information. Recently, Lin et al. [20] discussed an open-loop LQ leader-follower of mean-
field stochastic differential game and solved the corresponding optimal control problems
for the follower and the leader; Du and Wu [21] considered a new kind of Stackelberg
differential game of MF-BSDE, and they obtained the open-loop Stackelberg equilibrium,
which admits a state feedback representation. What is more, Zhang [22] investigated an
optimal control problem for terminal constraint mean-field SDE under partial informa-
tion, which was solved by the backward separation method with a decomposition tech-
nique. To our best knowledge, the mean-field backward stochastic differential game has
important applications in economic and financial fields, and the corresponding result is
quite lacking in literature, then we highly desire to study such a topic. Note that the sys-
tem in [17, 18] only contains one control process, [19] discussed the zero-sum game for a
forward system, and [20, 21] investigated game problems under full information. Due to
this, Problem (MFBNZ) is distinguished from the above literature.

The rest of this paper is organized as follows. In Sect. 2, we introduce some basic nota-
tions and formulate the asymmetric information non-zero sum differential game of MF-
BSDE. In Sect. 3, we establish a necessary condition and a sufficient condition for Nash
equilibrium point of Problem (MFBNZ). In Sect. 4, we investigate the well-posedness of
initial coupled mean-field forward and backward stochastic differential equation (MF-
FBSDE), which plays an important role in Sects. 5 and 6. In Sect. 5, we use the theoretical
results to study an MF-LQ problem with asymmetric information and give an explicit form
of Nash equilibrium point. In Sect. 6, we put a financial problem into the framework of
Problem (MFBNZ) and obtain a feedback optimal investment strategy. In Sect. 7, we give
some concluding remarks.

2 Notations and problem formulation
Throughout this paper, we denote by R

k the k-dimensional Euclidean space, by R
k×l the

collection of k × l matrices, by Aτ the transpose of A, by 〈·, ·〉 and | · | the inner product and
the norm in Euclidean space, respectively. Let (Ω ,F ,Ft , P) be a complete filtered proba-
bility space with a natural filtration {Ft , t ≥ 0} generated by an Ft-adapted, l-dimensional
standard Brownian motion {W (t), t ≥ 0}. Also, we denote by L2

F (0, T ;Rn) the space of all
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R
n-valued, Ft-adapted processes such that E

∫ T
0 |x(t)|2 dt < +∞, and by L2

F (Ω ,FT , P;Rn)
the space of all Rn-valued, FT -measurable random variables such that E|ξ |2 < +∞.

In this paper, we study a kind of asymmetric information non-zero sum differential game
of MF-BSDE. We only consider the case of two players. Similarly, we can study the case of
n players. Consider the MF-BSDE

⎧
⎨

⎩

–dyv(t) = f (t, yv(t), zv(t),Eyv(t),Ezv(t), v1(t), v2(t)) dt – zv(t) dW (t),

yv(T) = ξ ,
(1)

where we adopt the notation v(·) = (v1(·), v2(·)) for simplicity; f : Ω × [0, T] ×R
n ×R

n×l ×
R

n ×R
n×l ×R

k1 ×R
k2 −→ R

n is a given continuous function; ξ ∈L2
F (Ω ,FT , P;Rn); v1(·)

and v2(·) are the control processes of Player 1 and Player 2, respectively. MF-BSDE (1)
characters that the two players cooperate to reach a terminal goal ξ at T .

Let Ui (i = 1, 2) be a nonempty convex subset ofRki , andF i
t ⊆Ft be a given sub-filtration

which is the information available to Player i at time t ∈ [0, T]. Introduce the admissible
control set

Ui =
{

vi(·) ∈L2
F i

t

(
0, T ;Rki

)|vi(t) ∈ Ui, t ∈ [0, T]
}

(i = 1, 2),

which is called an open-loop admissible control set for Player i.

Hypothesis 1 The function f is continuously differentiable in (y, z, ȳ, z̄, v1, v2). Moreover,
its partial derivatives fy, fz, fȳ, fz̄, fv1 , fv2 are uniformly bounded.

Suppose that v1(·) and v2(·) are admissible controls and Hypothesis 1 holds. With the as-
sumptions, MF-BSDE (1) has a unique solution (y(·), z(·)) ∈L2

F (0, T ;Rn) ×L2
F (0, T ;Rn×l)

(see Buckdahn et al. [16]). Ensuring achievement of the goal ξ , the two players have their
own benefits described by the cost functional

Ji
(
v1(·), v2(·)) = E

[∫ T

0
li
(
t, yv(t), zv(t),Eyv(t),Ezv(t), v1(t), v2(t)

)
dt + Φi

(
yv(0)

)
]

(2)

(i = 1, 2), where li : Ω × [0, T] ×R
n ×R

n×l ×R
n ×R

n×l ×R
k1 ×R

k2 →R and Φi : Rn →R

are continuous, and li satisfies

E

∫ T

0

∣
∣li

(
t, yv(t), zv(t),Eyv(t),Ezv(t), v1(t), v2(t)

)∣
∣dt < +∞

for all (v1(·), v2(·)) ∈ U1 × U2.

Hypothesis 2 li and Φi (i = 1, 2) are continuously differentiable with respect to (y, z, ȳ, z̄,
v1, v2) and y, respectively. Besides, there exists a constant C such that the partial derivatives
liy, liz, liȳ, liz̄, liv1 , liv2 (i = 1, 2) are bounded by C(1 + |y| + |z| + |ȳ| + |z̄| + |v1| + |v2|).

Problem (MFBNZ) Find a pair of (u1(·), u2(·)) ∈ U1 × U2 such that

⎧
⎨

⎩

J1(u1(·), u2(·)) = minv1(·)∈U1 J1(v1(·), u2(·)),
J2(u1(·), u2(·)) = minv2(·)∈U2 J2(u1(·), v2(·)),

(3)
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subject to state equation (1) and cost functional (2). We call the above problem a mean-
field backward non-zero sum stochastic differential game with asymmetric information.
If (u1(·), u2(·)) satisfies (3), we call it a Nash equilibrium point of Problem (MFBNZ).

3 Maximum principle
In this section, we will give a necessary condition and a sufficient condition for Nash equi-
librium point of Problem (MFBNZ).

Define the Hamiltonian function Hi: Ω × [0, T] ×R
n ×R

n×l ×R
n ×R

n×l ×R
k1 ×R

k2 ×
R

n → R by Hi(t, y, z, ȳ, z̄, v1, v2, pi) = 〈pi, –f (t, y, z, ȳ, z̄, v1, v2)〉 + li(t, y, z, ȳ, z̄, v1, v2) (i = 1, 2),
where pi(·) satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dpi(t) = –[Hiy(t, y(t), z(t),Ey(t),Ez(t), u1(t), u2(t), pi(t))

+ EHiȳ(t, y(t), z(t),Ey(t),Ez(t), u1(t), u2(t), pi(t))] dt

– [Hiz(t, y(t), z(t),Ey(t),Ez(t), u1(t), u2(t), pi(t))

+ EHiz̄(t, y(t), z(t),Ey(t),Ez(t), u1(t), u2(t), pi(t))] dW (t),

pi(0) = –Φiy(y(0))

(4)

with Hiy, Hiȳ, Hiz, and Hiz̄ being the partial derivatives of Hi with respect to y, ȳ, z, and z̄,
respectively.

3.1 The necessary condition
Assume that (u1(·), u2(·)) is a Nash equilibrium point of Problem (MFBNZ). For fixed u1(·),
to minimize the aforementioned cost functional J2(u1(·), v2(·)), subject to state equation (1)
over U2 is a “non-Markovian” optimal control problem of MF-BSDE. Similarly, for the case
corresponding to fixed u2(·). Using the method introduced in Peng [23], we can analyze
the differential game problem. Here we only present the main result for saving space.

Theorem 3.1 Let Hypotheses 1–2 hold. If (u1(·), u2(·)) is a Nash equilibrium point of Prob-
lem (MFBNZ) and (y(·), z(·)) is the corresponding state trajectory, then we have

E
[〈

Hivi

(
t, y(t), z(t),Ey(t),Ez(t), u1(t), u2(t), pi(t)

)
, vi – ui(t)

〉|F i
t
] ≥ 0 (i = 1, 2)

holds for any (v1, v2) ∈ U1 × U2, where pi(·) satisfies (4).

3.2 The sufficient condition
Now we weaken Hypothesis 2 to

Hypothesis 3 For each (v1, v2) ∈ U1 ×U2, li and Φi (i = 1, 2) are differentiable with respect
to (yv, zv, ȳv, z̄v, v1, v2) and y, respectively; besides, li(t, y, z, ȳ, z̄, v1, v2) ∈L1

F (0, T ;R).

Theorem 3.2 Let Hypothesis 1 and Hypothesis 3 hold. Suppose that li (i = 1, 2) is con-
tinuously differentiable in vi. Assume that adjoint equation (4) is uniquely solvable. Sup-
pose that (u1(·), u2(·)) ∈ U1 × U2 is given such that liy(X (·)), liz(X (·)), liȳ(X (·)), liz̄(X (·)),
livi (X (·))∈L2

F (0, T) (i = 1, 2), where

X (·) =
(·, y(·), z(·),Ey(·),Ez(·), u1(·), u2(·)).
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In addition, for any (t, vi) ∈ [0, T] × Ui (i = 1, 2), livi (·, y(·), z(·),Ey(·),Ez(·), vi, u3–i(·)) ∈
L1(Ω ,F , P). Assume that Hi(t, y, z,Ey,Ez, vi, u3–i(t), pi(t)) (i = 1, 2) and Φi(y) are convex
in (y, z, ȳ, z̄, vi) and y, respectively. Assume that

E
[
H1

(
t, y(t), z(t),Ey(t),Ez(t), u1(t), u2(t), p1(t)

)|F1
t
]

= min
v1∈U1

E
[
H1

(
t, y(t), z(t),Ey(t),Ez(t), v1, u2(t), p1(t)

)|F1
t
]
,

E
[
H2

(
t, y(t), z(t),Ey(t),Ez(t), u1(t), u2(t), p2(t)

)|F2
t
]

= min
v2∈U2

E
[
H2

(
t, y(t), z(t),Ey(t),Ez(t), u1(t), v2, p2(t)

)|F2
t
]
.

What is more, assume that E[Hivi (t, y(t), z(t),Ey(t),Ez(t), vi, u3–i(t), pi(t))|F i
t ] (i = 1, 2) is

continuous at vi = ui(t) for all t ∈ [0, T]. Then (u1(·), u2(·)) is a Nash equilibrium point of
Problem (MFBNZ).

Proof For any v1(·) ∈ U1, we consider

J1
(
u1(t), u2(t)

)
– J1

(
v1(t), u2(t)

)

= E

∫ T

0

[
l1

(
t, y(t), z(t),Ey(t),Ez(t), u1(t), u2(t)

)

– l1
(
t, yv1 (t), zv1 (t),Eyv1 (t),Ezv1 (t), v1(t), u2(t)

)]
dt

+ E
[
Φ1

(
y(0)

)
– Φ1

(
yv1 (0)

)]
,

where (y(·), z(·),Ey(·),Ez(·)) and (yv1 (·), zv1 (·),Eyv1 (·),Ezv1 (·)) are the state trajectories cor-
responding to (u1(·), u2(·)) and (v1(·), u2(·)), respectively.

Let

A1 = E

∫ T

0

[
l1

(
t, y(t), z(t),Ey(t),Ez(t), u1(t), u2(t)

)

– l1
(
t, yv1 (t), zv1 (t),Eyv1 (t),Ezv1 (t), v1(t), u2(t)

)]
dt,

A2 = E
[
Φ1

(
y(0)

)
– Φ1

(
yv1 (0)

)]
.

Then we have

J1
(
u1(t), u2(t)

)
– J1

(
v1(t), u2(t)

)
= A1 + A2.

The integration A1 is written as

A1 = E

∫ T

0

[
H1

(
t, y(t), z(t),Ey(t),Ez(t), u1(t), u2(t), p1(t)

)

– H1
(
t, yv1 (t), zv1 (t),Eyv1 (t),Ezv1 (t), v1(t), u2(t), p1(t)

)]
dt

+ E

∫ T

0

〈
p1(t), f

(
t, y(t), z(t),Ey(t),Ez(t), u1(t), u2(t)

)

– f
(
t, yv1 (t), zv1 (t),Eyv1 (t),Ezv1 (t), v1(t), u2(t)

)〉
dt. (5)
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Since Φ1(y) is convex on y,

A2 ≤ E
[
–Φτ

1y
(
y(0)

)(
yv1 (0) – y(0)

)]
= E

〈
p1(0), yv1 (0) – y(0)

〉
.

Applying Itô’s formula to 〈p1(·), y(·) – yv1 (·)〉, we get

〈
p1(0), yv1 (0) – y(0)

〉

= –
∫ T

0

〈
p1(t), f

(
t, y(t), z(t),Ey(t),Ez(t), u1(t), u2(t)

)

– f
(
t, yv1 (t), zv1 (t),Eyv1 (t),Ezv1 (t), v1(t), u2(t)

)〉
dt

–
∫ T

0

〈
y(t) – yv1 (t), H1y

(
t, y(t), z(t),Ey(t),Ez(t), u1(t), u2(t), p1(t)

)

+ EH1ȳ
(
t, y(t), z(t),Ey(t),Ez(t), u1(t), u2(t), p1(t)

)〉
dt

–
∫ T

0

〈
z(t) – zv1 (t), H1z

(
t, y(t), z(t),Ey(t),Ez(t), u1(t), u2(t), p1(t)

)

+ EH1z̄
(
t, y(t), z(t),Ey(t),Ez(t), u1(t), u2(t), p1(t)

)〉
dt

–
∫ T

0

〈
y(t) – yv1 (t),

(
H1z

(
t, y(t), z(t),Ey(t),Ez(t), u1(t), u2(t), p1(t)

)

+ EH1z̄
(
t, y(t), z(t),Ey(t),Ez(t), u1(t), u2(t), p1(t)

))
dW (t)

〉

+
∫ T

0

〈
p1(t),

(
z(t) – zv1 (t)

)
dW (t)

〉
.

Then,

A2 ≤ E
[
pτ

1(0)
(
yv1 (0) – y(0)

)]

= –E
∫ T

0

〈
p1(t), f

(
t, y(t), z(t),Ey(t),Ez(t), u1(t), u2(t)

)

– f
(
t, yv1 (t), zv1 (t),Eyv1 (t),Ezv1 (t), v1(t), u2(t)

)〉
dt

– E

∫ T

0

〈
y(t) – yv1 (t), H1y

(
t, y(t), z(t),Ey(t),Ez(t), u1(t), u2(t), p1(t)

)

+ EH1ȳ
(
t, y(t), z(t),Ey(t),Ez(t), u1(t), u2(t), p1(t)

)〉
dt

– E

∫ T

0

〈
z(t) – zv1 (t), H1z

(
t, y(t), z(t),Ey(t),Ez(t), u1(t), u2(t), p1(t)

)

+ EH1z̄
(
t, y(t), z(t),Ey(t),Ez(t), u1(t), u2(t), p1(t)

)〉
dt. (6)

Combining (5) with (6), we have

J1
(
u1(t), u2(t)

)
– J1

(
v1(t), u2(t)

)

≤ E

∫ T

0

[
H1

(
t, y(t), z(t),Ey(t),Ez(t), u1(t), u2(t), p1(t)

)

– H1
(
t, yv1 (t), zv1 (t),Eyv1 (t),Ezv1 (t), v1(t), u2(t), p1(t)

)]
dt
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– E

∫ T

0

〈
y(t) – yv1 (t), H1y

(
t, y(t), z(t),Ey(t),Ez(t), u1(t), u2(t), p1(t)

)

+ EH1ȳ
(
t, y(t), z(t),Ey(t),Ez(t), u1(t), u2(t), p1(t)

)〉
dt

– E

∫ T

0

〈
z(t) – zv1 (t), H1z

(
t, y(t), z(t),Ey(t),Ez(t), u1(t), u2(t), p1(t)

)

+ EH1z̄
(
t, y(t), z(t),Ey(t),Ez(t), u1(t), u2(t), p1(t)

)〉
dt. (7)

Since H1(t, y, z,Ey,Ez, v1, u2(t), p1(t)) is convex in (y, z, ȳ, z̄, v1), then (7) becomes

J1
(
u1(t), u2(t)

)
– J1

(
v1(t), u2(t)

)

≤ E

∫ T

0

[〈
H1v1

(
t, y(t), z(t),Ey(t),Ez(t), u1(t), u2(t), p1(t)

)
, u1(t) – v1(t)

〉]
dt

≤ E

∫ T

0

[
E

〈
H1v1

(
t, y(t), z(t),Ey(t),Ez(t), u1(t), u2(t), p1(t)

)
, u1(t) – v1(t)

〉|F1
t
]

dt.

Noticing that v1 → E[H1(t, y(t), z(t),Ey(t),Ez(t), v1, u2(t), p1(t))|F1
t ] can be the minimum

at v1 = u1(t), we have J1(u1(t), u2(t)) ≤ J1(v1(t), u2(t)) for any v1(·) ∈ U1. Then it implies that

J1
(
u1(t), u2(t)

)
= min

v1(·)∈U1
J1

(
v1(t), u2(t)

)
.

Similarly, we have J2(u1(t), u2(t)) = minv2(·)∈U2 J2(u1(t), v2(t)).
Thus, we draw the desired conclusion. �

4 Mean-field FBSDE
In this section, we study the existence and uniqueness of solution to an initial coupled
MF-FBSDE, which will be used in the rest of this paper.

Consider the MF-FBSDE

⎧
⎪⎪⎨

⎪⎪⎩

dx(t) = f (Π (t)) dt + σ1(Π (t)) dW1(t) + σ2(Π (t)) dW2(t),

–dy(t) = g(Π (t)) dt – z1(t) dW1(t) – z2(t) dW2(t),

x(0) = Ψ (y(0)), y(T) = ξ ,

(8)

where Π (·) = (·, x(·), y(·), z1(·), z2(·),Ex(·),Ey(·),Ez1(·),Ez2(·)); x, y, z1, z2 take values in
R

n,Rm,Rm×d , and R
m×d , respectively; f ,σ1,σ2, g,Ψ are functions with appropriate dimen-

sions.
Let G be an m × n full-rank matrix and use the notations

λ = (x, y, z1, z2)τ , λ̆ = (x̆, y̆, z̆1, z̆2)τ , A(t,λ, λ̆) =
(
–Gτ g, Gf , Gσ1, Gσ2

)τ (t,λ, λ̆).

Definition 4.1 (x, y, z1, z2) : Ω × [0, T] → R
n × R

m × R
m×d × R

m×d is called an adapted
solution of (8) if (x, y, z1, z2) ∈L2

F (0, T ;Rn ×R
m ×R

m×d ×R
m×d) and satisfies (8).

Hypothesis 4
(1) A(t,λ, λ̆) is uniformly Lipschitz with respect to λ, λ̆, and for each λ, λ̆, A(t,λ, λ̆) is in

L2
F (0, T); Ψ (x) is uniformly Lipschitz with respect to x.
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(2)

⎧
⎪⎪⎨

⎪⎪⎩

E〈A(t,λ, λ̆) – A(t, λ̄, ¯̆λ),λ – λ̄〉
≤ –β1(E|Gx|2) – β2(E|Gτ y|2 + E|Gτ z1|2 + E|Gτ z2|2),

E〈G(Ψ (y) – Ψ (ȳ)), y – ȳ〉 ≤ –μ2E|Gτ y|2
(9)

for all λ = (x, y, z1, z2), λ̄ = (x̄, ȳ, z̄1, z̄2), λ̆ = (x̆, y̆, z̆1, z̆2), ¯̆
λ = ( ¯̆x, ¯̆y, ¯̆z1, ¯̆z2),

(x, y, z1, z2) = (x – x̄, y – ȳ, z1 – z̄1, z2 – z̄2), where β1,β2,μ2 are given non-negative
constants with β1 + β2 > 0,β1 + μ2 > 0. What is more, we have β1 > 0 (respectively,
β2 > 0,μ2 > 0) when m > n (respectively, m < n).

Theorem 4.1 Assume that Hypothesis 4 holds. MF-FBSDE (8) admits a unique solution
(x, y, z1, z2).

Proof Similar to Yu and Ji [24] and Bensoussan et al. [25], we can prove this result. We
omit the details for saving space. �

5 An MF-LQ problem
This section focuses on solving an LQ case of Problem (MFBNZ). Applying Theorem 3.1
and Theorem 3.2, we obtain an explicit form of Nash equilibrium point by optimal filters
and Riccati equations. For simplicity, here we only deal with the case of one-dimensional
Brownian motion.

Consider the linear MF-BSDE

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–dyv(t) = [A(t)yv(t) + C2(t)zv
2(t) + Ā(t)Eyv(t)

+ C̄2(t)Ezv
2(t) + B1(t)v1(t) + B2(t)v2(t)] dt

– zv
1(t) dW1(t) – zv

2(t) dW2(t),

yv(T) = ξ ,

(10)

and the cost functional

Ji
(
v1(·), v2(·))

=
1
2
E

{∫ T

0

[
Mi(t)v2

i (t) + Ni(t)
(
yv(t)

)2 + N̄i(t)
(
Eyv(t)

)2]dt + γi0
(
yv(0)

)2
}

(11)

(i = 1, 2), where v(·) = (v1(·), v2(·)); A(·), C2(·), Ā(·), C̄2(·), Bi(·) (i = 1, 2) are deterministic,
uniformly bounded functions; ξ ∈ L2

F (Ω ,FT , P;R); v1(·) and v2(·) are the control pro-
cesses; N̄i(·) (i = 1, 2) is deterministic, non-negative, and uniformly bounded function;
Mi(·), Ni(·), and γi0 (i = 1, 2) are deterministic, positive and uniformly bounded functions.
Here, we require Ni(·) and γi0 (i = 1, 2) to be positive, which guarantees mi 
= 0 (i = 1, 2)
and k3 
= 0 given by (13)–(14) and (42), respectively.

To what follows, we want to get an explicit form of Nash equilibrium point. Due to the
fact that F i

t available to Player i (i = 1, 2) is only an abstract sub-filtration of Ft , it is impos-
sible to obtain a feedback Nash equilibrium point in general. So we mainly study three spe-
cial information structures as follows: (1) F1

t = F2
t = σ {W2(s); 0 ≤ s ≤ t} = FW2

t , i.e., Player
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1 and Player 2 have the same observation information; (2) F1
t = σ {W1(s), W2(s); 0 ≤ s ≤

t} = Ft ,F2
t = FW2

t , i.e., Player 1 has more information than Player 2; (3) F1
t = σ {W1(s); 0 ≤

s ≤ t} = FW1
t ,F2

t = FW2
t , i.e., Player 1 and Player 2 possess the mutually independent in-

formation.
According to Theorem 3.1 and Theorem 3.2, (u1(·), u2(·)) is a Nash equilibrium point of

the MF-LQ problem if and only if

u1(t) = M–1
1 (t)B1(t)E

[
p1(t)|F1

t
]
, u2(t) = M–1

2 (t)B2(t)E
[
p2(t)|F2

t
]
,

where (y, z1, z2, p1, p2) satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

–dy = (Ay + C2z2 + ĀEy + C̄2Ez2 + B2
1M–1

1 E[p1|F1
t ]

+ B2
2M–1

2 E[p2|F2
t ]) dt – z1 dW1 – z2 dW2,

dp1 = (Ap1 + ĀEp1 – N1y – N̄1Ey) dt + (C2p1 + C̄2Ep1) dW2,

dp2 = (Ap2 + ĀEp2 – N2y – N̄2Ey) dt + (C2p2 + C̄2Ep2) dW2,

y(T) = ξ , p1(0) = –γ10y(0), p2(0) = –γ20y(0).

(12)

For the sake of simplicity, here we omit the time variable t in (12). Similar convention
will be taken for the subsequent equations except for the initial or terminal conditions. In
addition, we give Hypothesis 5 throughout Sect. 5.

Hypothesis 5 B2
1(t)M–1

1 (t) = B2
2(t)M–1

2 (t), and B2
i (t)M–1

i (t) (i = 1, 2) is independent of the
time variable t.

5.1 Symmetric information: F1
t = F2

t = FW2
t

In this case, we denote E[p1(t)|F1
t ] = E[p1(t)|FW2

t ] = p̂1(t) and E[p2(t)|F2
t ] =

E[p2(t)|FW2
t ] = p̂2(t).

To derive an explicit form of Nash equilibrium point, we first introduce two sets of or-
dinary differential equations (ODEs):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ̇1 – [B2
1M–1

1 + (C2 + C̄2)2m–1
1 ]λ2

1 – B2
2M–1

2 λ1λ2 – [2(A + Ā) + 2B2
1M–1

1 m1

+ B2
2M–1

2 m2 + 2(C2 + C̄2)2]λ1 – B2
2M–1

2 m1λ2

+ [N̄1 – (C̄2(2C2 + C̄2) + 2Ā)m1] = 0,

ṁ1 – B2
1M–1

1 m2
1 – B2

2M–1
2 m1m2 – (C2

2 + 2A)m1 + N1 = 0,

ṅ1 – [B2
1M–1

1 (λ1 + m1) + (A + Ā) + (C2 + C̄2)2(m–1
1 λ1 + 1)]n1

– B2
2M–1

2 (λ1 + m1)n2 = 0,

λ1(0) = 0, m1(0) = –γ10, n1(0) = 0

(13)
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and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ̇2 – [B2
2M–1

2 + (C2 + C̄2)2m–1
2 ]λ2

2 – B2
1M–1

1 λ1λ2 – [2(A + Ā) + 2B2
2M–1

2 m2

+ B2
1M–1

1 m1 + 2(C2 + C̄2)2]λ2 – B2
1M–1

1 m2λ1

+ [N̄2 – (C̄2(2C2 + C̄2) + 2Ā)m2] = 0,

ṁ2 – B2
2M–1

2 m2
2 – B2

1M–1
1 m1m2 – (C2

2 + 2A)m2 + N2 = 0,

ṅ2 – [B2
2M–1

2 (λ2 + m2) + (A + Ā) + (C2 + C̄2)2(m–1
2 λ2 + 1)]n2

– B2
1M–1

1 (λ2 + m2)n1 = 0,

λ2(0) = 0, m2(0) = –γ20, n2(0) = 0.

(14)

Since (13) and (14) are coupled with each other, it is difficult to prove their existence and
uniqueness except for some special cases. For example,

Hypothesis 6 C2(t) = –C̄2(t).

Lemma 5.1 Under Hypotheses 5–6, there exists a unique solution (λ1, m1, n1,λ2, m2, n2) to
(13) and (14).

Proof Noticing (13) and (14), we introduce

⎧
⎪⎪⎨

⎪⎪⎩

ṁ1 – B2
1M–1

1 m2
1 – B2

2M–1
2 m1m2 – (C2

2 + 2A)m1 + N1 = 0,

ṁ2 – B2
2M–1

2 m2
2 – B2

1M–1
1 m1m2 – (C2

2 + 2A)m2 + N2 = 0,

m1(0) = –γ10, m2(0) = –γ20.

(15)

In what follows, we prove that (15) is uniquely solvable. Let m = m1 + m2. Under Hypoth-
esis 5, we have

ṁ – B2
1M–1

1 m2 –
(
C2

2 + 2A
)
m + (N1 + N2) = 0, m(0) = –γ10 – γ20. (16)

Obviously, (16) is a standard Riccati equation, so it admits a unique solution m(·). Intro-
duce two new ODEs:

˙̃m1 –
(
C2

2 + 2A + B2
1M–1

1 m
)
m̃1 + N1 = 0, m̃1(0) = –γ10, (17)

˙̃m2 –
(
C2

2 + 2A + B2
1M–1

1 m
)
m̃2 + N2 = 0, m̃2(0) = –γ20, (18)

where m(·) is the solution to (16). It is easy to see that (17) and (18) have unique solutions
m̃1 and m̃2, respectively. Besides, we check that m1 and m2 in (15) are the solutions to (17)
and (18), respectively. According to the existence and uniqueness of solutions to (17) and
(18), we have

m1 = m̃1, m2 = m̃2, (19)

which implies that (15) admits a unique solution (m1, m2).
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Similarly, we introduce

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ̇1 – B2
1M–1

1 λ2
1 – B2

2M–1
2 λ1λ2 – [2(A + Ā) + 2B2

1M–1
1 m1 + B2

2M–1
2 m2]λ1

– B2
2M–1

2 m1λ2 + [N̄1 – (C2C̄2 + 2Ā)m1] = 0,

λ̇2 – B2
2M–1

2 λ2
2 – B2

1M–1
1 λ1λ2 – [2(A + Ā) + 2B2

2M–1
2 m2 + B2

1M–1
1 m1]λ2

– B2
1M–1

1 m2λ1 + [N̄2 – (C2C̄2 + 2Ā)m2] = 0,

λ1(0) = 0, λ2(0) = 0

(20)

with Hypothesis 5, where (m1, m2) is the solution to (15). Let λ = λ1 + λ2. Then we have

⎧
⎪⎪⎨

⎪⎪⎩

λ̇ – B2
1M–1

1 λ2 – 2[(A + Ā) + B2
1M–1

1 (m1 + m2)]λ + [N̄1 – (C2C̄2 + 2Ā)m1]

+ [N̄2 – (C2C̄2 + 2Ā)m2] = 0,

λ(0) = 0.

(21)

Similar to (16), we can prove that (21) has a unique solution λ(·). Introduce two other
ODEs:

⎧
⎪⎪⎨

⎪⎪⎩

˙̃
λ1 – [B2

1M–1
1 λ + 2(A + Ā) + B2

1M–1
1 (m1 + m2)]λ̃1

– B2
1M–1

1 m1λ + [N̄1 – (C2C̄2 + 2Ā)m1] = 0,

λ̃1(0) = 0,
⎧
⎪⎪⎨

⎪⎪⎩

˙̃
λ2 – [B2

1M–1
1 λ + 2(A + Ā) + B2

1M–1
1 (m1 + m2)]λ̃2

– B2
1M–1

1 m2λ + [N̄2 – (C2C̄2 + 2Ā)m2] = 0,

λ̃2(0) = 0,

where λ(·) is the solution to (21). Similar to (15), (20) admits a unique solution (λ1,λ2)
satisfying

λ1 = λ̃1, λ2 = λ̃2.

Finally, we introduce

⎧
⎪⎪⎨

⎪⎪⎩

ṅ1 – [B2
1M–1

1 (λ1 + m1) + (A + Ā)]n1 – B2
2M–1

2 (λ1 + m1)n2 = 0,

ṅ2 – [B2
2M–1

2 (λ2 + m2) + (A + Ā)]n2 – B2
1M–1

1 (λ2 + m2)n1 = 0,

n1(0) = 0, n2(0) = 0,

(22)

where λi, mi (i = 1, 2) are the solutions to (20) and (15), respectively. Besides, similar to
(20) and (15), we know that (22) is uniquely solvable. For simplicity, we let n = n1 + n2.

Based on the arguments above, we get that (13) and (14) have unique solutions
(λ1, m1, n1) and (λ2, m2, n2), respectively. �

In the following, we will use five steps to give the explicit form of Nash equilibrium
point.
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Step 1: The unexplicit form of Nash equilibrium point.
(u1(·), u2(·)) is the Nash equilibrium point of the MF-LQ problem if and only if it is

uniquely determined by

u1(t) = M–1
1 (t)B1(t)p̂1(t), u2(t) = M–1

2 (t)B2(t)p̂2(t),

where (y, z1, z2, p1, p2) is the solution of

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

–dy = (Ay + C2z2 + ĀEy + C̄2Ez2 + B2
1M–1

1 p̂1 + B2
2M–1

2 p̂2) dt

– z1 dW1 – z2 dW2,

dp1 = (Ap1 + ĀEp1 – N1y – N̄1Ey) dt + (C2p1 + C̄2Ep1) dW2,

dp2 = (Ap2 + ĀEp2 – N2y – N̄2Ey) dt + (C2p2 + C̄2Ep2) dW2,

y(T) = ξ , p1(0) = –γ10y(0), p2(0) = –γ20y(0).

(23)

Noticing that since (23) contains the conditional expectation of pi(·) (i = 1, 2) with respect
to FW2

t , we call it a conditional MF-FBSDE.
Step 2: Filtering equation.
Since (23) contains p̂i(·) (i = 1, 2), we need to compute the optimal filter (ŷ, ẑ2, p̂1, p̂2) of

(y, z2, p1, p2) with respect to FW2
t . Applying Lemma 5.4 in Xiong [26], we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–dŷ = (Aŷ + C2ẑ2 + ĀEy + C̄2Ez2 + B2
1M–1

1 p̂1 + B2
2M–1

2 p̂2) dt – ẑ2 dW2,

dp̂1 = (Ap̂1 + ĀEp1 – N1ŷ – N̄1Ey) dt + (C2p̂1 + C̄2Ep1) dW2,

dp̂2 = (Ap̂2 + ĀEp2 – N2ŷ – N̄2Ey) dt + (C2p̂2 + C̄2Ep2) dW2,

ŷ(T) = ξ̂ , p̂1(0) = –γ10ŷ(0), p̂2(0) = –γ20ŷ(0).

(24)

Note that this filtering equation is different from the case introduced in Chap. 2 of Wang
et al. [27], whose existence and uniqueness need to be proved below.

Step 3: Existence and uniqueness of (24).
Introduce a new MF-FBSDE

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

–dY = (AY + C2Z2 + ĀEY + C̄2EZ2 + P) dt – Z2 dW2,

dP = [AP + ĀEP – (B2
1M–1

1 N1 + B2
2M–1

2 N2)Y

– (B2
1M–1

1 N̄1 + B2
2M–1

2 N̄2)EY ] dt

+ (C2P + C̄2EP) dW2,

Y (T) = ξ̂ , P(0) = –[B2
1(0)M–1

1 (0)γ10 + B2
2(0)M–1

2 (0)γ20]Y (0).

(25)

With the help of Hypothesis 5, it is easy to check that Hypothesis 4 holds. Then Theo-
rem 4.1 implies that (25) is uniquely solvable.

Now we intend to prove that the existence and uniqueness of (25) are equivalent to those
of (24). On the one hand, we prove that the solution of (24) is the solution of (25). In fact,
the conclusion is easily drawn with the assumption

Y = ŷ, Z2 = ẑ2, P = B2
1M–1

1 p̂1 + B2
2M–1

2 p̂2.
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On the other hand, we prove that the solution of (25) is the solution of (24). Let (Y , Z2, P)
be a solution of (25), and set

ŷ = Y , ẑ2 = Z2. (26)

It follows from the existence and uniqueness of mean-field stochastic differential equation
that p̂i satisfies

⎧
⎨

⎩

dp̂i = (Ap̂i + ĀEpi – NiY – N̄iEY ) dt + (C2p̂i + C̄2Epi) dW2,

p̂i(0) = –γi0Y (0) (i = 1, 2).

In order to say (Y , Z2, p̂i) (i = 1, 2) is a solution of (24), we only check

P = B2
1M–1

1 p̂1 + B2
2M–1

2 p̂2. (27)

Letting P̄ = B2
1M–1

1 p̂1 + B2
2M–1

2 p̂2, we have

⎧
⎪⎪⎨

⎪⎪⎩

dP̄ = [AP̄ + ĀEP̄ – (B2
1M–1

1 N1 + B2
2M–1

2 N2)Y – (B2
1M–1

1 N̄1 + B2
2M–1

2 N̄2)EY ] dt

+ (C2P̄ + C̄2EP̄) dW2,

P̄(0) = –[B2
1(0)M–1

1 (0)γ10 + B2
2(0)M–1

2 (0)γ20]Y (0).

Fixing Y , we derive P = P̄, and then (27) holds indeed. Hence, the existence and uniqueness
of (25) are equivalent to those of (24).

Step 4: Existence and uniqueness of (23).
Fixing p̂1 and p̂2 in (23), we can easily prove that (23) admits a unique solution

(y, z1, z2, p1, p2).
Step 5: The feedback Nash equilibrium point.
According to the first equation of (23) together with the terminal condition in (23), we

set

pi = λiEy + miy + ni, λi(0) = 0, mi(0) = –γi0, ni(0) = 0 (i = 1, 2). (28)

Applying Itô’s formula to p1 in (28), we have

dp1 =
{[

λ̇1 – (A + Ā)λ1 – B2
1M–1

1
(
λ2

1 + 2λ1m1
)

– B2
2M–1

2 (λ1λ2 + λ1m2)

– Ām1 – B2
2M–1

2 m1λ2
]
Ey

+ (ṁ1 – Am1)y –
(
B2

1M–1
1 m2

1 + B2
2M–1

2 m1m2
)
ŷ +

[
ṅ1 –

(
B2

1M–1
1 n1 + B2

2M–1
2 n2

)
λ1

–
(
B2

1M–1
1 n1 + B2

2M–1
2 n2

)
m1

]
–

[
(C2 + C̄2)λ1 + C̄2m1

]
Ez2 – C2m1z2

}
dt

+ m1z1 dW1 + m1z2 dW2. (29)

Putting (28) into the second equation of (23), and comparing the coefficients of (29) and
(23), we get

m1z2 = (C2λ1 + C̄2λ1 + C̄2m1)Ey + C2m1y + (C2 + C̄2)n1, (30)
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{[
λ̇1 – (A + Ā)λ1 – B2

1M–1
1

(
λ2

1 + 2λ1m1
)

– B2
2M–1

2 (λ1λ2 + λ1m2)

– Ām1 – B2
2M–1

2 m1λ2
]
Ey

+ (ṁ1 – Am1)y –
(
B2

1M–1
1 m2

1 + B2
2M–1

2 m1m2
)
ŷ +

[
ṅ1 –

(
B2

1M–1
1 n1 + B2

2M–1
2 n2

)
λ1

–
(
B2

1M–1
1 n1 + B2

2M–1
2 n2

)
m1

]
–

[
(C2 + C̄2)λ1 + C̄2m1

]
Ez2 – C2m1z2

}

=
[
Aλ1 + Ā(λ1 + m1) – N̄1

]
Ey + (Am1 – N1)y + (A + Ā)n1. (31)

Taking E[·|FW2
t ] on both sides of (28) and (30), we have

p̂i = λiEy + miŷ + ni (i = 1, 2), (32)

m1ẑ2 = (C2λ1 + C̄2λ1 + C̄2m1)Ey + C2m1ŷ + (C2 + C̄2)n1. (33)

Here we assume m1 
= 0. Substituting (30) into (31) and taking E[·|FW2
t ] on both sides of

(31), it becomes

{
λ̇1 –

[
B2

1M–1
1 + (C2 + C̄2)2m–1

1
]
λ2

1 – B2
2M–1

2 λ1λ2 –
[
2(A + Ā) + 2B2

1M–1
1 m1

+ B2
2M–1

2 m2 + 2(C2 + C̄2)2]λ1 – B2
2M–1

2 m1λ2 +
[
N̄1 –

(
C̄2(2C2 + C̄2) + 2Ā

)
m1

]}
Ey

+
[
ṁ1 – B2

1M–1
1 m2

1 – B2
2M–1

2 m1m2 –
(
C2

2 + 2A
)
m1 + N1

]
ŷ +

{
ṅ1 –

[
B2

1M–1
1 (λ1 + m1)

+ (A + Ā) + (C2 + C̄2)2(m–1
1 λ1 + 1

)]
n1 – B2

2M–1
2 (λ1 + m1)n2

}
= 0. (34)

From (34), we derive (13). Similarly, (14) is derived by applying Itô’s formula to p2.
To close this subsection, we give the explicit form of ŷ(t). Putting (30) into the first equa-

tion of (23) and taking E[·], we have

⎧
⎨

⎩

dEy(t)
dt + q1(t)Ey(t) = –q2(t),

Ey(T) = Eξ
(35)

with

q1(t) = A(t) + Ā(t) + B2
1(t)M–1

1 (t)
(
λ(t) + m(t)

)
, q2(t) = B2

1(t)M–1
1 (t)n(t), (36)

where m, λ and n = n1 + n2 are represented by (16), (21), and (22), respectively. Solving
(35), we get its unique solution

Ey(t) = e
∫ T

t q1(r) dr
Eξ +

∫ T

t
q2(s)e

∫ s
t q1(r) dr ds. (37)

Set

q3(t) = A(t) + B2
1(t)M–1

1 (t)m(t), q4(t) =
[
Ā(t) + B2

1(t)M–1
1 (t)λ(t)

]
Ey(t) + q2(t). (38)

Then the first equation of (24) is written as
⎧
⎨

⎩

–dŷ(t) = [q3(t)ŷ(t) + C2(t)ẑ2(t) + q4(t)] dt – ẑ2(t) dW2(t),

ŷ(T) = ξ̂ ,
(39)
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whose unique solution is

ŷ(t) = E

[

ξ̂XT +
∫ T

t
q4(s)Xs ds

∣
∣
∣FW2

t

]

, (40)

where Xs = exp{∫ s
t [q3(r) – 1

2 C2
2(r)] dr +

∫ s
t C2(r) dW2(r)}.

Theorem 5.1 Under Hypotheses 5–6, the feedback Nash equilibrium point (u1(t), u2(t)) of
the MF-LQ problem is uniquely denoted by

⎧
⎨

⎩

u1(t) = M–1
1 (t)B1(t)(λ1(t)Ey(t) + m1(t)ŷ(t) + n1(t)),

u2(t) = M–1
2 (t)B2(t)(λ2(t)Ey(t) + m2(t)ŷ(t) + n2(t)),

where λi, mi, ni (i = 1, 2), Ey and ŷ are given by (13), (14), (37), and (40), respectively.

5.2 Asymmetric information
Here we solve two asymmetric information structures introduced above. The correspond-
ing derivation procedures are similar to those of Sect. 5.1, so we omit the nonessential
details and only give the main results.

5.2.1 F1
t = Ft and F2

t = FW2
t

In this case, E[p1(t)|F1
t ] = E[p1(t)|Ft] = p1(t), E[p1(t)|F2

t ] = E[p1(t)|FW2
t ] = p̂2(t).

Theorem 5.2 Let Hypotheses 5–6 hold. Then the feedback Nash equilibrium point
(u1(t), u2(t)) of the MF-LQ problem is uniquely determined by

⎧
⎨

⎩

u1(t) = M–1
1 (t)B1(t)(k1(t)Ey(t) + k2(t)ŷ(t) + k3(t)y(t) + k4(t)),

u2(t) = M–1
2 (t)B2(t)(λ2(t)Ey(t) + m2(t)ŷ(t) + n2(t)),

(41)

where λ2, m2, n2, Ey, and ŷ are the unique solutions to (14), (37), and (40), respectively; ki

(i = 1, 2, 3, 4) and y satisfy

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k̇1 – (A + Ā + q1 + B2
1M–1

1 k3)k1 – (2Ā + C2C̄2 + B2
1M–1

1 λ)k2

– (2Ā + B2
2M–1

2 λ2 + C2C̄2)k3 + N̄1 = 0,

k̇2 – (q3 + B2
1M–1

1 k3 + C2
2 + A)k2 – B2

2M–1
2 m2k3 = 0,

k̇3 – (2A + C2
2)k3 – B2

1M–1
1 k2

3 + N1 = 0,

k̇4 – (B2
1M–1

1 k3 + A + Ā)k4 – q2(k1 + k2) – B2
2M–1

2 n2k3 = 0,

k1(0) = 0, k2(0) = 0, k3(0) = –γ10, k4(0) = 0

(42)

and

y(t) = E

[

ξΣT +
∫ T

t
q6(s)Σs ds

∣
∣
∣Ft

]
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with q1, q2, q3 are represented by (36) and (38), respectively, and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Σs = exp{∫ s
t [q5(r) – 1

2 C2
2(r)] dr +

∫ s
t C2(r) dW2(r)},

q5(t) = A(t) + B2
1(t)M–1

1 (t)k3(t),

q6(t) = [Ā(t) + B2
1(t)M–1

1 (t)k1(t) + B2
2(t)M–1

2 (t)λ2(t)]Ey(t)

+ [B2
1(t)M–1

1 (t)k2(t) + B2
2(t)M–1

2 (t)m2(t)]ŷ(t)

+ B2
1(t)M–1

1 (t)k4(t) + B2
2(t)M–1

2 (t)n2(t),

respectively.

Feedback Nash equilibrium point (41) shows that although Player 1 observes full infor-
mation, the control strategy of Player 1 is heavily influenced by the information available
to Player 2 via Ey and ŷ. This is an interesting phenomenon.

5.2.2 F1
t = FW1

t and F2
t = FW2

t

Hypothesis 7 C2 = C̄2 = 0.

Hypothesis 7 guarantees that the filtering equation of (12) with respect to FW1
t is

uniquely solvable.

Theorem 5.3 Assume that Hypothesis 5 and Hypothesis 7 hold. Then the MF-LQ problem
has a unique Nash equilibrium point (u1(t), u2(t)) represented by

⎧
⎨

⎩

u1(t) = M–1
1 (t)B1(t)(w1(t)Ey(t) + w2(t)ỹ(t) + w3(t)),

u2(t) = M–1
2 (t)B2(t)(ρ1(t)Ey(t) + ρ2(t)ŷ(t) + ρ3(t)),

where ỹ(t) = E[y(t)|FW1
t ], wi, ρi (i = 1, 2, 3) are given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẇ1 – [2A + Ā + B2
1M–1

1 (d1 + d2) + B2
1M–1

1 w2]w1

+ [N̄1 – (Ā + B2
2M–1

2 d2)w2 – Ād1] = 0,

ẇ2 – B2
1M–1

1 w2
2 – 2Aw2 + N1 = 0,

ẇ3 – (B2
1M–1

1 w2 + A)w3 – [B2
1M–1

1 (l1 + l2)w1 + B2
2M–1

2 l2w2 + Āl1] = 0,

w1(0) = 0, w2(0) = –γ10, w3(0) = 0

and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρ̇1 – [2A + Ā + B2
1M–1

1 (d1 + d2) + B2
2M–1

2 ρ2]ρ1 + [N̄2 – (Ā + B2
2M–1

2 d1)ρ2 – Ād2] = 0,

ρ̇2 – B2
2M–1

2 ρ2
2 – 2Aρ2 + N2 = 0,

ρ̇3 – (B2
2M–1

2 ρ2 + A)ρ3 – [B2
1M–1

1 (l1 + l2)ρ1 + B2
1M–1

1 l1ρ2 + Āl2] = 0,

ρ1(0) = 0, ρ2(0) = –γ20, ρ3(0) = 0
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with di, li (i = 1, 2) satisfying

⎧
⎪⎪⎨

⎪⎪⎩

ḋ1 – B2
1M–1

1 d2
1 – B2

2M–1
2 d1d2 – 2(A + Ā)d1 + (N1 + N̄1) = 0,

l̇1 – B2
1M–1

1 d1l1 – B2
2M–1

2 d1l2 – (A + Ā)l1 = 0,

d1(0) = –γ10, l1(0) = 0

and

⎧
⎪⎪⎨

⎪⎪⎩

ḋ2 – B2
2M–1

2 d2
2 – B2

1M–1
1 d1d2 – 2(A + Ā)d2 + (N2 + N̄2) = 0,

l̇2 – B2
1M–1

1 d2l1 – B2
2M–1

2 d2l2 – (A + Ā)l2 = 0,

d2(0) = –γ20, l2(0) = 0,

respectively; Ey, ỹ and ŷ are given by

Ey(t) = e
∫ T

t q8(r) dr
Eξ +

∫ T

t
q7(s)e

∫ s
t q8(r) dr ds,

ỹ(t) = ΞTE
[
ξ |FW1

t
]

+
∫ T

t
q9(s)Ξs ds,

ŷ(t) = ΘTE
[
ξ |FW2

t
]

+
∫ T

t
q10(s)Θs ds

with

q7(t) = B2
1(t)M–1

1 (t)
(
l1(t) + l2(t)

)
,

q8(t) = A(t) + Ā(t) + B2
1(t)M–1

1 (t)
(
d1(t) + d2(t)

)
,

Ξs = exp

{∫ s

t

[
A(r) + B2

1(r)M–1
1 (r)w2(r)

]
dr

}

,

q9(t) =
[
Ā(t) + B2

1(t)M–1
1 (t)w1(t) + B2

2(t)M–1
2 (t) d2(t)

]
Ey(t)

+ B2
1(t)M–1

1 (t)w3(t) + B2
2(t)M–1

2 (t)l2(t),

Θs = exp

{∫ s

t

[
A(r) + B2

2(r)M–1
2 (r)ρ2(r)

]
dr

}

,

q10(t) =
[
Ā(t) + B2

1(t)M–1
1 (t) d1(t) + B2

2(t)M–1
2 (t)ρ1(t)

]
Ey(t)

+ B2
1(t)M–1

1 (t)l1(t) + B2
2(t)M–1

2 (t)ρ3(t),

respectively.

6 Application in a financial problem
In this section, we consider an investment problem in a financial market. With the help of
Theorem 3.1 and Theorem 3.2, an explicit form of optimal investment strategy is obtained.
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We begin with a typical setup for the financial market, in which a bond and two stocks
are continuously traded, and their prices satisfy

⎧
⎪⎪⎨

⎪⎪⎩

dB(t) = r(t)B(t) dt,

dS1(t) = S1(t)[μ1(t) dt + σ1(t) dW1(t)],

dS2(t) = S2(t)[μ2(t) dt + σ2(t) dW2(t)],

where r(·) is called the interest rate of the bond; μi(·),σi(·) (i = 1, 2) are called the appreci-
ation rate of return and volatility coefficient of the ith stock.

Hypothesis 8 The market coefficients r(·), μi(·),σi(·) (i = 1, 2) are deterministic and
bounded processes. What is more, σ –1

i (·) (i = 1, 2) is also bounded.

Suppose that there are two investors cooperating to invest a bond and two stocks, whose
decision cannot influence the prices in the financial market. Furthermore, we assume that
Investor 1 only cares about the price of the first stock, i.e., F1

t = σ {S1(s); 0 ≤ s ≤ t} = FS1
t ;

however, Investor 2 cares about the prices of these two stocks, i.e., F2
t = σ {S1(s), S2(s); 0 ≤

s ≤ t} = FS1,S2
t . Clearly, FS1

t = σ {W1(s); 0 ≤ s ≤ t} and FS1,S2
t = σ {W1(s), W2(s); 0 ≤ s ≤ t}.

Assume that these two investors want to obtain a terminal wealth ξ at T , which is an
FT -measurable, non-negative, and square-integrable random variable. Meanwhile, both
of them hope to minimize their own risks, described by Ji (i = 1, 2). In detail, we denote by
πi(·) the amount that the investors invest in the ith (i = 1, 2) stock and by y(·) the wealth
of the two investors. Then, y(·) is modeled by

⎧
⎪⎪⎨

⎪⎪⎩

dy(t) = [r(t)y(t) + b1(t)z1(t) + b2(t)z2(t) + v1(t) + v2(t)] dt

+ z1(t) dW1(t) + z2(t) dW2(t),

y(T) = ξ ,

(43)

where bi(·) = (μi(·) – r(·))σ –1
i (·) (i = 1, 2); zi(·) = πi(·)σi(·) (i = 1, 2); v1(·) and v2(·) are certain

economic factors, which can be interpreted as capital injection or withdrawal.
Define the associated performance functional for each investor as follows:

Ji
(
v1(·), v2(·)) =

1
2
E

{∫ T

0

[(
y(t) – Ey(t)

)2 +
(
vi(t) – BMi(t)

)2]dt + Φiy2(0)
}

(44)

(i = 1, 2), where BMi(·) is a deterministic benchmark; Φi (i = 1, 2) is a positive constant.
In the performance functional, the first term measures the variance of the wealth y(·); the
second term measures the difference between the economic factor vi(·) and benchmark
BMi(·) (i = 1, 2) decided by the two investors; the last term in the performance functional
characterizes the initial wealth y(·) at time 0.

Let U be a nonempty and convex subset of R. Define the admissible control set

Ui =
{

vi(·) ∈L2
F i

t
(0, T ;R)|vi(t) ∈ U , t ∈ [0, T]

}
(i = 1, 2).

Then the investment problem is stated as follows.
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Problem (F) Find a pair of (u1, u2) ∈ U1 × U2 such that

⎧
⎨

⎩

J1(u1(·), u2(·)) = minv1(·)∈U1 J1(v1(·), u2(·)),
J2(u1(·), u2(·)) = minv2(·)∈U2 J2(u1(·), v2(·)),

subject to (43) and (44). If such a pair of (u1, u2) exists, we call it an optimal investment
strategy of Problem (F).

Clearly, Problem (F) can be regarded as a non-zero sum mean-field backward stochas-
tic differential game with asymmetric information, which is a special case of Problem
(MFBNZ).

Here, we point out that Problem (F) is different from the MF-LQ problem, due to two
distinguishing features below: firstly, the generator of the first equation of (47) has an
additional term b2ž2, which leads to a difficulty of proving the existence and uniqueness of
solution to it; secondly, (44) contains the first terms of y(·) and vi(·), and then Theorem 5.2
cannot be used to solve Problem (F).

We firstly study a special case that F1
t = F2

t = FS1
t , which plays an important role in

solving the asymmetric information case.

6.1 Symmetric information: F1
t = F2

t = FS1
t

Let ǧ(·) = E[g(·)|FS1
t ]. We have E[p1(t)|F1

t ] = E[p1(t)|FS1
t ] = p̌1(t) and E[p2(t)|F2

t ] =
E[p1(t)|FS1

t ] = p̌2(t). In the following, we use four steps to solve this case.
Step 1: Optimal investment strategy.
The optimal investment strategy (u1, u2) of Problem (F) has the form of

u1(t) = BM1(t) – p̌1(t), u2(t) = BM2(t) – p̌2(t), (45)

where (y, z1, z2, p1, p2) satisfies

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dy = (ry + b1z1 + b2z2 + u1 + u2) dt + z1 dW1 + z2 dW2,

dp1 = (Ey – y – rp1) dt – b1p1 dW1 – b2p1 dW2,

dp2 = (Ey – y – rp2) dt – b1p2 dW1 – b2p2 dW2,

y(T) = ξ , p1(0) = –Φ1y(0), p2(0) = –Φ2y(0).

(46)

Taking E[·|FS1
t ] on both sides of each equation of (46) yields

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dy̌ = (ry̌ + b1ž1 + b2ž2 + u1 + u2) dt + ž1 dW1,

dp̌1 = (Ey – y̌ – rp̌1) dt – b1p̌1 dW1,

dp̌2 = (Ey – y̌ – rp̌2) dt – b1p̌2 dW1,

y̌(T) = ξ̌ , p̌1(0) = –Φ1y̌(0), p̌2(0) = –Φ2y̌(0).

(47)

Step 2: Existence and uniqueness of (50).
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Introduce
⎧
⎪⎪⎨

⎪⎪⎩

γ̇1 – γ 2
1 + (2r – b2

1 – b2
2)γ1 – γ1γ2 = 0,

η̇1 + (r – b2
1 – b2

2 – γ1)η1 – γ1η2 + (BM1 + BM2)γ1 = 0,

γ1(0) = –Φ1, η1(0) = 0,

(48)

⎧
⎪⎪⎨

⎪⎪⎩

γ̇2 – γ 2
2 + (2r – b2

1 – b2
2)γ2 – γ1γ2 = 0,

η̇2 + (r – b2
1 – b2

2 – γ2)η2 – γ2η1 + (BM1 + BM2)γ2 = 0,

γ2(0) = –Φ2, η2(0) = 0.

(49)

Similar to Lemma 5.1, we can prove that (48) and (49) are uniquely solvable. What is more,
it follows from Φ1 > 0 that the solution γ1(·) < 0. For convenience, let γ = γ1 +γ2, η = η1 +η2.

Introduce an auxiliary MF-FBSDE

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dy̌ = [ry̌ + b1ž1 + BM1 + BM2 – (1 + γ –1
1 b2

2)p̌1 – p̌2] dt + ž1 dW1,

dp̌1 = (Ey – y̌ – rp̌1) dt – b1p̌1 dW1,

dp̌2 = (Ey – y̌ – rp̌2) dt – b1p̌2 dW1,

y̌(T) = ξ̌ , p̌1(0) = –Φ1y̌(0), p̌2(0) = –Φ2y̌(0),

(50)

which is subject to an additional hypothesis as follows.

Hypothesis 9 1 + γ –1
1 (t)b2

2(t) ≥ 0.

According to Hypothesis 4, (50) has a unique solution (y̌, ž1, p̌1, p̌2).
Step 3: The equivalence between (47) and (50) with (45).
We first prove that the solution (y̌, ž1, p̌1, p̌2) of (50) satisfies (47). If ui(t) = BMi(t) – p̌i(t)

(i = 1, 2), then (46) is uniquely solvable. Set

pi = γiy + ηi, γi(0) = –Φi, ηi(0) = 0 (i = 1, 2). (51)

Applying Itô’s formula to p1 in (51), we get

dp1 =
[
(γ̇1 + rγ1)y + γ1(b1z1 + b2z2) – γ1(γ1 + γ2)y̌ + η̇1

+ γ1(BM1 + BM2 – η1 – η2)
]

dt

+ γ1z1 dW1 + γ1z2 dW2. (52)

Comparing (52) with the second equation of (46), we have

γ1zi = –bip1 (i = 1, 2), (53)
[
(γ̇1 + rγ1)y + γ1(b1z1 + b2z2) – γ1(γ1 + γ2)y̌ + η̇1 + γ1(BM1 + BM2 – η1 – η2)

]

=
[
Ey – (1 + rγ1)y – rη1

]
. (54)

Putting (53) into (54) subject to (51), and taking E[·] on both sides of (54), we arrive at

[
γ̇1 – γ 2

1 +
(
2r – b2

1 – b2
2
)
γ1 – γ1γ2

]
Ey +

[
η̇1 +

(
r – b2

1 – b2
2 – γ1

)
η1 – γ1η2
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+ (BM1 + BM2)γ1
]

= 0, (55)

which implies (48). Similarly, applying Itô’s formula to p2 in (51), we derive (49).
In addition, taking E[·|FS1

t ] on both sides of (51) and (53), we get

p̌i = γiy̌ + ηi, (56)

ži = –γ –1
1 bip̌1, (57)

(i = 1, 2). Putting (57) into (50), it is easy to see that (y̌, ž1, ž2, p̌1, p̌2) solves (47).
Next, with u1 and u2 fixed, we prove that the solution (y̌, ž1, ž2, p̌1, p̌2) of (47) is a solution

of (50). Take ui = BMi – p̌i (i = 1, 2). Then (y, z1, z2, p1, p2) is the unique solution to (46).
Substituting ži = –γ –1

1 bip̌1 and ui = BMi – p̌i (i = 1, 2) into (47), we arrive at (50), which
implies that (y̌, ž1, p̌1, p̌2) is a solution of (50).

Based on the analysis above, we know that the existence and uniqueness of (47) are
equivalent to those of (50).

Step 4: The explicit form of optimal investment strategy.
Due to (56) and (57), the first equation of (47) is written as

⎧
⎨

⎩

dy̌(t) = [f1(t)y̌(t) + b1(t)ž1(t) + f2(t)] dt + ž1(t) dW1(t),

y̌(T) = ξ̌ ,
(58)

where
⎧
⎨

⎩

f1(t) = r(t) – γ (t) – b2
2(t),

f2(t) = BM1(t) + BM2(t) – η(t) – γ –1
1 (t)b2

2(t)η1(t).
(59)

Solving (58), we get

y̌(t) = E

[

ξ̌ΠT –
∫ T

t
f2(s)Πs ds

∣
∣
∣FS1

t

]

(60)

with

Πs = exp

{∫ s

t
–
[

f1(r) +
1
2

b2
1(r)

]

dr –
∫ s

t
b1(r) dW1(r)

}

.

What is more, the expectation of y̌(t) represented by (60) is

Ey(t) = e
∫ T

t [b2
1(r)–f1(r)] dr

Eξ +
∫ T

t

[
γ –1

1 (t)b2
1(t)η1(t) – f2(t)

]
e
∫ s

t [b2
1(r)–f1(r)] dr ds. (61)

Theorem 6.1 Under Hypotheses 8–9, the optimal investment strategy of Problem (F) is
denoted by

⎧
⎨

⎩

u1(t) = BM1(t) – (γ1(t)y̌(t) + η1(t)),

u2(t) = BM2(t) – (γ2(t)y̌(t) + η2(t)),

where γi, ηi (i = 1, 2) and y̌ are given by (48), (49), and (60), respectively.
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6.2 Asymmetric information: F1
t = FS1

t ,F2
t = FS1,S2

t

In this case, we have E[p1(t)|F1
t ] = E[p1(t)|FS1

t ] = p̌1(t) and E[p2(t)|F2
t ] = E[p2(t)|FS1,S2

t ] =
p2(t). Based on Theorem 6.1, we start to solve Problem (F) by three steps.

Step 1: Optimal investment strategy.
The optimal investment strategy of Problem (F) is

u1(t) = BM1(t) – p̌1(t), u2(t) = BM2(t) – p2(t),

where (y, z1, z2, p1, p2) is the unique solution of

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dy = (ry + b1z1 + b2z2 + BM1 + BM2 – p̌1 – p2) dt + z1 dW1 + z2 dW2,

dp1 = (Ey – y – rp1) dt – b1p1 dW1 – b2p1 dW2,

dp2 = (Ey – y – rp2) dt – b1p2 dW1 – b2p2 dW2,

y(T) = ξ , p1(0) = –Φ1y(0), p2(0) = –Φ2y(0).

(62)

It is easy to check that the optimal filter (y̌, ž1, ž2, p̌1, p̌2) of (y, z1, z2, p1, p2) in (62) still sat-
isfies (47), and then y̌ and p̌1 are represented by (60) and (56), respectively.

Step 2: Existence and uniqueness of (63).
The first equation and the third equation of (62) are written as

⎧
⎪⎪⎨

⎪⎪⎩

dy = (ry + b1z1 + b2z2 + BM1 + BM2 – γ1y̌ – η1 – p2) dt + z1 dW1 + z2 dW2,

dp2 = (Ey – y – rp2) dt – b1p2 dW1 – b2p2 dW2,

y(T) = ξ , p2(0) = –Φ2y(0).

(63)

It follows from Theorem 4.1 that (63) is uniquely solvable.
Step 3: The explicit form of optimal investment strategy.
In order to obtain the feedback optimal investment strategy, we have to establish the

relationship between p2 and y, y̌. Noticing the first equation of (63) together with the ter-
minal condition in (63), we set

p2 = δ1y + δ2y̌ + δ3, δ1(0) = –Φ2, δ2(0) = δ3(0) = 0. (64)

Applying Itô’s formula to p2 in (64), we have

dp2 =
[(

δ̇1 + rδ1 – δ2
1
)
y +

(
δ̇2 – γ1δ1 – δ1δ2 +

(
f1 – b2

1
)
δ2

)
y̌ + δ1(b1z1 + b2z2)

+ δ̇3 + (BM1 + BM2 – η1)δ1 – δ1δ3 +
(
f2 – γ –1

1 η1b2
1
)
δ2

]
dt

+
(
δ1z1 –

(
y̌ + γ –1

1 η1
)
b1δ2

)
dW1 + δ1z2 dW2, (65)

where f1 and f2 are given by (59). Comparing (65) with the second equation of (63), we
obtain

⎧
⎨

⎩

δ1z1 – b1δ2y̌ – b1γ
–1
1 δ2η1 = –b1(δ1y + δ2y̌ + δ3),

δ1z2 = –b2(δ1y + δ2y̌ + δ3),
(66)

[(
δ̇1 + rδ1 – δ2

1
)
y +

(
δ̇2 – γ1δ1 – δ1δ2 +

(
f1 – b2

1
)
δ2

)
y̌ + δ1(b1z1 + b2z2) + δ̇3
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+ (BM1 + BM2 – η1)δ1 – δ1δ3 +
(
f2 – γ –1

1 η1b2
1
)
δ2

]

=
[
Ey – (1 + rδ1)y – rδ2y̌ – rδ3

]
. (67)

Substituting (66) into (67), we obtain

[
δ̇1 +

(
2r – b2

1 – b2
2
)
δ1 – δ2

1 + 1
]
y +

[
δ̇2 +

(
r + f1 – δ1 – b2

1 – b2
2
)
δ2 – γ1δ1

]
y̌

+
[
δ̇3 +

(
r – b2

1 – b2
2 – δ1

)
δ3 + (BM1 + BM2 – η1)δ1 + δ2f2 – Ey

]
= 0, (68)

where Ey is given by (61). (68) implies that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

δ̇1 + (2r – b2
1 – b2

2)δ1 – δ2
1 + 1 = 0,

δ̇2 + (r + f1 – δ1 – b2
1 – b2

2)δ2 – γ1δ1 = 0,

δ̇3 + (r – b2
1 – b2

2 – δ1)δ3 + (BM1 + BM2 – η1)δ1 + δ2f2 – Ey = 0,

δ1(0) = –Φ2, δ2(0) = 0, δ3(0) = 0,

(69)

which has a unique solution (δ1, δ2, δ3).
Due to (64), the first equation of (63) is written as

⎧
⎪⎪⎨

⎪⎪⎩

dy(t) = [(r(t) – δ1(t))y(t) + b1(t)z1(t) + b2(t)z2(t) + f3(t)] dt

+ z1(t) dW1(t) + z2(t) dW2(t),

y(T) = ξ ,

(70)

where f3(t) = BM1(t) + BM2(t) – η1(t) – δ3(t) – (γ1(t) + δ2(t))y̌(t). Solving (70), we get its
unique solution

y(t) = E

[

ξΛT –
∫ T

t
f3(s)Λs ds

∣
∣
∣FS1,S2

t

]

, (71)

where Λs = exp{∫ s
t [–r(ω) + δ1(ω) – 1

2 b2
1(ω) – 1

2 b2
2(ω)] dω –

∫ s
t b1(ω) dW1(ω) –

∫ s
t b2(ω) dW2(ω)}.

Theorem 6.2 Under Hypotheses 8–9, the optimal investment strategy of Problem (F) is
uniquely given by

⎧
⎨

⎩

u1(t) = BM1(t) – (γ1(t)y̌(t) + η1(t)),

u2(t) = BM2(t) – (δ1(t)y(t) + δ2(t)y̌(t) + δ3(t)),

where γ1, η1, and y̌ are given by (48) and (60), respectively; δ1, δ2, δ3, and y are given by (69)
and (71), respectively.

7 Conclusion and outlook
In this paper, a necessary condition and a sufficient condition for Nash equilibrium point
of MF-BSDE under asymmetric information are derived, which are used to solve an MF-
LQ problem and a financial problem. Some explicit Nash equilibrium points and optimal
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investment strategies are obtained. The results obtained here extend the first two authors’
previous works of [12, 14], and [28].

The results in Sects. 5–6 are based on special information structures, which are gen-
erated by Brown motion or its components. The case that the information structures are
general is not considered. We hope to return to it in a future work. Besides, we assume
that all coefficients of the MF-LQ problem and Problem (F) are deterministic. Otherwise,
there is an immediate difficulty to solve the problems with stochastic coefficients. We will
come back to the problems in the future.
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