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Abstract
In this paper, using the idea of separated intervals in non-instantaneous impulsive
equations, we initiate the study of initial value problems for mixed-order ordinary and
fractional differential equations with instantaneous impulsive effects. Existence and
uniqueness results are established via standard fixed point theorems. Examples
illustrating the main results are also presented.
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1 Introduction and preliminaries
Fractional differential equations have been shown to be very useful in the study of models
of many phenomena in various fields of science and engineering, such as physics, chem-
istry, biology, signal and image processing, biophysics, blood flow phenomena, control
theory, economics, aerodynamics, and fitting of experimental data. For examples and re-
cent development of the topic, see [1–14] and the references cited therein.

Impulsive differential equations are used to describe many practical dynamical systems,
including evolutionary processes characterized by abrupt changes of the state at certain
instants. Such processes are naturally seen in biology, physics, engineering, and so forth.
Due to their significance, many authors have established the solvability of impulsive dif-
ferential equations. In the literature there are two popular types of impulses:

(i) Instantaneous impulses. The duration of these changes is relatively short compared
to the overall duration of the whole process.

(ii) Non-instantaneous impulses. They are impulsive actions, starting abruptly at a fixed
point and continuing on a finite time interval.

Differential equations with instantaneous impulses have been treated in several works,
see, e.g., the monographs [15–17], papers [18–24], and the references therein.

A non-instantaneous impulsive differential equation was introduced by Hernandez and
O’Regan [25] to describe a certain dynamic change of evolution processes in the pharma-
cotherapy. This kind of impulsive equations can be separated based on two major charac-
teristics as differential equations on intervals (si, ti+1], i = 0, 1, . . . , m, and nonlinear equa-
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tions on (ti, si], i = 1, 2, . . . , m. For recent works, we refer the reader to the papers [26–31],
books [32, 33], and the references therein.

In [34], it is pointed out that the necessary condition for non-instantaneous impulsive
problems is having the explicit functions during impulsive intervals (ti, si], i = 1, 2, 3, . . . , m.
From that paper, we can conclude that the intervals of derivatives of the unknown function
and those of the explicit given functions are alternately interchanged.

By using the separated intervals in non-instantaneous impulsive equations, we estab-
lish a new kind of mixed-order instantaneous impulsive differential equations which have
one order derivative on (si, ti+1], i = 0, 1, 2, . . . , m, and that of another order on (ti, si],
i = 1, 2, 3, . . . , m. We study two initial value problems, one for mixed first and second or-
dinary derivatives and another for mixed fractional derivatives of orders q and p with
0 < q ≤ 1, 1 < p ≤ 2.

More precisely, in this paper, we study the existence and uniqueness of solutions for
two new classes of instantaneous impulses of mixed-order ordinary differential equations,
as well as, fractional differential equations with initial conditions. The first problem for
mixed-order ordinary impulsive differential equations is presented by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x′′(t) = f (t, x(t)), t ∈ (si, ti+1], i = 0, 1, 2, . . . , m,

x′(t) = g(t, x(t)), t ∈ (ti, si], i = 1, 2, 3, . . . , m,

x(s+
i ) = αix(s–

i ), x′(s+
i ) = βix′(s–

i ),

x(t+
i ) = γix(t–

i ), x(0) = α0, x′(0) = β0,

(1.1)

while the second for fractional mixed-order is given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

s+
i
Dpx(t) = f (t, x(t)), t ∈ (si, ti+1], i = 0, 1, 2, . . . , m,

t+
i

Dqx(t) = g(t, x(t)), t ∈ (ti, si], i = 1, 2, 3, . . . , m,

x(s+
i ) = αix(s–

i ), x′(s+
i ) = βix′(s–

i ),

x(t+
i ) = γix(t–

i ), x(0) = α0, x′(0) = β0,

(1.2)

where we have nonlinear functions f : J × R → R, g : J∗ × R → R; J =
⋃m

i=0(si, ti+1], J∗ =
⋃m

i=1(ti, si], J ∪ J∗ ∪ {0} = [0, T], T = tm+1, constants αi, βi, for i = 0, 1, . . . , m, and γi, i =
1, 2, . . . , m, are given, and s+

i
Dp, t+

i
Dq denote the Caputo fractional derivatives of orders p

and q, 1 < p ≤ 2, 0 < q ≤ 1, starting at the points s+
i , i = 0, 1, . . . , m, and t+

i , i = 1, 2, . . . , m.
To the best of the authors’ knowledge, problems (1.1) and (1.2) are new mixed-order im-

pulsive ordinary and fractional differential equations, respectively. The system of integer
order derivatives in Eq. (1.1) can be used to explain a mixture of growth, decay, and tran-
sient phenomena, while Eq. (1.2) gives some details for description of memory and hered-
itary properties of various materials and processes with impulses. Observe that problem
(1.2) contains the interchanging fractional orders, for 1 < p ≤ 2 and 0 < q ≤ 1, of Caputo
type, which has the property of the derivative constant equal to zero and can be suitably
used to establish impulsive systems.

Note that problem (1.2) is well-defined in the sense of Caputo fractional derivative of
impulsive problem as

φDθ x(t) =
1

Γ (n – θ )

∫ t

φ

(t – r)n–θ–1x(n)(r) dr, (1.3)
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where n – 1 < θ < n, n = [θ ] + 1, and [θ ] denotes the integer part of the real number θ .
Indeed, either t ∈ J , φ = s+

i , or t ∈ J∗, φ = t+
i , shows that Eq. (1.3) does not contain impulse

effects of unknown variable x on the interval of integration. Therefore x(n)(r) in Eq. (1.3)
exists for all r ∈ (φ, t). Some details of fractional calculus for impulsive problems, we refer
the reader to [18]. As is customary, the Riemann–Liouville fractional integral of x(t) is
defined by

φIθ x(t) =
1

Γ (θ )

∫ t

φ

x(r)
(t – r)1–θ

dr, θ > 0, (1.4)

provided the integral exists. In addition, we also use the following formula to establish our
results:

φIθ
(
φDθ x

)
(t) = x(t) + c0 + c1(t – φ) + · · · + cn–1(t – φ)n–1, (1.5)

for some ci ∈R, i = 0, 1, 2, . . . , n – 1 (n = [θ ] + 1).

2 Main results
To prove the existence and uniqueness results for problems (1.1) and (1.2), we have to
define the structure of the sets of piecewise functions. Now, let us define two increasing
sequences of points {ti}m+1

i=1 and {si}m
i=0 by

0 = s0 < t1 ≤ s1 < t2 ≤ s2 < t3 ≤ · · · < tm ≤ sm < tm+1 = T .

Moreover, we define U = J ∪ J∗ ∪ {0}, as well as the sets PC(J ,R) = {x : J → R; x(t) is
continuous on J and x(s+

i ), x′(s+
i ) exist for i = 0, 1, . . . , m} and PC(J∗,R) = {x : J∗ →R; x(t) is

continuous on J∗ and x(t+
i ) exist for i = 1, 2, . . . , m}. In addition, we also define PCp

u(J ,R) =
{x ∈ PC(J ,R) : uDpx(t) is continuous everywhere for t ∈ J for u ∈ {s+

i : i = 0, 1, . . . , m}, 1 <
p ≤ 2}, PCq

v (J∗,R) = {x ∈ PC(J∗,R) : vDqx(t) is continuous everywhere for t ∈ J∗, v ∈ {t+
i :

i = 1, 2, . . . , m}, 0 < q ≤ 1}, and PCp,q(U ,R) = PCp
u(J ,R) ∪ PCq

v (J∗,R). Further, the space
PCp,q(U ,R) is a Banach space endowed with the norm defined by ‖x‖ = supt∈U |x(t)|.

Let us define several constants as follows:

Λ
(p)
1 =

(T – sm)p

Γ (p + 1)
+

m∑

j=1

( m∏

j

|αj||γj| (tj – sj–1)p

Γ (p + 1)

)

,

Λ
(q)
2 =

m∑

j=1

( m∏

j

|αj|
m∏

j+1

|γj+1| (sj – tj)q

Γ (q + 1)

)

+
m∑

j=1

( m∏

j

|αj||γj|
)

|βj–1|tj + |βm|T ,

Λ
(p)
3 = |γm|

m∑

j=1

[(m–1∏

j

|αj||γj|
)

(tj – sj–1)p

Γ (p + 1)

]

,

Λ
(q)
4 = |γm|

[m–1∑

j=1

(m–1∏

j

|αj|
)(m–1∏

j+1

|γj+1|
)

(sj – tj)q

Γ (q + 1)
+

m∑

j=1

(m–1∏

j

|αj||γj|
)

|βj–1|tj

]

+
(sm – tm)q

Γ (q + 1)
,



Asawasamrit et al. Advances in Difference Equations        (2019) 2019:229 Page 4 of 17

Φ1 = |α0|
m∏

j=1

|αj||γj|, Φ2 = |γm||α0|
(m–1∏

j=1

|αj||γj|
)

.

Observe that PC2,1(U ,R) is used to study problem (1.1). In addition, the constants Λ
(2)
1 ,

Λ
(1)
2 , Λ(2)

3 , and Λ
(1)
4 appear in the next subsection.

2.1 Mixed-order impulsive ordinary differential equations with initial conditions
In this subsection, we establish a mixture of first and second order ordinary impulsive
differential equations by transforming the initial value problem to an integral equation.
Using mathematical induction, the following theorem for a linear problem is proved.

Theorem 2.1 Let αj, βj be given constants for j = 0, 1, 2, . . . , m, and γi ∈ R for i =
1, 2, 3, . . . , m. Consider the functions y : J →R and z : J∗ →R, with z(s0) = 1. The impulsive
problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x′′(t) = y(t), t ∈ (si, ti+1], i = 0, 1, 2, . . . , m,

x′(t) = z(t), t ∈ (ti, si], i = 1, 2, 3, . . . , m,

x(s+
i ) = αix(s–

i ), x′(s+
i ) = βix′(s–

i ),

x(t+
i ) = γix(t–

i ), x(0) = α0, x′(0) = β0,

(2.1)

can be rewritten as a linear integral equation in the following form:

x(t) = α0

( i∏

j=1

αjγj

)

+
i∑

j=1

[( i∏

j

αj

)( i∏

j+1

γj+1

)∫ sj

tj

z(r) dr

]

+
i∑

j=1

[( i∏

j

αjγj

)∫ tj

sj–1

(tj – r)y(r) dr

]

+
i∑

j=1

( i∏

j

αjγj

)

βj–1z(sj–1)tj

+ βiz(si)t +
∫ t

si

(t – r)y(r) dr, t ∈ J , (2.2)

and

x(t) = α0γi

( i–1∏

j=1

αjγj

)

+ γi

i–1∑

j=1

[( i–1∏

j

αj

)( i–1∏

j+1

γj+1

)∫ sj

tj

z(r) dr

]

+ γi

[ i∑

j=1

( i–1∏

j

αjγj

)∫ tj

sj–1

(tj – r)y(r) dr

]

+ γi

i∑

j=1

( i–1∏

j

αjγj

)

βj–1z(sj–1)tj

+
∫ t

ti

z(r) dr, t ∈ J∗. (2.3)

Proof For t ∈ (s0, t1], the first ordinary differential equation of second order in Eq. (2.1)
can be written as

x(t) = α0 + β0t +
∫ t

s0

(t – r)y(r) dr,
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with
∏0

1(·) = 1,
∑0

1(·) = 0 and z(s0) = 1. Then Eq. (2.2) holds for i = 0. Now, for t ∈ (t1, s1],
by integrating the second equation of Eq. (2.1) from t1 to t, when t ∈ (t1, s1], we have

x(t) = x
(
t+
1
)

+
∫ t

t1

z(r) dr.

Applying the condition x(t+
1 ) = γ1x(t–

1 ), we obtain

x(t) = γ1α0 + γ1t1β0 + γ1

∫ t1

s0

(t1 – r)y(r) dr +
∫ t

t1

z(r) dr,

which implies that Eq. (2.3) is true for i = 1. In the next step, we assume that Eq. (2.2)
holds for t ∈ (si, ti+1]. By mathematical induction, we will show that Eq. (2.3) is fulfilled for
t ∈ (ti+1, si+1]. Indeed, for t ∈ (ti+1, si+1], we get

x(t) = x
(
t+
i+1

)
+

∫ t

ti+1

z(r) dr. (2.4)

From x(t+
i+1) = γi+1x(t–

i+1) and Eq. (2.2), Eq. (2.4) can be expressed as

x(t) = α0γi+1

( i∏

j=1

αjγj

)

+ γi+1

i∑

j=1

[( i∏

j

αj

)( i∏

j+1

γj+1

)∫ sj

tj

z(r) dr

]

+ γi+1

[ i+1∑

j=1

( i∏

j

αjγj

)∫ tj

sj–1

(tj – r)y(r) dr

]

+ γi+1

i+1∑

j=1

( i∏

j

αjγj

)

βj–1z(sj–1)tj +
∫ t

ti+1

z(r) dr. (2.5)

Thus Eq. (2.3) is satisfied for t ∈ (ti+1, si+1].
Finally, we suppose that Eq. (2.3) is true for (ti, si] and then we will prove that Eq. (2.2) is

true for (si, ti+1]. From the first equation of Eq. (2.1), we obtain

x(t) = x
(
s+

i
)

+ x′(s+
i
)
t +

∫ t

si

(t – r)y(r) dr.

Using Eq. (2.3) and conditions x(s+
i ) = αix(s–

i ), x′(s+
i ) = βix′(s–

i ), we have

x(t) = αi

{

α0γi

( i–1∏

j=1

αjγj

)

+ γi

i–1∑

j=1

[( i–1∏

j

αj

)( i–1∏

j+1

γj+1

)∫ sj

tj

z(r) dr

]

+ γi

[ i∑

j=1

( i–1∏

j

αjγj

)∫ tj

sj–1

(tj – r)y(r) dr

]

+ γi

i∑

j=1

( i–1∏

j

αjγj

)

βj–1z(sj–1)tj

+
∫ si

ti

z(r) dr

}

+ βiz(si)t +
∫ t

si

(t – r)y(r) dr.

Therefore Eq. (2.2) is valid on (si, ti+1]. The converse follows by direct computation. This
completes the proof. �
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Next, in view of Theorem 2.1, replacing linear functions y(t), z(t) by nonlinear functions
f (t, x), g(t, x), respectively, we define the operator A : PC2,1(U ,R) → PC2,1(U ,R) by

Ax(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α0(
∏i

j=1 αjγj) +
∑i

j=1[(
∏i

j αj)(
∏i

j+1 γj+1)
∫ sj

tj
g(r, x(r)) dr]

+
∑i

j=1[(
∏i

j αjγj)
∫ tj

sj–1
(tj – r)f (r, x(r)) dr]

+
∑i

j=1(
∏i

j αjγj)βj–1g(sj–1, x(sj–1))tj

+ βig(si, x(si))t +
∫ t

si
(t – r)f (r, x(r)) dr, t ∈ J ,

α0γi(
∏i–1

j=1 αjγj) + γi
∑i–1

j=1[(
∏i–1

j αj)(
∏i–1

j+1 γj+1)
∫ sj

tj
g(r, x(r)) dr]

+ γi[
∑i

j=1(
∏i–1

j αjγj)
∫ tj

sj–1
(tj – r)f (r, x(r)) dr]

+ γi
∑i

j=1(
∏i–1

j αjγj)βj–1g(sj–1, x(sj–1))tj

+
∫ t

ti
g(r, x(r)) dr, t ∈ J∗.

Then problem (1.1) is transformed to the operator equation x = Ax, which is the fixed
point problem. The existence of a unique solution is proved by using the Banach contrac-
tion mapping principle.

Theorem 2.2 Assume that the functions f : J ×R →R and g : J∗ ×R →R with g(0, ·) = 1
satisfy:

(H1) There exist positive constants L1, L2 such that

∣
∣f (t1, x) – f (t1, y)

∣
∣ ≤ L1|x – y| and

∣
∣g(t2, x) – g(t2, y)

∣
∣ ≤ L2|x – y|,

for all t1 ∈ J , t2 ∈ J∗ and x, y ∈R.
If Ω1 = max{L1Λ

(2)
1 + L2Λ

(1)
2 , L1Λ

(2)
3 + L2Λ

(1)
4 } < 1, then problem (1.1) has a unique solution

on U such that ‖x‖ ≤ r∗ with r∗ = max{r1, r2},

r1 =
M1Λ

(2)
1 + M2Λ

(1)
2 + Φ1

1 – (L1Λ
(2)
1 + L2Λ

(1)
2 )

, r2 =
M1Λ

(2)
3 + M2Λ

(1)
4 + Φ2

1 – (L1Λ
(2)
3 + L2Λ

(1)
4 )

,

and M1 = supt∈J{f (t, 0)}, M2 = supt∈J∗{g(t, 0)}.

Proof Let us consider a ball Br∗ = {x ∈ PC2,1 : ‖x‖ ≤ r∗}. We will show that the operator A
satisfies ABr∗ ⊂ Br∗ . For t ∈ (si, ti+1], i = 0, 1, 2, . . . , m and by using |φ(r, x(r))| ≤ |φ(r, x(r)) –
φ(r, 0)| + |φ(r, 0)|, φ ∈ {f , g}, we find that

∣
∣Ax(t)

∣
∣ ≤ |α0|

( m∏

j=1

|αj||γj|
)

+
m∑

j=1

[( m∏

j

|αj|
)( m∏

j+1

|γj+1|
)∫ sj

tj

∣
∣g

(
r, x(r)

)∣
∣dr

]

+
m∑

j=1

[( m∏

j

|αj||γj|
)∫ tj

sj–1

(tj – r)
∣
∣f

(
r, x(r)

)∣
∣dr

]

+
m∑

j=1

( m∏

j

|αj||γj|
)

|βj–1|
∣
∣g

(
sj–1, x(sj–1)

)∣
∣tj

+ |βm|∣∣g(
sm, x(sm)

)∣
∣T +

∫ T

sm

(T – r)
∣
∣f

(
r, x(r)

)∣
∣dr
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≤ |α0|
( m∏

j=1

|αj||γj|
)

+
m∑

j=1

[( m∏

j

|αj|
)( m∏

j+1

|γj+1|
)∫ sj

tj

(∣
∣g

(
r, x(r)

)
– g(r, 0)

∣
∣ +

∣
∣g(r, 0)

∣
∣
)

dr

]

+
m∑

j=1

[( m∏

j

|αj||γj|
)∫ tj

sj–1

(tj – r)
(∣
∣f

(
r, x(r)

)
– f (r, 0)

∣
∣ +

∣
∣f (r, 0)

∣
∣
)

dr

]

+
m∑

j=1

( m∏

j

|αj||γj|
)

|βj–1|
(∣
∣g

(
sj–1, x(sj–1)

)
– g(r, 0)

∣
∣ +

∣
∣g(r, 0)

∣
∣
)
tj

+ |βm|(∣∣g(
sm, x(sm)

)
– g(sm, 0)

∣
∣ +

∣
∣g(sm, 0)

∣
∣
)
T

+
∫ T

sm

(T – r)
(∣
∣f

(
r, x(r)

)
– f (r, 0)

∣
∣ +

∣
∣f (r, 0)

∣
∣
)

dr

≤ (L1r1 + M1)

[
(T – sm)2

2
+

m∑

j=1

( m∏

j

|αj||γj| (tj – sj–1)2

2

)]

+ (L2r1 + M2)

[ m∑

j=1

( m∏

j

|αj|
m∏

j+1

|γj+1|(sj – tj)

)

+
m∑

j=1

( m∏

j

|αj||γj|
)

|βj–1|tj + |βm|T
]

+ |α0|
m∏

j=1

|αj||γj|

= (L1r1 + M1)Λ(2)
1 + (L2r1 + M2)Λ(1)

2 + Φ1

≤ r1.

For t ∈ (ti, si], i = 1, 2, 3, . . . , m, we obtain

∣
∣Ax(t)

∣
∣

≤ |γm||α0|
(m–1∏

j=1

|αj||γj|
)

+ |γm|
m–1∑

j=1

[(m–1∏

j

|αj|
)(m–1∏

j+1

|γj+1|
)∫ sj

tj

∣
∣g

(
r, x(r)

)∣
∣dr

]

+ |γm|
m∑

j=1

[(m–1∏

j

|αj||γj|
)∫ tj

sj–1

(tj – r)
∣
∣f

(
r, x(r)

)∣
∣dr

]

+ |γm|
m∑

j=1

(m–1∏

j

|αj||γj|
)

|βj–1|
∣
∣g

(
sj–1, x(sj–1)

)∣
∣tj +

∫ sm

tm

∣
∣g

(
r, x(r)

)∣
∣dr dr

≤ |γm||α0|
(m–1∏

j=1

|αj||γj|
)

+ |γm|
m–1∑

j=1

[(m–1∏

j

|αj|
)(m–1∏

j+1

|γj+1|
)∫ sj

tj

(∣
∣g

(
r, x(r)

)
– g(r, 0)

∣
∣ +

∣
∣g(r, 0)

∣
∣
)

dr

]

+ |γm|
m∑

j=1

[(m–1∏

j

|αj||γj|
)∫ tj

sj–1

(tj – r)
(∣
∣f

(
r, x(r)

)
– f (r, 0)

∣
∣ +

∣
∣f (r, 0)

∣
∣
)

dr

]
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+ |γm|
m∑

j=1

(m–1∏

j

|αj||γj|
)

|βj–1|
(∣
∣g

(
sj–1, x(sj–1)

)
– g(sj–1, 0)

∣
∣ +

∣
∣g(sj–1, 0)

∣
∣
)
tj

+
∫ sm

tm

(∣
∣g

(
r, x(r)

)
– g(r, 0)

∣
∣ +

∣
∣g(r, 0)

∣
∣
)

dr

≤ |γm||α0|
(m–1∏

j=1

|αj||γj|
)

+ (L2r2 + M2)|γm|
m–1∑

j=1

[(m–1∏

j

|αj|
)(m–1∏

j+1

|γj+1|
)

(sj – tj)

]

+ (L1r2 + M1)|γm|
m∑

j=1

[(m–1∏

j

|αj||γj|
)

(tj – sj–1)2

2

]

+ (L2r2 + M2)|γm|
m∑

j=1

(m–1∏

j

|αj||γj|
)

|βj–1|tj + (L2r2 + M2)(sm – tm)

= (L1r2 + M1)|γm|
m∑

j=1

[(m–1∏

j

|αj||γj|
)

(tj – sj–1)2

2

]

+ (L2r2 + M2)

[

|γm|
{m–1∑

j=1

(m–1∏

j

|αj|
)(m–1∏

j+1

|γj+1|
)

(sj – tj)

+
m∑

j=1

(m–1∏

j

|αj||γj|
)

|βj–1|tj

}

+ (sm – tm)

]

+ |γm||α0|
(m–1∏

j=1

|αj||γj|
)

= (L1r2 + M1)Λ(2)
3 + (L2r2 + M2)Λ(1)

4 + Φ2

≤ r2.

Since r∗ = max{r1, r2}, we have ‖Ax‖ ≤ r∗, which implies ABr∗ ⊂ Br∗ . Next, we will
prove that operator A is a contraction. Let x, y ∈ PC2,1(U ,R). Now, for t ∈ (si, ti+1] i =
0, 1, 2, . . . , m, we get

∣
∣Ax(t) – Ay(t)

∣
∣

≤
m∑

j=1

[( m∏

j

|αj|
)( m∏

j+1

|γj+1|
)∫ sj

tj

∣
∣g

(
r, x(r)

)
– g

(
r, y(r)

)∣
∣dr

]

+
m∑

j=1

[( m∏

j

|αj||γj|
)∫ tj

sj–1

(tj – r)
∣
∣f

(
r, x(r)

)
– f

(
r, y(r)

)∣
∣dr

]

+
m∑

j=1

( m∏

j

|αj||γj|
)

|βj–1|
(∣
∣g

(
sj–1, x(sj–1)

)
– g

(
sj–1, y(sj–1)

)∣
∣
)
tj

+ |βm|(∣∣g(
sm, x(sm)

)
– g

(
sm, y(sm)

)∣
∣
)
T

+
∫ T

sm

(T – r)
(∣
∣f

(
r, x(r)

)
– f

(
r, y(r)

)∣
∣
)

dr

≤
{ m∑

j=1

[( m∏

j

|αj|
)( m∏

j+1

|γj+1|
)

L2(sj – tj)

]
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+
m∑

j=1

[( m∏

j

|αj||γj|
)

L1

(
(tj – sj–1)2

2

)]

+
m∑

j=1

( m∏

j

|αj||γj|
)

|βj–1|L2tj

+ |βm|L2T + L1
(T – sm)2

2

}

‖x – y‖

≤ (
Λ

(2)
1 L1 + Λ

(1)
2 L2

)‖x – y‖.

For t ∈ (ti, si], i = 1, 2, 3, . . . , m, we obtain

∣
∣Ax(t) – Ay(t)

∣
∣

≤ |γm|
m–1∑

j=1

[(m–1∏

j

|αj|
)(m–1∏

j+1

|γj+1|
)∫ sj

tj

∣
∣g

(
r, x(r)

)
– g

(
r, y(r)

)∣
∣dr

]

+ |γm|
m∑

j=1

[(m–1∏

j

|αj||γj|
)∫ tj

sj–1

(tj – r)
(∣
∣f

(
r, x(r)

)
– f

(
r, y(r)

)∣
∣
)

dr

]

+ |γm|
m∑

j=1

(m–1∏

j

|αj||γj|
)

|βj–1|
(∣
∣g

(
sj–1, x(sj–1)

)
– g

(
sj–1, y(sj–1)

)∣
∣
)
tj

+
∫ tm

sm

∣
∣g

(
r, x(r)

)
– g

(
r, y(r)

)∣
∣dr

≤
{

|γm|
m∑

j=1

[(m–1∏

j

|αj|
)(m–1∏

j+1

|γj+1|
)

L2(sj – tj) + (sm – tm)

]

+ |γm|
m∑

j=1

[(m–1∏

j

|αj||γj|
)

L1
(tj – sj–1)2

2

]

+ |γm|
m–1∑

j=1

(m–1∏

j

|αj||γj|
)

|βj–1|tj

}

‖x – y‖

≤ (
Λ

(2)
3 L1 + Λ

(1)
4 L2

)‖x – y‖.

From the above results, we can conclude that ‖Ax –Ay‖ ≤ Ω1‖x – y‖, which implies that
A is a contraction operator. Therefore, by the Banach contraction mapping principle, op-
erator A has only one fixed point x(t) in Br∗ for t ∈ U . Then there exists a unique solution
of problem (1.1) such that ‖x‖ ≤ r∗. This completes the proof. �

Example 2.3 Consider the following mixed-order impulsive ordinary differential equa-
tions with initial conditions

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x′′(t) = e–t2

4 ( x2(t)+2|x(t)|
1+|x(t)| ) + 3

2 , t ∈ (2i, 2i + 1], i = 0, 1, 2, 3,

x′(t) = t
150 sin |x(t)| + 1, t ∈ (2i – 1, 2i], i = 1, 2, 3,

x((2i)+) = ( i+1
i+2 )x((2i)–), x′((2i)+) = ( i+2

i+3 )x′((2i)–),

x((2i – 1)+) = ( i+3
i+4 )x((2i – 1)–), x(0) = 1

2 , x′(0) = 2
3 .

(2.6)

Here si = 2i, i = 0, 1, 2, 3, and ti = 2i – 1, i = 1, 2, 3, m = 3, T = t4 = 7. The constants
αi = (i + 1)/(i + 2), βi = (i + 2)/(i + 3), i = 0, 1, 2, 3, and γi = (i + 3)/(i + 4), i = 1, 2, 3. The in-
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formation in Eq. (2.6) yields by direct computation that Λ
(2)
1 ≈ 0.97559, Λ

(1)
2 ≈ 11.43571,

Λ
(2)
3 ≈ 0.83929, Λ(1)

4 ≈ 6.83461, Φ1 ≈ 0.11429 and Φ2 ≈ 0.14286. Setting f (t, x) = (e–t2 (x2 +
2|x|))/(4(1 + |x|)) + (3/2) and g(t, x) = ((t sin |x|)/150) + 1, we can find Lipschitz constants
by

∣
∣f (t1, x) – f (t1, y)

∣
∣ ≤ 1

2
|x – y| and

∣
∣g(t2, x) – g(t2, y)

∣
∣ ≤ 1

25
|x – y|,

for each t1 ∈ J , t2 ∈ J∗, x, y ∈ R, which satisfy condition (H1) as L1 = 1/2 and L2 = 1/25.
Also, we observe that g(0, ·) = 1, M1 = 3/2 and M2 = 1. Then we compute the con-
stants Ω1 = max{0.94522, 0.69303} = 0.94522 < 1 and r∗ = max{237.57197, 15.80093} =
237.57197. Hence by Theorem 2.2, we obtain that problem (2.6) has a unique solution
x(t) on [0, 7] such that ‖x‖ ≤ 237.57197.

Example 2.4 Let the constants a, b ∈R, a �= b be given. The function

x(t) =

⎧
⎨

⎩

eat , t ∈ (2i, 2i + 1], i = 0, 1, 2, 3, . . . ,

ebt , t ∈ (2i – 1, 2i], i = 1, 2, 3, . . . ,
(2.7)

is a unique solution of the problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x′′(t) = a2x(t), t ∈ (2i, 2i + 1], i = 0, 1, 2, 3, . . . ,

x′(t) = bx(t), t ∈ (2i – 1, 2i], i = 1, 2, 3, . . . ,

x((2i)+) = e2i(a–b)x((2i)–), x′((2i)+) = ( a
b )e2i(a–b)x′((2i)–),

x((2i – 1)+) = e(2i–1)(b–a)x((2i – 1)–), x(0) = 1, x′(0) = a.

(2.8)

Taking the second and first order derivatives of Eq. (2.7) on (2i, 2i+ 1], i = 0, 1, 2, 3, . . . and
(2i – 1, 2i], i = 1, 2, 3, . . . , respectively, the first two equations in Eq. (2.8) hold. It is obvious
that x(0) = 1, x′(0) = a. In addition, we get x((2i)+) = e2ia, x((2i)–) = e2ib, x′((2i)+) = ae2ia,
x′((2i)–) = be2ib, x((2i – 1)+) = e(2i–1)b, and x((2i – 1)–) = e(2i–1)a. Therefore, function x(t)
defined in Eq. (2.7) solves problem (2.8).

2.2 Mixed-order impulsive fractional differential equations with initial conditions
The existence results for problem (1.2) which has mixed fractional orders are estab-
lished in this subsection. In analogy with Theorem 2.1, the operator B : PCp,q(U ,R) →
PCp,q(U ,R) is defined by

Bx(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α0(
∏i

j=1 αjγj) +
∑i

j=1[(
∏i

j αj)(
∏i

j+1 γj+1)tj Iqg(r, x(r))(sj)]

+
∑i

j=1[(
∏i

j αjγj)sj–1 Ipf (r, x(r))(tj)]

+
∑i

j=1(
∏i

j αjγj)βj–1g(sj–1, x(sj–1))tj + βig(si, x(si))t

+ si Ipf (r, x(r))(t), t ∈ J ,

α0γi(
∏i–1

j=1 αjγj) + γi
∑i–1

j=1[(
∏i–1

j αj)(
∏i–1

j+1 γj+1)tj Iqg(r, x(r))(sj)]

+ γi[
∑i

j=1(
∏i–1

j αjγj)sj–1 Ipf (r, x(r))(tj)]

+ γi
∑i

j=1(
∏i–1

j αjγj)βj–1g(sj–1, x(sj–1))tj

+ ti Iqg(r, x(r))(t), t ∈ J∗,
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where the Riemann–Liouville fractional integral with respect to r of the function of two
variables φIθ h(r, x(r))(π ), φ ∈ {sj–1, tj, si, ti}, π ∈ {t, sj, tj}, θ ∈ {p, q} and h ∈ {f , g} is defined
by Eq. (1.4). By the Banach fixed point theorem, the existence of a unique solution to prob-
lem (1.2) can be similarly proved as for Theorem 2.2.

Theorem 2.5 Suppose that functions f and g satisfy condition (H1) in Theorem 2.2. If
Ω2 = max{L1Λ

(p)
1 + L2Λ

(q)
2 , L1Λ

(p)
3 + L2Λ

(q)
4 } < 1, then problem (1.2) has a unique solution

on U .

Next the existence result will be proved by applying the nonlinear alternative for single-
valued maps given as the following statement.

Theorem 2.6 ([35]) Let E be a Banach space, and C be a closed, convex subset of E. Also let
G be an open subset of C such that 0 ∈ G. Assume that F : G → C is a continuous, compact
(that is, F(G) is a relatively compact subset of C) map. Then either

(i) F has a fixed point in G, or
(ii) There are a u ∈ ∂G (the boundary of G in C) and λ ∈ (0, 1) with u = λF(u).

Theorem 2.7 Assume that functions f : J ×R →R and g : J∗ ×R→R with g(0, ·) = 1 are
continuous. In addition, we assume that:

(H2) There exist continuous nondecreasing functions ψ1,ψ2 : [0,∞) → (0,∞) and con-
tinuous functions w1 : J →R

+, w2 : J∗ →R
+ such that

∣
∣f (t1, x)

∣
∣ ≤ w1(t1)ψ1

(|x|),
∣
∣g(t2, x)

∣
∣ ≤ w2(t2)ψ2

(|x|),

for each (t1, x) ∈ J ×R, (t2, x) ∈ J∗ ×R.
(H3) There exist constants N1, N2 > 0 such that

N1

Φ1 + ψ1(N1)‖w1‖Λ(p)
1 + ψ2(N1)‖w2‖Λ(q)

2

> 1

and

N2

Φ2 + ψ1(N2)‖w1‖Λ(p)
3 + ψ2(N2)‖w2‖Λ(q)

4

> 1.

Then the mixed-order impulsive fractional differential equations with initial conditions
given in Eq. (1.2) have at least one solution on U .

Proof Let us, for a positive number ρ , define the ball Bρ = {x ∈ PCp,q(U ,R) : ‖x‖ ≤ ρ}. It
follows that Bρ is a closed, convex subset of PCp,q(U ,R). We will show that the operator
B : PCp,q(U ,R) → PCp,q(U ,R) satisfies all the assumptions of Theorem 2.6. To prove the
continuity of B, we define a sequence converging to x by {xn}. Then for t ∈ J , we obtain

∣
∣Bxn(t) – Bx(t)

∣
∣

≤
m∑

j=1

[( m∏

j

|αj|
)( m∏

j+1

|γj+1|
)

tj I
q(∣∣g

(
r, xn(r)

)
– g

(
r, x(r)

)∣
∣
)
(sj)

]
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+
m∑

j=1

[( m∏

j

|αj||γj|
)

sj–1 Ip(∣∣f
(
r, xn(r)

)
– f

(
r, x(r)

)∣
∣
)
(tj)

]

+
m∑

j=i

[( m∏

j

|αj||γj|
)

|βj–1|
(∣
∣g

(
sj–1, xn(sj–1)

)
– g

(
sj–1, x(sj–1)

)∣
∣
)
tj

]

+ |βm|(∣∣g(
sm, xn(sm)

)
– g

(
sm, x(sm)

)∣
∣
)
T

+ sm Ip(∣∣f
(
r, xn(r)

)
– f

(
r, x(r)

)∣
∣
)
(T) → 0, as n → ∞,

and for t ∈ J∗, we have

∣
∣Bxn(t) – Bx(t)

∣
∣

≤ |γm|
m–1∑

j=1

[(m–1∏

j

|αj|
)(m–1∏

j+1

|γj+1|
)

tj I
q(∣∣g

(
r, xn(r)

)
– g

(
r, x(r)

)∣
∣
)
(sj)

]

+ |γm|
m∑

j=1

[(m–1∏

j

|αj||γj|
)

sj–1 Ip(∣∣f
(
r, xn(r)

)
– f

(
r, x(r)

)∣
∣
)
(tj)

]

+ |γm|
m∑

j=1

[(m–1∏

j

|αj||γj|
)

|βj–1|
(∣
∣g

(
sj–1, xn(sj–1)

)
– g

(
sj–1, x(sj–1)

)∣
∣
)
tj

]

+ tm Iq(∣∣g
(
r, xn(r)

)
– g

(
r, x(r)

)∣
∣
)
(sm) → 0, as n → ∞,

which implies that operator B is continuous. Next, we prove the compactness of opera-
tor B. Let x ∈ Bρ . Then we have, for t ∈ J ,

∣
∣Bx(t)

∣
∣ ≤ |α0|

( m∏

j=1

|αj||γj|
)

+
m∑

j=1

[( m∏

j

|αj||γj|
)

sj–1 Ip∣∣f
(
r, x(r)

)∣
∣(tj)

]

+
m∑

j=1

[( m∏

j

|αj|
)( m∏

j+1

|γj+1|
)]

tj I
q∣∣g

(
r, x(r)

)∣
∣(sj)

+
m∑

j=1

( m∏

j

|αj||γj|
)

|βj–1|
∣
∣g

(
sj–1, x(sj–1)

)∣
∣tj + |βm|∣∣g(

sm, x(sm)
)∣
∣T

+ sm Ip∣∣f
(
r, x(r)

)∣
∣(T)

≤ |α0|
( m∏

j=1

|αj||γj|
)

+ ‖w1‖ψ1(ρ)
m∑

j=1

[( m∏

j

|αj||γj|
)

sj–1 Ip(1)(tj)

]

+ ‖w2‖ψ2(ρ)
m∑

j=1

[( m∏

j

|αj|
)( m∏

j+1

|γj+1|
)

tj I
q(1)(sj)

]

+ ‖w2‖ψ2(ρ)
m∑

j=1

( m∏

j

|αj||γj|
)

|βj–1|tj + ‖w2‖ψ2(ρ)|βm|T

+ ‖w1‖ψ1(ρ)sm Ip(1)(T)

= |α0|
( m∏

j=1

|αj||γj|
)
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+ ‖w1‖ψ1(ρ)

{ m∑

j=1

[( m∏

j

|αj||γj|
)

(tj – sj–1)p

Γ (p + 1)

]

+
(T – sm)p

Γ (p + 1)

}

+ ‖w2‖ψ2(ρ2)

{ m∑

j=1

[( m∏

j

|αj|
)( m∏

j+1

|γj+1|
)

(sj – tj)q

Γ (q + 1)

]

+
m∑

j=1

( m∏

j

|αj||γj|
)

|βj–1|tj +
(|βm|T)

}

= Φ1 + ‖w1‖ψ1(ρ)Λ(p)
1 + ‖w2‖ψ2(ρ2)Λ(q)

2 := K1,

and for t ∈ J∗,

∣
∣Bx(t)

∣
∣ ≤ |α0||γm|

(m–1∏

j=1

|αj||γj|
)

+ |γm|
m∑

j=1

[(m–1∏

j

|αj||γj|
)

sj–1 Ip∣∣f
(
r, x(r)

)∣
∣(tj)

]

+ |γm|
m–1∑

j=1

[(m–1∏

j

|αj|
)(m–1∏

j+1

|γj+1|
)]

tj I
q∣∣g

(
r, x(r)

)∣
∣(sj)

+ |γm|
m∑

j=1

(m–1∏

j

|αj||γj|
)

|βj–1|
∣
∣g

(
sj–1, x(sj–1)

)∣
∣tj

+ tm Iq∣∣g
(
r, x(r)

)∣
∣(sm)

≤ |α0||γm|
(m–1∏

j=1

|αj||γj|
)

+ ‖w1‖ψ1(ρ)|γm|
m∑

j=1

[(m–1∏

j

|αj||γj|
)

sj–1 Ip(1)(tj)

]

+ ‖w2‖ψ2(ρ)|γm|
m–1∑

j=1

[(m–1∏

j

|αj|
)(m–1∏

j+1

|γj+1|
)]

tj I
q(1)(sj)

+ ‖w2‖ψ2(ρ)|γm|
m∑

j=1

(m–1∏

j

|αj||γj|
)

|βj–1|tj

+ ‖w2‖ψ2(ρ)tm Iq(1)(sm)

= |α0||γm|
(m–1∏

j=1

|αj||γj|
)

+ ‖w1‖ψ1(ρ)

{

|γm|
m∑

j=1

[(m–1∏

j

|αj||γj|
)

(tj – sj–1)p

Γ (p + 1)

]}

+ ‖w2‖ψ2(ρ)

{

|γm|
m–1∑

j=1

[(m–1∏

j

|αj|
)(m–1∏

j+1

|γj+1|
)

(sj – tj)q

Γ (q + 1)

]

+ |γm|
m∑

j=1

[(m–1∏

j

|αj||γj|
)

|βj–1|tj

]

+
(sm – tm)q

Γ (q + 1)

}

= Φ2 + ‖w1‖ψ1(ρ)Λ(p)
3 + ‖w2‖ψ2(ρ)Λ(q)

4 := K2.

Setting K = max{K1, K2}, we obtain ‖Bx‖ ≤ K , which implies that BBρ is a uniformly
bounded set. Next we will prove that the set BBρ is equicontinuous. Let τ1, τ2 be two
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points in U such that τ1 < τ2 and let x ∈ Bρ . Then, for τ1, τ2 ∈ J , we have

∣
∣Bx(τ2) – Bx(τ1)

∣
∣ =

∣
∣βig

(
si, x(si)

)
(τ2 – τ1) + si I

pf
(
r, x(r)

)
(τ2) – si I

pf
(
r, x(r)

)
(τ1)

∣
∣

≤ |βi|ψ2(ρ)‖w2‖(τ2 – τ1) +
ψ1(ρ)‖w1‖
Γ (p + 1)

∣
∣(τ2 – si)p – (τ1 – si)p∣∣

→ 0 as τ1 → τ2, i = 0, 1, . . . , m,

and, for τ1, τ2 ∈ J∗,

∣
∣Bx(τ2) – Bx(τ1)

∣
∣ =

∣
∣ti I

qg
(
r, x(r)

)
(τ2) – ti I

qg
(
r, x(r)

)
(τ1)

∣
∣

≤ ‖w2‖ψ2(ρ)
1

Γ (q + 1)
∣
∣(τ2 – ti)q – (τ1 – ti)q∣∣

→ 0 as τ1 → τ2, i = 1, 2, . . . , m.

From the above results we deduce that BBρ is an equicontinuous set. Hence the set BBρ

is relatively compact. Applying the Arzelá–Ascoli theorem, the operator B is completely
continuous.

Finally, we will show that condition (ii) of Theorem 2.6 is not true. Let x be a solution
of problem (1.2). Now, we consider the operator equation x = λBx for λ ∈ (0, 1). From the
method to compute K1, K2, we have, for t ∈ J ,

‖x‖ ≤ Φ1 + ψ1
(‖x‖)‖w1‖Λ(p)

1 + ψ2
(‖x‖)‖w2‖Λ(q)

2 ,

and, for t ∈ J∗,

‖x‖ ≤ Φ2 + ψ1
(‖x‖)‖w1‖Λ(p)

3 + ψ2
(‖x‖)‖w2‖Λ(q)

4 .

Then we get

‖x‖
Φ1 + ψ1(‖x‖)‖w1‖Λ(p)

1 + ψ2(‖x‖)‖w2‖Λ(q)
2

≤ 1

and

‖x‖
Φ2 + ψ1(‖x‖)‖w1‖Λ(p)

3 + ψ2(‖x‖)‖w2‖Λ(q)
4

≤ 1.

By assumption (H3), there exist two positive constants N1 and N2 such that ‖x‖ �= N1, N2.
Let N = min{N1, N2} and define V = {x ∈ Bρ : ‖x‖ < N}. It is obvious that B : V →
PCp,q(U ,R) is continuous and completely continuous. Hence, there is no x ∈ ∂V such that
x = λBx for some λ ∈ (0, 1). Therefore, the result follows from Theorem 2.6(i), so thatB has
a fixed point x ∈ V which is a solution of problem (1.2) on U . The proof is completed. �

Theorem 2.7 is a very general result because the functions f and g are bounded by non-
linear functions. However, we can get some special cases of linear results as following
corollaries.
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Corollary 2.8 Suppose that functions f : J × R → R and g : J∗ × R → R with g(0, ·) = 1
satisfy the condition:

(H4) |f (t1, x)| ≤ Q1|x| + Q2 and |g(t2, x)| ≤ Q3|x| + Q4, where Q1, Q3 ≥ 0 and Q2, Q4 > 0,
for each (t1, x) ∈ J ×R, (t2, x) ∈ J∗ ×R.

If Q1Λ
(p)
1 + Q3Λ

(q)
2 < 1 and Q1Λ

(p)
3 + Q3Λ

(q)
4 < 1, then the impulsive fractional differential

problem (1.2) has at least one solution on U .

Corollary 2.9 Suppose that condition (H2) in Theorem 2.7 holds with ψ1(·) = ψ2(·) ≡ 1,
that is,

∣
∣f (t1, x)

∣
∣ ≤ w1(t1),

∣
∣g(t2, x)

∣
∣ ≤ w2(t2), for each (t1, x) ∈ J ×R, (t2, x) ∈ J∗ ×R.

Then the impulsive problem (1.2) has at least one solution on U .

Example 2.10 Consider the following mixed-order impulsive fractional differential equa-
tions with initial conditions

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

uD 3
2 x(t) = f (t, x(t)), t ∈ (2i, 2i + 1], i = 0, 1, 2, 3,

vD 1
2 x(t) = g(t, x(t)), t ∈ (2i – 1, 2i], i = 1, 2, 3,

x((2i)+) = ( i+1
i+2 )x((2i)–), x′((2i)+) = ( i+2

i+3 )x′((2i)–),

x((2i – 1)+) = ( i+3
i+4 )x((2i – 1)–), x(0) = 1

2 , x′(0) = 2
3 .

(2.9)

Here the constants si, αi, βi, i = 0, 1, 2, 3, and ti, γi, i = 1, 2, 3, m = 3, T = 7 are defined
as in Example 2.3, including constants Φ1 ≈ 0.11428, Φ2 ≈ 0.14285. In addition, we put
p = 3/2 and q = 1/2, which can be computed so that Λ

(3/2)
1 ≈ 1.60117, Λ

(1/2)
2 ≈ 11.23742,

Λ
(3/2)
3 ≈ 1.26271 and Λ

(1/2)
4 ≈ 6.47929.

(i) f (t, x) =
6x2 + 10|x|
5(5 + 6|x|) +

e–t2

3 + t
and g(t, x) =

t2

36(4 + t)2 tan–1 |x| +
t√

t + 1
+ 1.

Then we see that the Lipschitz condition (H1) holds due to

∣
∣f (t1, x) – f (t1, y)

∣
∣ ≤ 2

5
|x – y|, ∣

∣g(t2, x) – g(t2, y)
∣
∣ ≤ 1

100
|x – y|,

for t1 ∈ J , t2 ∈ J∗ and x, y ∈ R, with L1 = 2/5 and L2 = 1/100. Also, we get g(0, ·) = 1. Then
Ω2 = max{0.75284, 0.56988} = 0.75284 < 1. Theorem 2.5 now implies that the impulsive
mixed-order fractional differential problem (2.9) with functions in (i) has a unique solution
on [0, 7].

(ii) f (t, x) =
1

t + 5
(

x8

3(x6 + 1)
+

1
2

) and g(t, x) =
t

15
(

|x|9
4(|x|7 + 1)

+ 1) + e–15t .

Observe that g(0, ·) = 1. Since function g is defined on (2i – 1, 2i], i = 1, 2, 3, and e–15t < t/15
for t > 0.26826, we have the following estimates:

∣
∣f (t1, x)

∣
∣ ≤ 1

t + 5

(
1
3

x2 +
1
2

)

,
∣
∣g(t2, x)

∣
∣ ≤ t

15

(
1
4

x2 + 2
)

,
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for t1 ∈ J , t2 ∈ J∗ and x ∈ R. Choosing w1(t) = 1/(t + 5), w2 = t/15, ψ1(x) = (1/3)x2 + (1/2),
and ψ2(x) = (1/4)x2 + 2, we get ‖w1‖ = 1/5, ‖w2‖ = 2/5. Furthermore, we find that there
exist two constants N1, N2 such that N1 ∈ (1.29286, 4.70714) and N2 ∈ (1.25216, 3.11147)
satisfying condition (H3) of Theorem 2.7. Then the conclusion follows from Theorem 2.7,
namely, the mixed fractional order impulsive problem (2.9) with functions in (ii) has at
least one solution on [0, 7].

(iii) f (t, x) =
x8

10(|x|7 + 1)
+

3
2

cos2 t and g(t, x) =
7|x|9 sin2 t
100(x8 + 1)

+
t2

t2 + 1
+ 1.

Here we observe that

∣
∣f (t, x)

∣
∣ ≤ 1

10
|x| +

3
2

,
∣
∣g(t, x)

∣
∣ ≤ 7

100
|x| +

73
37

,

with Q1 = 1/10, Q2 = 3/2, Q3 = 7/100, Q4 = 73/37 and g(0, ·) = 1. Therefore, we get
Q1Λ

(3/2)
1 + Q3Λ

(1/2)
2 ≈ 0.94674 < 1 and Q1Λ

(3/2)
3 + Q3Λ

(1/2)
4 ≈ 0.59874 < 1. Hence, from

Corollary 2.8, problem (2.9) with functions in (iii) has at least one solution on [0, 7].
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