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Abstract
This paper is concerned with the estimation problem for incomplete information
stochastic systems from discrete observations. The suboptimal estimation of the state
is obtained by constructing the extended Kalman filtering equation. The approximate
likelihood function is given by using a Riemann sum and an Itô sum to approximate
the integrals in the continuous-time likelihood function. The consistency of the
maximum likelihood estimator and the asymptotic normality of the error of
estimation are proved by applying the martingale moment inequality, Hölder’s
inequality, the Chebyshev inequality, the Burkholder–Davis–Gundy inequality and the
uniform ergodic theorem. An example is provided to verify the effectiveness of the
estimation methods.
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1 Introduction
Stochastic differential equations have been widely used in many application areas such
as engineering, information and medical science [4, 5]. Recently, stochastic differential
equations have been applied to a description of the dynamics of a financial asset, asset
portfolio and term structure of interest rates, such as the Black–Scholes option pricing
model [6], Vasicek and Cox–Ingersoll–Ross pricing formulas [8, 9, 27], the Chan–Karloyi–
Longstaff–Sanders model [10], the Constantinides model [11], and the Ait–Sahalia model
[1]. Some parameters in pricing formulas describe the related assets dynamic, however,
these parameters are always unknown. In the past few decades, some authors studied the
parameter estimation problem for economic models. For example, Yu and Phillips [33]
used a Gaussian approach to the study of the parameter estimation for continuous-time
short-term interest rates model, Overback [21], Rossi [24] and Wei et al. [29] investigated
the parameter estimation problem for the Cox–Ingersoll–Ross model by applying the
maximum likelihood method, the least-square method and the Gaussian method, respec-
tively. Moreover, some methods have been used to estimate parameters in general non-
linear stochastic differential equation from continuous-time observations. For instance,
we have Bayes estimations [16, 22], maximum likelihood estimations [3, 30, 31] and M-
estimations [25, 32]. However, in fact, it is impossible to observe a process continuously
in time. Therefore, parametric inference based on sampled data is important in dealing
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with practical problems, such as least-square estimations [17, 18], approximate transition
densities [2, 7] and adaptive maximum likelihood type estimations [26].

A variety of stochastic systems are described by stochastic differential equations [23],
and sometimes the stochastic systems have incomplete information. Many authors stud-
ied the state estimation problem for incomplete information stochastic systems by using
Kalman filtering or extended Kalman filtering [13, 15, 19, 28]. Furthermore, sometimes
the parameters and states of a stochastic system are unknown at the same time. There-
fore, the parameter estimation and state estimation need to be solved simultaneously. In
recent years, some authors investigated the parameter estimation problem for incomplete
information linear stochastic systems. For example, Deck and Theting [12] used Kalman
filtering and the Bayes method to study the linear homogeneous stochastic systems. Kan
et al. [14] discussed the linear nonhomogeneous stochastic systems based on the meth-
ods used in [12]. Mbalawata et al. [20] applied Kalman filtering and a maximum likelihood
estimation to investigate the parameter and state estimation for linear stochastic systems.

As is well known, parameter estimation for incomplete information linear stochastic
systems has been studied by some authors [12, 14, 20]. However, the asymptotic property
of the parameter estimator has not been discussed in [20], and in [12, 14], only the drift pa-
rameter has been considered. In this paper, the parameter estimation problem for incom-
plete information nonlinear stochastic system is investigated from discrete observations.
Firstly, the suboptimal estimation of the state is obtained by constructing the extended
Kalman filtering. Secondly, the approximate likelihood function is given by using a Rie-
mann sum and an Itô sum to approximate the integrals in the continuous-time likelihood
function. In the approximate likelihood function, both drift and diffusion parameter are
unknown. Finally, the consistency of the maximum likelihood estimator and the asymp-
totic normality of the error of estimation are proved by applying the martingale moment
inequality, Hölder’s inequality, the Chebyshev inequality, the Burkholder–Davis–Gundy
inequality and the uniform ergodic theorem.

This paper is organized as follows. In Sect. 2, the state estimation is derived and the
approximate likelihood function is given. In Sect. 3, some important lemmas are proved,
the consistency of estimator and asymptotic normality of the error of estimation are dis-
cussed. In Sect. 4, an example is provided. The conclusion is given in Sect. 5.

2 Problem formulation and preliminaries
In this paper, the estimation problem for incomplete information stochastic system is in-
vestigated. The stochastic system is described as follows:

⎧
⎨

⎩

dXt = f (Xt , θ ) dt + dWt , X0 ∼ uθ ,

dYt = h(Xt) dt + dVt , Y0 = Y0,
(1)

where θ ∈ Θ = Θ0 (the closure of Θ0) with Θ0 being an open bounded convex subset of R
is an unknown parameter, (Wt , t ≥ 0) and (Vt , t ≥ 0) are independent Wiener processes,
Xt is ergodic, uθ is the invariant measure, {Yt} is observable, while {Xt} is unobservable.

From now on the work is under the assumptions below.

Assumption 1 |f (x, θ ) – f (y, θ )| ≤ K(θ )|x – y|, |f (x, θ )| ≤ K1(θ )(1 + |x|), sup{K(θ ), K1(θ )} <
∞, θ ∈ Θ , x, y ∈R.
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Assumption 2 |h(x) – h(y)| ≤ |x – y|.

Assumption 3 E|X0|p < ∞ for each p > 0.

Assumption 4 E[f (X0, θ )(f (X0, θ0) – 1
2 f (X0, θ ))] has the unique maximal value at θ = θ0,

where θ0 is the true parameter.

The likelihood function cannot be given directly due to the unobservability of {Xt}.
Therefore, we should solve the estimation problem of {Xt} firstly.

The state estimator is designed as follows:

⎧
⎨

⎩

dX̂t = f (X̂t , θ ) dt + Kt(dYt – h(X̂t) dt),

X̂0 = X0.
(2)

According to (1) and (2), we have

d(Xt – X̂t) =
(
f (Xt , θ ) – f (X̂t , θ ) – Kt

(
h(Xt) – h(X̂t)

))
dt + dWt – Kt dVt . (3)

From the Itô lemma and (3), it can be checked that

d(Xt – X̂t)2

= 2(Xt – X̂t)
(
f (Xt , θ ) – f (X̂t , θ ) – Kt

(
h(Xt) – h(X̂t)

))
dt

+ 2(Xt – X̂t)(dWt – Kt dVt) +
(
1 + K2

t
)

dt

=
[
2(Xt – X̂t)

(
f (Xt , θ ) – f (X̂t , θ )

)

– 2Kt(Xt – X̂t)
(
h(Xt) – h(X̂t)

)
+ 1 + K2

t
]

dt

+ 2(Xt – X̂t)(dWt – Kt dVt). (4)

Taking the expectation from both sides of (4), from Assumption 2, we obtain

dE(Xt – X̂t)2

=
[
2E(Xt – X̂t)

(
f (Xt , θ ) – f (X̂t , θ )

)

– 2KtE(Xt – X̂t)
(
h(Xt) – h(X̂t)

)
+ 1 + K2

t
]

dt

=
[
K2

t – 2KtE(Xt – X̂t)2 + 1 + 2KtE(Xt – X̂t)2

+ 2E(Xt – X̂t)
(
f (Xt , θ ) – f (X̂t , θ )

)]
dt

– 2KtE(Xt – X̂t)
(
h(Xt) – h(X̂t)

)
dt

=
[(

Kt – E(Xt – X̂t)2)2 –
(
E(Xt – X̂t)2)2 + 1

]
dt

+ 2KtE(Xt – X̂t)2 dt – 2KtE(Xt – X̂t)
(
h(Xt) – h(X̂t)

)
dt

+ 2E(Xt – X̂t)
(
f (Xt , θ ) – f (X̂t , θ )

)
dt

≥ [
–
(
E(Xt – X̂t)2)2 + 1 + 2E(Xt – X̂t)

(
f (Xt , θ ) – f (X̂t , θ )

)]
dt. (5)
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Therefore, when Kt = E(Xt – X̂t)2, (5) has the minimum value

dE(Xt – X̂t)2 =
[
–
(
E(Xt – X̂t)2)2 + 1 + 2E(Xt – X̂t)

(
f (Xt , θ ) – f (X̂t , θ )

)]
dt. (6)

From Assumption 1, one has

[
–
(
E(Xt – X̂t)2)2 + 1 + 2E(Xt – X̂t)

(
f (Xt , θ ) – f (X̂t , θ )

)]
dt

≤ [
–
(
E(Xt – X̂t)2)2 + 1 + 2K(θ )E(Xt – X̂t)2]dt.

Since f (Xt , θ ) is nonlinear, we cannot obtain the optimal state estimation of Xt , the sub-
optimal state estimation is considered.

Consider

dE(Xt – X̂t)2 =
(
2K(θ )E(Xt – X̂t)2 –

(
E(Xt – X̂t)2)2 + 1

)
dt. (7)

Let

E(Xt – X̂t)2 = γt , (8)

one has

dγt =
(
2K(θ )γt – γ 2

t + 1
)

dt. (9)

It is easy to check that

γt =
(
√

K2(θ ) + 1 + K(θ ))(1 – e–2t
√

K2(θ )+1)

1 + ( K (θ )+
√

K2(θ )+1√
K2(θ )+1–K (θ )

)e–2t
√

K2(θ )+1
. (10)

Then we obtain

γt → K(θ ) +
√

K2(θ ) + 1 = γ (θ ). (11)

Therefore, it is obvious that

⎧
⎨

⎩

dX̂t = f (X̂t , θ ) dt + γt(dYt – X̂t dt),

X̂0 = X0.
(12)

Let

dV ∗
t = dYt – X̂t dt, (13)

where (V ∗
t , t ≥ 0) is assumed to be a standard Wiener process defined on a complete prob-

ability space (Ω ,F , {Ft}t≥0, P).
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Hence
⎧
⎨

⎩

dX̂t = f (X̂t , θ ) dt + γt dV ∗
t ,

X̂0 = X0.
(14)

It is assumed that the system (14) reaches the steady state, which means that

⎧
⎨

⎩

dX̂t = f (X̂t , θ ) dt + γ (θ ) dV ∗
t ,

X̂0 = X0.
(15)

In summary, the suboptimal state estimation of Xt is (15).
The likelihood function obeys the expression

�t(θ ) =
∫ t

0

f (X̂s, θ )
γ 2(θ )

dX̂s –
1
2

∫ t

0

f 2(X̂s, θ )
γ 2(θ )

ds. (16)

Then the approximate likelihood function can be written as

�n(θ ) =
n∑

i=1

f (X̂ti–1 , θ )
γ 2(θ )

(X̂ti – X̂ti–1 ) –
�

2

n∑

i=1

f 2(X̂ti–1 , θ )
γ 2(θ )

. (17)

Remark 1 That system (14) reaches the steady state means that the Riccatti equation sat-
isfies dγt

dt = 0. Hence, we obtain γt = γ (θ ).

Remark 2 In (15), both drift item and diffusion item have a parameter. Thus, it is difficult
to discuss the asymptotic property of the estimator. In the next section, the problem is
solved.

3 Main results and proofs
The following lemmas are useful to derive our results.

Lemma 1 Assume that {X̂t} is a solution of the stochastic differential (14) and Assumptions
1–4 hold. Then, for any integer n ≥ 1 and 0 ≤ s ≤ t,

E|X̂t – X̂s|2p = O
(|t – s|p).

Proof Suppose θ0 is the true parameter value; by applying Hölder’s inequality, it follows
that

|X̂t – X̂s|2p

=
∣
∣
∣
∣

∫ t

s
f (X̂u, θ0) du + γ (θ0)

∫ t

s
dV ∗

u

∣
∣
∣
∣

2p

≤ 22p–1
(∣

∣
∣
∣

∫ t

s
f (X̂u, θ0) du

∣
∣
∣
∣

2p

+
(
γ (θ0)

)2p
∣
∣
∣
∣

∫ t

s
dV ∗

u

∣
∣
∣
∣

2p)

≤ 22p–1
(

(t – s)2p–1
∫ t

s

∣
∣f (X̂u, θ0)

∣
∣2p du +

(
γ (θ0)

)2p
∣
∣
∣
∣

∫ t

s
dV ∗

u

∣
∣
∣
∣

2p)

.
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Since

∣
∣f (X̂u, θ0)

∣
∣2p ≤ K1(θ0)p2p–1(1 + |X̂u|2p), (18)

from Assumption 3 together with the stationarity of the process, one has

E

[∫ t

s

∣
∣f (X̂u, θ0)

∣
∣2p du

]

= O
(|t – s|). (19)

From the Burkholder–Davis–Gundy inequality, it can be checked that

E

[∣
∣
∣
∣

∫ t

s
dV ∗

u

∣
∣
∣
∣

2p]

≤ CpE

∣
∣
∣
∣

∫ t

s
du

∣
∣
∣
∣

p

= Cp(t – s)2p, (20)

where Cp is a positive constant depending only on p.
Then we have

E

[∣
∣
∣
∣

∫ t

s
dV ∗

u

∣
∣
∣
∣

2p]

= O
(|t – s|p). (21)

From the above analysis, it follows that

E|X̂t – X̂s|2p = O
(|t – s|p). (22)

The proof is complete. �

Lemma 2 Under Assumptions 1 and 3, when � → 0, one has

E

∣
∣
∣
∣
∣

n∑

i=1

∫ ti

ti–1

f (X̂ti–1 , θ )f (X̂s, θ0)
γ 2(θ )

ds –
n∑

i=1

f (X̂ti–1 , θ )f (X̂ti–1 , θ0)
γ 2(θ )

�

∣
∣
∣
∣
∣
→ 0.

Proof By applying Hölder’s inequality, it can be checked that

E

∣
∣
∣
∣
∣

n∑

i=1

∫ ti

ti–1

f (X̂ti–1 , θ )f (X̂s, θ0)
γ 2(θ )

ds –
n∑

i=1

f (X̂ti–1 , θ )f (X̂ti–1 , θ0)
γ 2(θ )

�

∣
∣
∣
∣
∣

= E

∣
∣
∣
∣
∣

n∑

i=1

∫ ti

ti–1

f (X̂ti–1 , θ )(f (X̂s, θ0) – f (X̂ti–1 , θ0))
γ 2(θ )

ds

∣
∣
∣
∣
∣

≤
n∑

i=1

∫ ti

ti–1

E

∣
∣
∣
∣
f (X̂ti–1 , θ )(f (X̂s, θ0) – f (X̂ti–1 , θ0))

γ 2(θ )

∣
∣
∣
∣ds

≤
n∑

i=1

∫ ti

ti–1

(

E

[
f (X̂ti–1 , θ )

γ 2(θ )

]2) 1
2 (
E

[
f (X̂s, θ0) – f (X̂ti–1 , θ0)

]2) 1
2 ds.

From Lemma 1 together with Assumptions 1 and 3, we have

E
[
f (X̂s, θ0) – f (X̂ti–1 , θ0)

]2 = O(�), (23)

and E[ f (X̂ti–1 ,θ )
γ 2(θ ) ]2 is bounded.
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From the above analysis, it follows that

E

∣
∣
∣
∣
∣

n∑

i=1

∫ ti

ti–1

f (X̂ti–1 , θ )f (X̂s, θ0)
γ 2(θ )

ds –
n∑

i=1

f (X̂ti–1 , θ )f (X̂ti–1 , θ0)
γ 2(θ )

�

∣
∣
∣
∣
∣
→ 0, (24)

as � → 0.
The proof is complete. �

Lemma 3 Under Assumptions 1 and 3, we have

E

∣
∣
∣
∣
∣

n∑

i=1

f 2(X̂ti–1 , θ )
γ 2(θ )

� –
∫ t

0

f 2(X̂s, θ )
γ 2(θ )

ds

∣
∣
∣
∣
∣
→ 0,

as � → 0.

Proof From the Hölder inequality and Assumption 1 together with the stationarity of the
process, one has

E

∣
∣
∣
∣
∣

n∑

i=1

f 2(X̂ti–1 , θ )
γ 2(θ )

� –
∫ t

0

f 2(X̂s, θ )
γ 2(θ )

ds

∣
∣
∣
∣
∣

= E

∣
∣
∣
∣
∣

n∑

i=1

∫ ti

ti–1

[
f 2(X̂ti–1 , θ )

γ 2(θ )
–

f 2(X̂s, θ )
γ 2(θ )

]

ds

∣
∣
∣
∣
∣

= E

∣
∣
∣
∣
∣

n∑

i=1

∫ ti

ti–1

f 2(X̂ti–1 , θ ) – f 2(X̂s, θ )
γ 2(θ )

ds

∣
∣
∣
∣
∣

≤
n∑

i=1

∫ ti

ti–1

E

[ |f (X̂ti–1 , θ ) + f (X̂s, θ )||f (Xti–1 , θ ) – f (Xs, θ )|
γ 2(θ )

]

ds

≤ K2(θ )
γ 2(θ )

n∑

i=1

∫ ti

ti–1

(
E|X̂ti–1 – X̂s|2

) 1
2 ds,

where sup{K2(θ )} < ∞.
According to the above analysis together with Lemma 1, it follows that

E

∣
∣
∣
∣
∣

n∑

i=1

f 2(X̂ti–1 , θ )
γ 2(θ )

� –
∫ t

0

f 2(X̂s, θ )
γ 2(θ )

ds

∣
∣
∣
∣
∣
→ 0,

as � → 0.
The proof is complete. �

Remark 3 By employing the Hölder inequality, the Burkholder–Davis–Gundy inequality
and the stationarity of the process, the above lemmas have been proved. These lemmas
play a key role in the proof of the following main results.

In the following theorem, the consistency in probability of the maximum likelihood es-
timator is proved by applying a martingale moment inequality, the Chebyshev inequality,
the uniform ergodic theorem and the results of Lemmas 1–3.
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Theorem 1 When � → 0, n → ∞ and n� → ∞,

θ̂0
P→ θ0.

Proof According to the expression of the approximate likelihood function and Eq. (1), it
follows that

�n(θ ) =
n∑

i=1

f (X̂ti–1 , θ )
γ 2(θ )

(∫ ti

ti–1

f (X̂s, θ0) ds + γ (θ0)
∫ ti

ti–1

dV ∗
s

)

–
�

2

n∑

i=1

f 2(X̂ti–1 , θ )
γ 2(θ )

=
n∑

i=1

∫ ti

ti–1

f (X̂ti–1 , θ )f (X̂s, θ0)
γ 2(θ )

ds +
n∑

i=1

∫ ti

ti–1

f (X̂ti–1 , θ )γ (θ0)
γ 2(θ )

dV ∗
s

–
1
2

n∑

i=1

∫ ti

ti–1

f 2(X̂ti–1 , θ )
γ 2(θ )

ds

=
n∑

i=1

∫ ti

ti–1

f (X̂ti–1 , θ )(f (X̂s, θ0) – 1
2 f (X̂ti–1 , θ ))

γ 2(θ )
ds

+
n∑

i=1

∫ ti

ti–1

f (X̂ti–1 , θ )γ (θ0)
γ 2(θ )

dV ∗
s .

Then we have

1
n�

�n(θ )

=
1

n�

n∑

i=1

∫ ti

ti–1

f (X̂ti–1 , θ )(f (X̂s, θ0) – 1
2 f (X̂ti–1 , θ ))

γ 2(θ )
ds

+
1

n�

n∑

i=1

∫ ti

ti–1

f (X̂ti–1 , θ )γ (θ0)
γ 2(θ )

dV ∗
s . (25)

From the martingale moment inequality, it can be checked that

E

∣
∣
∣
∣
∣

1
n�

n∑

i=1

∫ ti

ti–1

f (X̂ti–1 , θ )γ (θ0)
γ 2(θ )

dV ∗
s

∣
∣
∣
∣
∣

2

≤ 1
(n�)2 C

γ 2(θ0)
γ 4(θ )

E

n∑

i=1

∫ ti

ti–1

(
f (X̂ti–1 , θ )

)2 ds

≤ 1
n�

C1

→ 0,

where C and C1 are constants.
By applying the Chebyshev inequality, it can be found that

1
n�

n∑

i=1

∫ ti

ti–1

f (X̂ti–1 , θ )γ (θ0)
γ 2(θ )

dV ∗
s

P→ 0, (26)

when � → 0, n → ∞ and n� → ∞.
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From Lemmas 2–3 together with the uniform ergodic theorem (see e.g. [22]), one has

1
n�

n∑

i=1

∫ ti

ti–1

f (X̂ti–1 , θ )(f (X̂s, θ0) – 1
2 f (X̂ti–1 , θ ))

γ 2(θ )
ds

P→ E

[ f (x0, θ )(f (x0, θ0) – 1
2 f (x0, θ ))

γ 2(θ )

]

,

when � → 0, n → ∞ and n� → ∞.
Hence, it leads to the relation

1
n�

�n(θ ) P→ E

[ f (x0, θ )(f (x0, θ0) – 1
2 f (x0, θ ))

γ 2(θ )

]

, (27)

when � → 0, n → ∞ and n� → ∞.
From Assumption 4, it is easy to check that

θ̂0
P→ θ0, (28)

when � → 0, n → ∞ and n� → ∞.
The proof is complete. �

In the following theorem, the asymptotic normality of the error of estimation is proved
by employing the martingale moment inequality, the Chebyshev inequality, the uniform
ergodic theorem and the dominated convergence theorem.

Theorem 2 When � → 0, n 1
2 � → 0 and n� → ∞ as n → ∞,

√
n�(θ0 – θ̂0) d→ N

(

0,
γ 2(θ0)

E[f ′(x0, θ0)γ (θ0) – 2f (x0, θ0)γ ′(θ0)]2

)

.

Proof Expanding �′
n(θ0) about θ̂0, it follows that

�′
n(θ0) = �′

n(θ̂0) + �′′
n(θ̃ )(θ0 – θ̂0), (29)

where θ̃ is between θ̂0 and θ0.
In view of Theorem 1, it is well known that �′

n(θ̂0) = 0; then

�′
n(θ0) = �′′

n(θ̃ )(θ0 – θ̂0). (30)

Since

�′′
n(θ )

=
n∑

i=1

f ′′(X̂ti–1 , θ )γ 2(θ ) – 4γ (θ )γ ′(θ )f ′(X̂ti–1 , θ )
γ 4(θ )

(Xti – Xti–1 )
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+
n∑

i=1

6f (X̂ti–1 , θ )(γ ′(θ ))2 – 2γ (θ )γ ′′(θ )f (X̂ti–1 , θ )
γ 4(θ )

(Xti – Xti–1 )

+ �

n∑

i=1

4γ (θ )γ ′(θ )f ′(X̂ti–1 , θ )f (X̂ti–1 , θ )
γ 4(θ )

– �

n∑

i=1

f ′′(X̂ti–1 , θ )f (X̂ti–1 , θ )γ 2(θ ) – 3f 2(X̂ti–1 , θ )(γ ′(θ ))2

γ 4(θ )

+ �

n∑

i=1

γ (θ )γ ′′(θ )f 2(X̂ti–1 , θ ) – γ 2(θ )(f ′(X̂ti–1 , θ ))2

γ 4(θ )

=
n∑

i=1

f ′′(X̂ti–1 , θ )γ 2(θ ) – 4γ (θ )γ ′(θ )f ′(X̂ti–1 , θ )
γ 4(θ )

∫ ti

ti–1

f (X̂s, θ0) ds

+
n∑

i=1

f ′′(X̂ti–1 , θ )γ 2(θ ) – 4γ (θ )γ ′(θ )f ′(X̂ti–1 , θ )
γ 4(θ )

γ (θ0)
∫ ti

ti–1

dV ∗
s

+
n∑

i=1

6f (X̂ti–1 , θ )(γ ′(θ ))2 – 2γ (θ )γ ′′(θ )f (X̂ti–1 , θ )
γ 4(θ )

∫ ti

ti–1

f (X̂s, θ0) ds

+
n∑

i=1

6f (X̂ti–1 , θ )(γ ′(θ ))2 – 2γ (θ )γ ′′(θ )f (X̂ti–1 , θ )
γ 4(θ )

γ (θ0)
∫ ti

ti–1

dV ∗
s

+
n∑

i=1

∫ ti

ti–1

4γ (θ )γ ′(θ )f ′(X̂ti–1 , θ )f (X̂ti–1 , θ )
γ 4(θ )

ds

–
n∑

i=1

∫ ti

ti–1

f ′′(X̂ti–1 , θ )f (X̂ti–1 , θ )γ 2(θ ) – 3f 2(X̂ti–1 , θ )(γ ′(θ ))2

γ 4(θ )
ds

+
n∑

i=1

∫ ti

ti–1

γ (θ )γ ′′(θ )f 2(X̂ti–1 , θ ) – γ 2(θ )(f ′(X̂ti–1 , θ ))2

γ 4(θ )
ds

=
n∑

i=1

∫ ti

ti–1

f ′′(X̂ti–1 , θ )(f (X̂s, θ0) – f (X̂ti–1 , θ ))
γ 2(θ )

ds

+
n∑

i=1

∫ ti

ti–1

4f ′(X̂ti–1 , θ )γ ′(θ )(f (X̂ti–1 , θ ) – f (X̂s, θ0))
γ 3(θ )

ds

+
n∑

i=1

∫ ti

ti–1

3f (X̂ti–1 , θ )(γ ′(θ ))2(2f (X̂s, θ0) – f (X̂ti–1 , θ ))
γ 4(θ )

ds

+
n∑

i=1

∫ ti

ti–1

f (X̂ti–1 , θ )γ (θ )γ ′′(θ )(f (X̂ti–1 , θ ) – 2f (X̂s, θ0))
γ 3(θ )

ds

–
n∑

i=1

∫ ti

ti–1

(f ′(X̂ti–1 , θ ))2

γ 2(θ )
ds

+ γ (θ0)
n∑

i=1

∫ ti

ti–1

f ′′(X̂ti–1 , θ )γ 2(θ ) – 4γ (θ )γ ′(θ )f ′(X̂ti–1 , θ )
γ 4(θ )

dV ∗
s

+ γ (θ0)
n∑

i=1

∫ ti

ti–1

6f (X̂ti–1 , θ )(γ ′(θ ))2 – 2γ (θ )γ ′′(θ )f (X̂ti–1 , θ )
γ 4(θ )

dV ∗
s
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we have

�′′
n(θ0)

=
n∑

i=1

∫ ti

ti–1

f ′′(X̂ti–1 , θ0)(f (X̂s, θ0) – f (X̂ti–1 , θ0))
γ 2(θ0)

ds

+
n∑

i=1

∫ ti

ti–1

4f ′(X̂ti–1 , θ0)γ ′(θ0)(f (X̂ti–1 , θ0) – f (X̂s, θ0))
γ 3(θ0)

ds

+
n∑

i=1

∫ ti

ti–1

3f (X̂ti–1 , θ0)(γ ′(θ0))2(2f (X̂s, θ0) – f (X̂ti–1 , θ0))
γ 4(θ0)

ds

+
n∑

i=1

∫ ti

ti–1

f (X̂ti–1 , θ0)γ ′′(θ0)(f (X̂ti–1 , θ0) – 2f (X̂s, θ0))
γ 2(θ0)

ds

–
n∑

i=1

∫ ti

ti–1

(f ′(X̂ti–1 , θ0))2

γ 2(θ0)
ds

+
n∑

i=1

∫ ti

ti–1

f ′′(X̂ti–1 , θ0)γ (θ0) – 4γ ′(θ0)f ′(X̂ti–1 , θ0)
γ 2(θ0)

dV ∗
s

+
n∑

i=1

∫ ti

ti–1

6f (X̂ti–1 , θ0)(γ ′(θ0))2 – 2γ (θ0)γ ′′(θ0)f (X̂ti–1 , θ0)
γ 3(θ0)

dV ∗
s .

From the same method used in Theorem 1, it is easy to check that

1
n�

n∑

i=1

∫ ti

ti–1

f ′′(X̂ti–1 , θ0)γ (θ0) – 4γ ′(θ0)f ′(X̂ti–1 , θ0)
γ 2(θ0)

dV ∗
s

P→ 0 (31)

and

1
n�

n∑

i=1

∫ ti

ti–1

6f (X̂ti–1 , θ0)(γ ′(θ0))2 – 2γ (θ0)γ ′′(θ0)f (X̂ti–1 , θ0)
γ 3(θ0)

dV ∗
s

P→ 0. (32)

By applying the results of Lemmas 2–3 and the uniform ergodic theorem, it follows that

1
n�

n∑

i=1

∫ ti

ti–1

f ′′(X̂ti–1 , θ0)(f (X̂s, θ0) – f (X̂ti–1 , θ0))
γ 2(θ0)

ds P→ 0, (33)

1
n�

n∑

i=1

∫ ti

ti–1

4f ′(X̂ti–1 , θ0)γ ′(θ0)(f (X̂ti–1 , θ0) – f (X̂s, θ0))
γ 3(θ0)

ds P→ 0, (34)

1
n�

n∑

i=1

∫ ti

ti–1

3f (X̂ti–1 , θ0)(γ ′(θ0))2(2f (X̂s, θ0) – f (X̂ti–1 , θ0))
γ 4(θ0)

ds

P→ 3
(γ ′(θ0))2

γ 4(θ0)
E

[
f (x0, θ0)

]2,
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1
n�

n∑

i=1

∫ ti

ti–1

f (X̂ti–1 , θ0)γ ′′(θ0)(f (X̂ti–1 , θ0) – 2f (X̂s, θ0))
γ 2(θ0)

ds

P→ –
(γ ′′(θ0))2

γ 2(θ0)
E

[
f (x0, θ0)

]2,

and

1
n�

n∑

i=1

∫ ti

ti–1

(f ′(X̂ti–1 , θ0))2

γ 2(θ0)
ds P→ 1

γ 2(θ0)
E

[
f ′(x0, θ0)

]2. (35)

Therefore, we have

1
n�

�′′
n(θ0)

P→ E

[
3(γ ′(θ0))2 – γ 2(θ0)(γ ′′(θ0))2

γ 4(θ0)
(
f (x0, θ0)

)2 +
1

γ 2(θ0)
(
f ′(x0, θ0)

)2
]

.

According to the expression of �′′
n(θ ) and by employing the martingale moment inequal-

ity, the Chebyshev inequality, the uniform ergodic theorem and the dominated conver-
gence theorem, it follows that

1
n�

(
�′′

n(θ̃ ) – �′′
n(θ0)

) P→ 0. (36)

Hence, it can be found that

1
n�

�′′
n(θ̃ ) P→ E

[
3(γ ′(θ0))2 – γ 2(θ0)(γ ′′(θ0))2

γ 4(θ0)
(
f (x0, θ0)

)2 +
1

γ 2(θ0)
(
f ′(x0, θ0)

)2
]

. (37)

Since

�′
n(θ )

=
n∑

i=1

f ′(X̂ti–1 , θ )γ (θ ) – 2f (X̂ti–1 , θ )γ ′(θ )
γ 3(θ )

(X̂ti – X̂ti–1 )

– �

n∑

i=1

f (X̂ti–1 , θ )f ′(X̂ti–1 , θ )γ (θ ) – f 2(X̂ti–1 , θ )γ ′(θ )
γ 3(θ )

=
n∑

i=1

f ′(X̂ti–1 , θ )γ (θ ) – 2f (X̂ti–1 , θ )γ ′(θ )
γ 3(θ )

(∫ ti

ti–1

f (X̂s, θ0) ds + γ (θ0)
∫ ti

ti–1

dV ∗
s

)

– �

n∑

i=1

f (X̂ti–1 , θ )f ′(X̂ti–1 , θ )γ (θ ) – f 2(X̂ti–1 , θ )γ ′(θ )
γ 3(θ )

=
n∑

i=1

∫ ti

ti–1

f ′(X̂ti–1 , θ )(f (X̂s, θ0) – f (Xti–1 , θ ))
γ 2(θ )

ds

+
n∑

i=1

∫ ti

ti–1

f (X̂ti–1 , θ )γ ′(θ )(f (Xti–1 , θ ) – 2f (X̂s, θ0))
γ 3(θ )

ds

+
n∑

i=1

∫ ti

ti–1

γ (θ0)
f ′(X̂ti–1 , θ )γ (θ ) – 2f (X̂ti–1 , θ )γ ′(θ )

γ 3(θ )
dV ∗

s ,
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it follows that

1√
n�

�′
n(θ0)

=
1√
n�

n∑

i=1

∫ ti

ti–1

f ′(X̂ti–1 , θ0)(f (X̂s, θ0) – f (Xti–1 , θ0))
γ 2(θ0)

ds

+
1√
n�

n∑

i=1

∫ ti

ti–1

f (X̂ti–1 , θ0)γ ′(θ0)(f (Xti–1 , θ0) – 2f (X̂s, θ0))
γ 3(θ0)

ds

+
1√
n�

n∑

i=1

∫ ti

ti–1

f ′(X̂ti–1 , θ0)γ (θ0) – 2f (X̂ti–1 , θ0)γ ′(θ0)
γ 2(θ0)

dV ∗
s .

As

E

∣
∣
∣
∣
∣

1√
n�

n∑

i=1

∫ ti

ti–1

f ′(X̂ti–1 , θ0)(f (X̂s, θ0) – f (X̂ti–1 , θ0))
γ 2(θ0)

ds

∣
∣
∣
∣
∣

≤ 1√
n�

n∑

i=1

∫ ti

ti–1

E

∣
∣
∣
∣
f ′(X̂ti–1 , θ0)(f (X̂s, θ0) – f (X̂ti–1 , θ0))

γ 2(θ0)

∣
∣
∣
∣ds

≤
∑n

i=1
∫ ti

ti–1
(E[f ′(X̂ti–1 , θ0)]2) 1

2 (E[f (X̂s, θ0) – f (X̂ti–1 , θ0)]2) 1
2 ds

γ 2(θ0)
√

n�
,

it is easy to check that E[f ′(X̂ti–1 , θ0)]2 is bounded.
From Lemma 1 and Assumption 1, we have

E
[
f (X̂s, θ0) – f (X̂ti–1 , θ0)

]2 = O(�). (38)

Then it follows that

E

∣
∣
∣
∣
∣

1√
n�

n∑

i=1

∫ ti

ti–1

f ′(X̂ti–1 , θ0)(f (X̂s, θ0) – f (X̂ti–1 , θ0))
γ 2(θ0)

ds

∣
∣
∣
∣
∣
→ 0, (39)

when � → 0, n 1
2 � → 0 and n� → ∞ as n → ∞.

By applying the Chebyshev inequality, it can be found that

1√
n�

n∑

i=1

∫ ti

ti–1

f ′(X̂ti–1 , θ0)(f (X̂s, θ0) – f (X̂ti–1 , θ0))
γ 2(θ0)

ds P→ 0. (40)

By applying the same methods, we have

1√
n�

n∑

i=1

∫ ti

ti–1

f (X̂ti–1 , θ )γ ′(θ )(f (Xti–1 , θ ) – 2f (X̂s, θ0))
γ 3(θ )

ds P→ 0. (41)
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It is obvious that

1√
n�

n∑

i=1

∫ ti

ti–1

f ′(X̂ti–1 , θ0)γ (θ0) – 2f (X̂ti–1 , θ0)γ ′(θ0)
γ 2(θ0)

dV ∗
s

d→ N
(

0,
1

γ 2(θ0)
E

[
f ′(x0, θ0)γ (θ0) – 2f (x0, θ0)γ ′(θ0)

]2
)

.

Hence, we have

1√
n�

�′
n(θ0) d→ N

(

0,
1

γ 2(θ0)
E

[
f ′(x0, θ0)γ (θ0) – 2f (x0, θ0)γ ′(θ0)

]2
)

, (42)

when � → 0, n 1
2 � → 0 and n� → ∞ as n → ∞.

From the above analysis, it can be checked that

√
n�(θ0 – θ̂0) d→ N

(

0,
γ 2(θ0)

E[f ′(x0, θ0)γ (θ0) – 2f (x0, θ0)γ ′(θ0)]2

)

, (43)

when � → 0, n 1
2 � → 0 and n� → ∞ as n → ∞.

The proof is complete. �

4 Example
Consider the incomplete information nonlinear stochastic system described as follows:

⎧
⎨

⎩

dXt = θ Xt√
1+X2

t
dt + dWt , X0 ∼ uθ ,

dYt = Xt dt + dVt ,

where θ is an unknown parameter, (Wt , t ≥ 0) and (Vt , t ≥ 0) are independent Wiener
processes, uθ is the invariant measure, {Yt} is observable, while {Xt} is unobservable, the
equation of Xt is called a hyperbolic diffusion equation.

Firstly, it is easy to verify that Xt is an ergodic diffusion process.
Then, since

∣
∣
∣
∣θ

x√
1 + x2

– θ
y

√
1 + y2

∣
∣
∣
∣ ≤ 2θ |x – y|,

∣
∣
∣
∣θ

x√
1 + x2

∣
∣
∣
∣ ≤ θ |1 + x|,

E[θ X0√
1+X2

0
(θ0

X0√
1+X2

0
– 1

2θ
X0√
1+X2

0
)] attains the unique maximum at θ = θ0, it is easy to

check that the coefficients satisfy Assumptions 1–4.
Therefore, it is easy to check that

θ̂0
P→ θ0,

when � → 0, n → ∞ and n� → ∞.
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5 Conclusion
The aim of this paper is to estimate the parameter for incomplete information stochas-
tic system from discrete observations. The suboptimal estimation of the state has been
obtained by constructing the extended Kalman filtering and the approximate likelihood
function has been given. The consistency of the maximum likelihood estimator and the
asymptotic normality of the error of estimation have been proved by applying the martin-
gale moment inequality, Hölder’s inequality, the Chebyshev inequality, the Burkholder–
Davis–Gundy inequality and the uniform ergodic theorem. Further research topics will
include the parameter estimation for incomplete information stochastic systems driven
by a Lévy process.
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