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Abstract
In this paper, we explore a stochastic non-autonomous one-predator–two-prey
system with Beddington–DeAngelis functional response and impulsive perturbations.
First, by using Itô’s formula, exponential martingale inequality, Chebyshev’s inequality
and other mathematical skills, we establish some sufficient conditions for extinction,
non-persistence in the mean, weak persistence, persistence in the mean and
stochastic permanence of the solution of the stochastic system. Then the limit of the
average in time of the sample path of the solution is estimated by two constants.
Afterwards, the lower-growth rate and the upper-growth rate of the positive solution
are estimated. In addition, sufficient conditions for global attractivity of the system are
established. Finally, we carry out some simulations to verify our main results and
explain the biological implications: the large stochastic interference is
disadvantageous for the persistence of the population and the strong impulsive
harvesting can lead to extinct of the population.
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1 Introduction
Predator–prey systems, competitive systems and cooperative systems, the three major
systems in the ecosystem, play a vital role in promoting the stable operation of biologi-
cal communities. Among them, predation and competition are the most common phe-
nomena in nature, such as, tiger hunting rabbits, wolves catching deer, two trees in the
same forest, eagle and snake feeding on the same mouse and so on. Many scholars have
studied predation and competition systems (see [1–13]). Among them, the one-predator–
two-prey system (see [14–18]) is the most common system in the ecosystem. Therefore,
it is important and meaningful to consider dynamical behavior of the one-predator–two-
prey system with interspecies competition. When modeling the one-predator–two-prey
system, one of the most important factors should be involved is the functional response
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mechanism, which changes the prey density per unit time per predator as a function of
prey or both prey and predator species. There are many kinds of famous functional re-
sponse in the predator–prey system reported in the previous references, such as Holling
types [19–21], Beddington–DeAngelis type [22–25], Michaelis–Menton type [26], Ivlev
type [27], Hassell–Varley type [28], Crowley–Martin type functional response [29], which
are suitable for different kinds of predator–prey systems, respectively. In 1975, Beddington
[22] and DeAngelis [23] first introduced the Beddington–DeAngelis type predator–prey
model taking the form

⎧
⎨

⎩

dx
dt = r1x – α1x2 – c1xy

a1+a2x+a3y ,
dy
dt = r2y – α2y2 + c2xy

a1+a2x+a3y ,
(1)

where x and y denote the population densities of prey and predator, respectively. The term
c1x

a1+a2x+a3y represents the Beddington–DeAngelis functional response, which turns into the
Holling-II functional response if a3 = 0 and linear functional response if both a2 = 0 and
a3 = 0. That is to say, the B-D functional response is affected by both predator and prey.
Therefore, the effect of mutual interference on the dynamics of population is worth study-
ing.

On the other hand, the population systems in the real world are always inevitably in-
fluenced by all kinds of environmental noises which are an important component in an
ecosystem. Usually, there are two types of environmental noises: white noise and color
noise. White noise arises from a nearly continuous series of small or moderate perturba-
tions that have small effects on the intrinsic growth rates of the species. Therefore, it is
essential to reveal how the environmental noise disturbs the population systems. In re-
cent years, many scholars have proposed and investigated stochastic models with white
noise perturbations, please refer to [30–46] and the references therein. For example, Ji
et al. [30] considered a predator–prey model with modified Leslie–Gower and Holling
type II schemes with stochastic perturbation and the condition for persistence and ex-
tinction of the system is established. Liu and Wang in [36] discussed a predator–prey sys-
tem with Beddington–DeAngelis functional response with stochastic perturbation. They
demonstrated that if the positive equilibrium of the deterministic system is globally stable,
then the stochastic model will preserve this nice property provided the noise is sufficiently
small.

However, periodic behavior often arises in implicit ways in various natural phenomena.
For example, due to the seasonal variation, hunting, harvesting and so on, the birth rate,
the mortality rate and other parameters in the population systems will not remain con-
stant, but exhibit a more-or-less periodicity. Thus, it is natural to model the population
by a periodic environment. Therefore, numerous authors have investigated the effect of
seasonal variation and stochasticity (see [47–49]).

Furthermore, population growth in ecosystems is also affected by human activities,
such as periodic harvesting or stocking for the species, which cannot be considered
continuously. Stochastic systems that consider continuous phenomena are not suitable
for these phenomena. Therefore, in this case, we should consider the effect of impulse
in order to describe these phenomena more accurately. In recent decades, a variety
of population dynamical systems with impulsive effects have been proposed and stud-
ied extensively (see [50–56]). For example, in [50] Liu and Wang concerned with an
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n-species stochastic nonautonomous Lotka-Volterra competitive system with impulsive
effects. They obtained the sufficient conditions for stochastic permanence, extinction
and global stability and investigated some dynamical properties. Zhang and Meng et al.
[52] discussed a stochastic non-autonomous predator–prey system with impulsive effect.
They concluded that the large stochastic disturbances can lead to the extinction of the
population, and large impulse harvests can also result in the extinction of the popula-
tion.

Taking all above influences into consideration, we focus on the stochastic non-
autonomous one-predator–two-prey system with the Beddington–DeAngelis functional
response and impulsive perturbations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1(t) = x1(t)[r1(t) – α1(t)x1(t) – c1(t)x3(t)
a1(t)+a2(t)x1(t)+a3(t)x3(t)

– β1(t)x2(t)] dt + σ1(t)x1(t) dB1(t),

dx2(t) = x2(t)[r2(t) – α2(t)x2(t) – c2(t)x3(t)
b1(t)+b2(t)x2(t)+b3(t)x3(t)

– β2(t)x1(t)] dt + σ2(t)x2(t) dB2(t),

dx3(t) = x3(t)[r3(t) – α3(t)x3(t) + e1(t)x1(t)
a1(t)+a2(t)x1(t)+a3(t)x3(t)

+ e2(t)x2(t)
b1(t)+b2(t)x2(t)+b3(t)x3(t) ] dt + σ3(t)x3(t) dB3(t),

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

t �= tk , k ∈ N ,

x1(t+) = (1 + h1k)x1(t),

x2(t+) = (1 + h2k)x2(t),

x3(t+) = (1 + h3k)x3(t),

⎫
⎪⎪⎬

⎪⎪⎭

t = tk , k ∈ N ,

(2)

where xi(t) is the size of the ith population at time t, ri(t) represents the intrinsic growth
rate of the ith population, αi(t) stands for the density-dependent coefficients of the ith
population, β1(t) and β2(t) are the competitive coefficient of x1(t) and x2(t), respectively,
cj(t) is the capturing rate of predator, ej(t) represents the rate of conversion of nutrients
into the reproduction of predator, Bi(t) (i = 1, 2, 3) is for independent standard Brown-
ian motions defined on a complete probability space and σi(t) is for the intensities of
Bi(t). ri(t), αi(t), βj(t), ai(t), bi(t), cj(t), ej(t), σi(t) are positive, continuous and bounded
functions defined on R

+ = (0,∞), N denotes the set of positive integers, 0 < t1 < t2 < · · · ,
limk→+∞ tk = +∞, i = 1, 2, 3, j = 1, 2, k ∈ N .

We impose the following restriction on system (2) which is a reasonable way for giving
biological meaning: hik + 1 > 0, i = 1, 2, 3, k ∈ N . When hik > 0, the impulsive effects repre-
sent releasing the specie, but if hik < 0, the impulsive effects denote harvesting for the ith
population.

The main goals of this paper are to investigate how impulsive perturbations and
the white noises affect the permanence, persistence, extinction and global attractiv-
ity of system (2). The rest of the paper is organized as follows. In Sect. 2, we give
some definition and prove the existence of a unique positive solution of the system. In
Sect. 3, we will derive main theoretical results of this paper, such as sufficient condi-
tions for the extinction, non-persistence in the mean, weak persistence, persistence in
the mean and stochastic permanence of the system. Meanwhile the limit of the aver-
age in time of the sample path of the solution is estimated by two constants. In Sect. 4,
the lower-growth rate and the upper-growth rate of the solutions are estimated. In
Sect. 5, we investigate the global attractivity of the system. In Sect. 6, we give the con-
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clusions and several examples and numerical simulations to illustrate our theoretical re-
sults.

2 Preliminary
Let (Ω ,F , {F}t≥0,P) be a complete probability space with a filtration {Ft}t≥0 satisfying
the common conditions (i.e. it is increasing and right continuous while F0 contains all P-
null sets). Let B(t) = (B1(t), B2(t), B3(t))T be an n-dimensional Brownian motion defined
on this probability space. Let R3

+ = {x ∈ R
3 : xi > 0, i ≤ i ≤ 3}. We define the norm as |x| =

√

x2
1 + x2

2 + x2
3.

If f (t) is a bounded continuous function on [0, +∞), define

f l = inf
t→R+

f (t), f u = sup
t→R+

f (t), f∗ = lim inf
t→+∞ f (t), f ∗ = lim sup

t→+∞
f (t).

For the constants mi, Mi, f u
i , f l

i (i = 1, 2, 3), we denote

m = min
1≤i≤3

mi, M = max
1≤i≤3

Mi, f̂ = min
1≤i≤3

f l
i , f̌ = max

1≤i≤3
f u
i .

Definition 2.1
1. x(t) is said to be extinctive if limt→+∞ x(t) = 0.
2. x(t) is said to be non-persistent in the mean if limt→+∞

∫ t
0 x(s) ds

t = 0.
3. x(t) is said to be weakly persistent if lim supt→+∞ x(t) > 0.
4. x(t) is said to be persistent in the mean if lim inft→+∞

∫ t
0 x(s) ds

t > 0.
5. x(t) is said to be stochastically permanent if for every ε ∈ (0, 1) there are two

constants β > 0, δ > 0 such that

lim inf
t→+∞ P

{
x(t) ≥ β

} ≥ 1 – ε, lim inf
t→+∞ P

{
x(t) ≤ δ

} ≥ 1 – ε.

Now we give an assumption which will be used in the following proof.

Assumption 2.1 There exist constants mi and Mi (i = 1, 2, 3) such that

mi ≤
∏

0<tk<t

(1 + hik) ≤ Mi.

Remark 1 Assumption 2.1 is easy to satisfy. For example, if hik = e
(–1)k+1

k2 – 1, i = 1, 2, 3, then
1 ≤ ∏

0<tk <t(1 + hik) ≤ e.

Theorem 2.1 For any given initial value (x1(0), x2(0), x3(0))T ∈ R
3
+, system (2) exists a

unique positive solution x(t) = (x1(t), x2(t), x3(t))T on R
+ and the positive solution will re-

main R
3
+ a.s.
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Proof Consider the following stochastic differential equations (SDEs) without impulses:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dy1(t) = y1(t)[r1(t) – α1(t)
∏

0<tk<t(1 + h1k)y1(t) – β1(t)
∏

0<tk<t(1 + h2k)y2(t)

–
c1(t)

∏
0<tk <t (1+h3k )y3(t)

a1(t)+a2(t)
∏

0<tk <t (1+h1k )y1(t)+a3(t)
∏

0<tk <t (1+h3k )y3(t) ] dt

+ σ1(t)y1(t) dB1(t),

dy2(t) = y2(t)[r2(t) – α2(t)
∏

0<tk<t(1 + h2k)y2(t) – β2(t)
∏

0<tk<t(1 + h1k)y1(t)

–
c2(t)

∏
0<tk <t (1+h3k )y3(t)

b1(t)+b2(t)
∏

0<tk <t (1+h2k )y2(t)+b3(t)
∏

0<tk <t (1+h3k )y3(t) ] dt

+ σ2(t)y2(t) dB2(t),

dy3(t) = y3(t)[r3(t) – α3(t)
∏

0<tk<t(1 + h3k)y3(t)

+
e1(t)

∏
0<tk <t (1+h1k )y1(t)

a1(t)+a2(t)
∏

0<tk <t (1+h1k )y1(t)+a3(t)
∏

0<tk <t (1+h3k )y3(t)

+
e2(t)

∏
0<tk <t (1+h2k )y2(t)

b1(t)+b2(t)
∏

0<tk <t (1+h2k )y2(t)+b3(t)
∏

0<tk <t (1+h3k )y3(t) ] dt

+ σ3(t)y3(t) dB3(t),

(3)

with initial value (y1(0), y2(0), y3(0))T = (x1(0), x2(0), x3(0))T . By the classic theory of SDEs
without impulses (see [57]), system (3) has a unique global positive solution y(t) =
(y1(t), y2(t), y3(t))T .

Let xi(t) =
∏

0<tk<t(1 + hik)yi(t), we show that x(t) = (x1(t), x2(t), x3(t))T is the solution of
system (2) with initial value (x1(0), x2(0), x3(0))T .

In fact, since x1(t) is continuous on each interval (tk , tk+1) ⊂ R
+ and for t �= tk , k ∈ N , we

have

dx1(t) =
∏

0<tk<t

(1 + h1k) dy1(t)

=
∏

0<tk<t

(1 + h1k)y1(t)
[

r1(t) – α1(t)
∏

0<tk<t

(1 + h1k)y1(t) – β1(t)
∏

0<tk <t

(1 + h2k)y2(t)

–
c1(t)

∏
0<tk<t(1 + h3k)y3(t)

a1(t) + a2(t)
∏

0<tk<t(1 + h1k)y1(t) + a3(t)
∏

0<tk<t(1 + h3k)y3(t)

]

dt

+ σ1(t)
∏

0<tk <t

(1 + h1k)y1(t) dB1(t)

= x1(t)
[

r1(t) – α1(t)x1(t) –
c1(t)x3(t)

a1(t) + a2(t)x1(t) + a3(t)x3(t)
– β1(t)x2(t)

]

dt

+ σ1(t)x1(t) dB1(t).

Similarly, we can obtain

dx2(t) = x2(t)
[

r2(t) – α2(t)x2(t) –
c2(t)x3(t)

b1(t) + b2(t)x2(t) + b3(t)x3(t)

– β2(t)x1(t)
]

dt + σ2(t)x2(t) dB2(t),

dx3(t) = x3(t)
[

r3(t) – α3(t)x3(t) +
e1(t)x1(t)

a1(t) + a2(t)x1(t) + a3(t)x3(t)

+
e2(t)x2(t)

b1(t) + b2(t)x2(t) + b3(t)x3(t)

]

dt + σ3(t)x3(t) dB3(t).
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And for each tk ∈R
+, it is not difficult to show that

xi
(
t+
k
)

= lim
t→t+

k

xi(t) =
∏

0<tj<tk

(1 + hij)yi
(
t+
k
)

= (1 + hik)
∏

0<tj<tk

(1 + hij)yi(tk) = (1 + hik)xi(tk).

Moreover,

xi
(
t–
k
)

= lim
t→t–

k
xi(t) =

∏

0<tj<tk

(1 + hij)yi
(
t–
k
)

=
∏

0<tj<tk

(1 + hij)yi(tk) = xi(tk).

Therefore, x(t) = (x1(t), x2(t), x3(t))T is the unique global positive solution of system (2).
This completes the proof of Theorem 2.1. �

3 Extinction and persistence
In this section we will derive sufficient conditions for the extinction, non-persistence in
the mean, weak persistence, persistence in the mean and stochastic permanence of the
solutions of system (2).

Theorem 3.1 Suppose that x(t) = (x1(t), x2(t), x3(t))T is a solution of system (2), then

lim sup
t→+∞

ln xi(t)
t

≤ lim sup
t→+∞

1
t

[ ∑

0<tk <t

ln(1 + hik) +
∫ t

0
δi(s) ds

]

:= δ∗
i , a.s.,

where

⎧
⎪⎪⎨

⎪⎪⎩

δ1(t) = r1(t) – σ 2
1 (t)
2 ,

δ2(t) = r2(t) – σ 2
2 (t)
2 ,

δ3(t) = r3(t) + e1(t)
a2(t) + e2(t)

b2(t) – σ 2
3 (t)
2 .

Particularly, if δ∗
i < 0, then limt→+∞ xi(t) = 0 a.s., namely, the ith species (i = 1, 2, 3) in sys-

tem (2) is extinct.

Proof Applying Itô’s formula to the first equation of system (3), we could find that

d ln y1(t) =
[

r1(t) –
σ 2

1 (t)
2

– α1(t)
∏

0<tk<t

(1 + h1k)y1(t) – β1(t)
∏

0<tk<t

(1 + h2k)y2(t)

–
c1(t)

∏
0<tk<t(1 + h3k)y3(t)

a1(t) + a2(t)
∏

0<tk <t(1 + h1k)y1(t) + a3(t)
∏

0<tk <t(1 + h3k)y3(t)

]

dt

+ σ1(t) dB1(t)

≤
[

r1(t) –
σ 2

1 (t)
2

– α1(t)x1(t)
]

dt + σ1(t) dB1(t)

=
[
δ1(t) – α1(t)x1(t)

]
dt + σ1(t) dB1(t). (4)
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In the same way, combining with the last two equations of system (3) we have

d ln y2(t) =
[

r2(t) –
σ 2

2 (t)
2

– α2(t)
∏

0<tk<t

(1 + h2k)y2(t) – β2(t)
∏

0<tk<t

(1 + h1k)y1(t)

–
c2(t)

∏
0<tk <t(1 + h3k)y3(t)

b1(t) + b2(t)
∏

0<tk<t(1 + h2k)y2(t) + b3(t)
∏

0<tk<t(1 + h3k)y3(t)

]

dt

+ σ2(t) dB2(t)

≤
[

r2(t) –
σ 2

2 (t)
2

– α2(t)x2(t)
]

dt + σ2(t) dB2(t)

=
[
δ2(t) – α2(t)x2(t)

]
dt + σ2(t) dB2(t), (5)

which leads to

d ln y3(t) =
[

r3(t) – α3(t)
∏

0<tk <t

(1 + h3k)y3(t)
]

dt + σ3(t) dB3(t)

+
[ e1(t)

∏
0<tk<t(1 + h1k)y1(t)

a1(t) + a2(t)
∏

0<tk<t(1 + h1k)y1(t) + a3(t)
∏

0<tk<t(1 + h3k)y3(t)

+
e2(t)

∏
0<tk <t(1 + h2k)y2(t)

b1(t) + b2(t)
∏

0<tk<t(1 + h2k)y2(t) + b3(t)
∏

0<tk<t(1 + h3k)y3(t)

]

dt

≤
[

r3(t) +
e1(t)
a2(t)

+
e2(t)
b2(t)

–
σ 2

3 (t)
2

– α3(t)x3(t)
]

dt + σ3(t) dB3(t)

=
[
δ3(t) – α3(t)x3(t)

]
dt + σ3(t) dB3(t). (6)

Integrating both sides of inequalities (4), (5) and (6) on the interval [0, t], one can easily
see that

ln yi(t) – ln y1(0) ≤
∫ t

0
δi(s) ds –

∫ t

0
αi(s)xi(s) ds + Mi(t), (7)

where Mi(t) =
∫ t

0 σi(s) dBi(s), i = 1, 2, 3. Note that Mi(t) are local martingales, whose
quadratic variations are 〈Mi(t), Mi(t)〉 =

∫ t
0 σ 2

i (s) ds ≤ (σ u
i )2t. Making use of the strong law

of large numbers for local martingales (see [58]) results in

lim
t→+∞

Mi(t)
t

= 0 a.s.

On the other hand, it follows from (7) that

∑

0<tk<t

ln(1 + hik) + ln yi(t) – ln yi(0)

≤
∑

0<tk<t

ln(1 + hik) +
∫ t

0
δi(s) ds –

∫ t

0
αi(s)xi(s) ds + Mi(t).
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In other words, we can compute that

ln xi(t) ≤ ln yi(0) +
∑

0<tk<t

ln(1 + hik) +
∫ t

0
δi(s) ds –

∫ t

0
αi(s)xi(s) ds + Mi(t)

≤ ln yi(0) +
∑

0<tk<t

ln(1 + hik) +
∫ t

0
δi(s) ds + Mi(t). (8)

Taking superior limit on both sides of (8) and noting that limt→+∞ ln yi(0)
t = 0, we obtain

lim sup
t→+∞

ln xi(t)
t

≤ lim sup
t→+∞

1
t

[ ∑

0<tk <t

ln(1 + hik) +
∫ t

0
δi(s) ds

]

:= δ∗
i , a.s.

This completes the proof. �

Theorem 3.2 Suppose that x(t) = (x1(t), x2(t), x3(t))T is a solution of system (2), then

lim sup
t→+∞

1
t

∫ t

0
xi(s) ds ≤ δ∗

i

αl
i

= x∗
i .

Particularly, if δ∗
i = 0, then limt→+∞ 1

t
∫ t

0 xi(s) ds = 0, that is, the ith species (i = 1, 2, 3) in
system (2) is non-persistent in the mean.

Proof According to the definition of the limit, for arbitrary fixed εi > 0, there exists a con-
stant T0 > 0, for every t > T0, such that

ln yi(0)
t

≤ εi

3
,

Mi(t)
t

≤ εi

3
,

1
t

[ ∑

0<tk <t

ln(1 + hik) +
∫ t

0
δi(s) ds

]

≤ δ∗
i +

εi

3
.

Substituting above inequalities into (8) yields

ln xi(t) ≤ ln yi(0) +
∑

0<tk<t

ln(1 + hik) +
∫ t

0
δi(s) ds –

∫ t

0
αi(s)xi(s) ds + Mi(t)

≤ (
δ∗

i + εi
)
t –

∫ t

0
αi(s)xi(s) ds

≤ λit – αl
i

∫ t

0
xi(s) ds a.s., (9)

for all t > T0, where λi = δ∗
i + εi.

Denote gi(t) =
∫ t

0 xi(s) ds, we get dgi(t)
dt = xi(t). Taking exponent on both sides of (9), we

can show that

eαl
i gi(t) dgi(t)

dt
≤ eλit . (10)

Integrating inequality (10) from T0 to t yields

eαl
i gi(t) ≤ αl

i
λi

eλit + eαl
i gi(T0) –

αl
i

λi
eλiT0 . (11)
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Taking logarithm of both sides of inequality (11), we can derive that

∫ t

0
xi(s) ds ≤ 1

αl
i

ln

[
αl

i
λi

eλit + eαl
i gi(T0) –

αl
i

λi
eλiT0

]

. (12)

Taking superior limit on (12) elicits that

lim sup
t→+∞

1
t

∫ t

0
xi(s) ds ≤ lim sup

t→+∞
1

αl
i t

ln

[
αl

i
λi

eλit + eαl
i gi(T0) –

αl
i

λi
eλiT0

]

.

Then it follows from L’Hospital’s rule that

lim sup
t→+∞

1
t

∫ t

0
xi(s) ds ≤ lim sup

t→+∞
λi

αl
i

=
δ∗

i

αl
i

= x∗
i .

This completes the proof of this theorem. �

Theorem 3.3 Suppose that x(t) = (x1(t), x2(t), x3(t))T is a solution of system (2). If δ∗
i > 0,

then the ith species (i = 1, 2, 3) in system (2) is weakly persistent a.s., i.e. lim supt→+∞ xi(t) > 0
a.s.

Proof If this assertion is not true, then P(S) > 0, where S is the set S = lim supt→+∞ xi(t) = 0.
It follows from (8) that

ln xi(t) – ln xi(0)
t

≤ 1
t

[ ∑

0<tk<t

ln(1 + hik) +
∫ t

0
δi(s) ds

]

–
1
t

∫ t

0
αi(s)xi(s) ds +

Mi(t)
t

. (13)

On the other hand, for ∀ω ∈ S, we have limt→+∞ xi(t,ω) = 0. Thus it follows from the
boundedness of αi(t) that

lim sup
t→+∞

ln xi(t) – ln xi(0)
t

≤ 0, lim sup
t→+∞

1
t

∫ t

0
αi(s)xi(s) ds = 0.

Substituting these inequalities into (13) and making use of limt→+∞ Mi(t)
t = 0 a.s., one can

obtain the contradiction 0 ≥ lim supt→+∞ ln xi(t,ω) = δ∗
i > 0. This completes the proof. �

Remark 2 Theorems 3.1–3.3 have an interesting biological interpretation. Observe that
the extinction and persistence of species xi(t) only depend on δ∗

i . If δ∗
i > 0, the population

xi(t) is weakly persistent. If δ∗
i < 0, the population xi(t) goes to extinction.

Theorem 3.4 Suppose that x(t) = (x1(t), x2(t), x3(t))T is a solution of system (2), then

lim inf
t→+∞

1
t

∫ t

0
xi(s) ds ≥ θi∗

αu
i

= x∗
i , a.s.
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where

θ1∗ = δ1∗ –
(

βu
1 δ∗

2

αl
2

+ η1

)

, θ2∗ = δ2∗ –
(

βu
2 δ∗

1

αl
1

+ η2

)

, θ3∗ = δ3∗,

δi∗ = lim inf
t→+∞

1
t

[ ∑

0<tk <t

ln(1 + hik) +
∫ t

0

(

ri(s) –
1
2
σ 2

i (s)
)

ds
]

, i = 1, 2, 3,

η1 = min

{
cu

1

al
3

,
cu

1δ
∗
3

al
1α

l
3

}

, η2 = min

{
cu

2

bl
3

,
cu

2δ
∗
3

bl
1α

l
3

}

.

Particularly, if θi∗ > 0, then the ith species (i = 1, 2, 3) in system (2) is persistent in the mean
a.s.

Proof Applying Itô’s formula to the first equation of system (3), we can observe that

d ln y1(t) =
[

r1(t) –
σ 2

1 (t)
2

– α1(t)
∏

0<tk<t

(1 + h1k)y1(t) – β1(t)
∏

0<tk<t

(1 + h2k)y2(t)

–
c1(t)

∏
0<tk<t(1 + h3k)y3(t)

a1(t) + a2(t)
∏

0<tk <t(1 + h1k)y1(t) + a3(t)
∏

0<tk <t(1 + h3k)y3(t)

]

dt

+ σ1(t) dB1(t)

≥
[

r1(t) –
σ 2

1 (t)
2

– α1(t)x1(t) – β1(t)x2(t) –
c1(t)x3(t)

a1(t) + a3(t)x3(t)

]

dt

+ σ1(t) dB1(t), (14)

Applying general calculations to (14), it is easy to verify that

ln x1(t) ≥ ln y1(0) +
∑

0<tk<t

ln(1 + h1k) +
∫ t

0

(

r1(s) –
1
2
σ 2

1 (s)
)

ds –
∫ t

0
α1(s)x1(s) ds

–
∫ t

0
β1(s)x2(s) ds –

∫ t

0

c1(s)x3(s)
a1(s) + a3(s)x3(s)

ds + M1(t)

≥ ln y1(0) +
∑

0<tk<t

ln(1 + h1k) +
∫ t

0

(

r1(s) –
1
2
σ 2

1 (s)
)

ds – αu
1

∫ t

0
x1(s) ds

– βu
1

∫ t

0
x2(s) ds –

∫ t

0

c1(s)x3(s)
a1(s) + a3(s)x3(s)

ds + M1(t). (15)

It then follows from Theorem 3.2 that

lim sup
t→+∞

∫ t
0 x(s) ds

t
≤ δ∗

i

αl
i
, i = 1, 2, 3.

Since limt→+∞ yi(0)
t = 0, limt→+∞ Mi(t)

t = 0, i = 1, 2, 3, for ∀ε1 > 0 there exists a T1 > 0, such
that

∫ t

0
x1(s) ds ≤

(
δ∗

1

αl
1

+
ε1

βu
2

)

t,
∫ t

0
x2(s) ds ≤

(
δ∗

2

αl
2

+
ε1

βu
1

)

t,
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∫ t

0
x3(s) ds ≤

(
δ∗

3

αl
3

+
al

1ε1

cu
1

)

t,

∑

0<tk <t

ln(1 + h1k) +
∫ t

0

(

r1(s) –
1
2
σ 2

1 (s)
)

ds ≥ (δ1∗ – ε1)t,

y1(0) ≥ –ε1t, M1(t) ≥ –ε1t.

Substituting the above inequalities into (15), we get, for t > T1,

ln x1(t) ≥ θ1t – αu
1

∫ t

0
x1(s) ds, (16)

where θ1 = δ1∗ – ( βu
1 δ∗

2
αl

2
+ η1) – ε1, and η1 = min{ cu

1
al

3
, cu

1δ∗
3

al
1αl

3
}.

In the similar way, we can conclude that, for any εi, there exists some Ti > 0 such that

ln xi(t) ≥ θit – αu
i

∫ t

0
xi(s) ds, t > Ti, (17)

where

θ2 = δ2∗ –
(

βu
2 δ∗

1

αl
1

+ η2

)

– ε2, θ3 = δ3∗ – ε3,

and

η2 = min

{
cu

2

bl
3

,
cu

2δ
∗
3

bl
1α

l
3

}

, i = 2, 3.

Let T∗ = min1≤i≤3 Ti > 0, then from (16) and (17), we can easily see that

ln xi(t) ≥ θit – αu
i

∫ t

0
xi(s) ds, t > T∗, i = 1, 2, 3. (18)

Denote gi(t) =
∫ t

0 xi(s) ds, we get dgi(t)
dt = xi(t). Taking the exponent on both sides of (18), we

can obtain

eαu
i gi(t) dgi(t)

dt
≥ eθit . (19)

Integrating inequality (19) from T∗ to t yields

eαu
i gi(t) ≥ αu

i
θi

eθit + eαu
i gi(T∗) –

αu
i

θi
eθiT∗

. (20)

Taking logarithm of both sides of inequality (20), it can be verified straightforwardly that

∫ t

0
xi(s) ds ≥ 1

αu
i

ln

[
αu

i
θi

eθit + eαu
i gi(T∗) –

αu
i

θi
eθiT∗

]

. (21)

Taking superior limit on both sides of (21), we obtain

lim inf
t→+∞

1
t

∫ t

0
xi(s) ds ≥ lim inf

t→+∞
1

αu
i t

ln

[
αu

i
θi

eθit + eαu
i gi(T∗) –

αu
i

θi
eθiT∗

]

.
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Then it follows from L’Hospital’s rule that

lim inf
t→+∞

1
t

∫ t

0
xi(s) ds ≥ lim inf

t→+∞
θi

αu
i

=
θi∗
αu

i
= x∗

i .

This completes the proof of this theorem. �

Theorem 3.5 If Assumption 2.1 holds and (σ̌ )2 < 2r̂, then system (2) is stochastically per-
manent.

Proof First, we prove that, for arbitrary ε > 0, there exists a constant β > 0 such that

lim inf
t→+∞ P

{
x(t) ≥ β

} ≥ 1 – ε.

Define

V1(y) =
1

U2(y)
, V2(y) =

(
1 + V1(y)

), V3(y) = eκtV2(y),

where U(y) =
∑3

i=1 yi(t),  > 0, κ is a positive constant to be determined.
Applying Itô’s formula and system (3) once again, we can calculate that

dV1(y) = –
2

U3

[ 3∑

i=1

yi(t)
(

ri(t) – αi(t)
∏

0<tk<t

(1 + hik)yi(t)
)

–
3

2U

3∑

i=1

σ 2
i (t)y2

i (t) – β1(t)
∏

0<tk<t

(1 + h2k)y1(t)y2(t)

– β2(t)
∏

0<tk<t

(1 + h1k)y1(t)y2(t)

–
c1(t)

∏
0<tk <t(1 + h3k)y1(t)y3(t)

a1(t) + a2(t)
∏

0<tk <t(1 + h1k)y1(t) + a3(t)
∏

0<tk <t(1 + h3k)y3(t)

–
c2(t)

∏
0<tk<t(1 + h3k)y2(t)y3(t)

b1(t) + b2(t)
∏

0<tk<t(1 + h2k)y2(t) + b3(t)
∏

0<tk<t(1 + h3k)y3(t)

+
e1(t)

∏
0<tk <t(1 + h1k)y1(t)y3(t)

a1(t) + a2(t)
∏

0<tk <t(1 + h1k)y1(t) + a3(t)
∏

0<tk<t(1 + h3k)y3(t)

+
e2(t)

∏
0<tk<t(1 + h2k)y2(t)y3(t)

b1(t) + b2(t)
∏

0<tk <t(1 + h2k)y2(t) + b3(t)
∏

0<tk<t(1 + h3k)y3(t)

]

dt

–
2

U3

3∑

i=1

σi(t)yi(t) dBi(t).

Thus,

dV1(y) ≤ 2
U3

[

–r̂
3∑

i=1

yi(t) +
(

Mα̌ +
3(σ̌ )2

2U

) 3∑

i=1

y2
i (t) +

(
βu

1 M2 + βu
2 M1

)
y1(t)y2(t)

+
cu

1M3

al
1

y1(t)y3(t) +
cu

2M3

bl
1

y2(t)y3(t)

]

dt –
2

U3

3∑

i=1

σi(t)yi(t) dBi(t).
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Substituting inequality yi(t)yj(t) ≤ y2
i (t)+y2

j (t)
2 (i, j = 1, 2, 3) into the above inequality and mak-

ing some estimations yield

dV1(y) ≤ 2
U3

[

–r̂U +
(

M
(

α̌ + 2β̌ +
cu

1

al
1

+
cu

2

bl
1

)

+
3(σ̌ )2

2U

) 3∑

i=1

y2
i (t)

]

dt

–
2

U3

3∑

i=1

σi(t)yi(t) dBi(t)

=
2

U3

[

–r̂U +
(

Mφ +
3(σ̌ )2

2U

) 3∑

i=1

y2
i (t)

]

dt –
2

U3

3∑

i=1

σi(t)yi(t) dBi(t), (22)

where φ = (α̌ + 2β̌ + cu
1

al
1

+ cu
2

bl
1

).

Further, when yi > 0,
∑3

i=1 y2
i (t) < (

∑3
i=1 yi(t))2 = U2, then from (22), we can derive that

dV1(y) ≤ 2
U2

[

–r̂ +
3(σ̌ )2

2
+ MφU

]

dt –
2

U3

3∑

i=1

σi(t)yi(t) dBi(t). (23)

On the other hand, it follows from Itô’s integration by parts formula and applying (23) that

dV2(y) = 
(
1 + V1(y)

)–1 dV1(y) +
1
2

( – 1)
(
1 + V1(y)

)–2(dV1(y)
)2

≤ 
(
1 + V1(y)

)–2
[
(
1 + V1(y)

)
(

–
2r̂
U2 +

3(σ̌ )2

U2 +
2Mφ

U

)

+
2( – 1)(σ̌ )2

U4

]

dt

–
2

U3

(
1 + V1(y)

)–1
3∑

i=1

σi(t)yi(t) dBi(t)

= 
(
1 + V1(y)

)–2[–
(
2r̂ – (2 + 1)(σ̌ )2)V 2

1 (y) + 2MφV
3
2

1 (y) + 2MφV
1
2

1 (y)

+
(
3(σ̌ )2 – 2r̂

)
V1(y)

]
dt –

2

U3

(
1 + V1(y)

)–1
3∑

i=1

σi(t)yi(t) dBi(t). (24)

We can choose positive constant κ small enough such that

0 < κ < 
(
2r̂ – (2 + 1)(σ̌ )2).

Then

dV3(y) = κeκtV2(y) dt + eκt dV2(y)

≤ eκt(1 + V1(y)
)–2

[

–
(

2r̂ – (2 + 1)(σ̌ )2 –
κ



)

V 2
1 (y) + 2MφV

3
2

1 (y)

+
(

3(σ̌ )2 +
2κ


– 2r̂

)

V1(y) + 2MφV
1
2

1 (y) +
κ



]

dt

–
2

U3

(
1 + V1(y)

)–1
3∑

i=1

σi(t)yi(t) dBi(t)
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= eκtH(y) dt –
2

U3

(
1 + V1(y)

)–1
3∑

i=1

σi(t)yi(t) dBi(t),

where

H(y) = 
(
1 + V1(y)

)–2
[

–
(

2r̂ – (2 + 1)(σ̌ )2 –
κ



)

V 2
1 (y) + 2MφV

3
2

1 (y)

+
(

3(σ̌ )2 +
2κ


– 2r̂

)

V1(y) + 2MφV
1
2

1 (y) +
κ



]

.

By the definition of κ , H(y) is upper bounded in R
+, we let H = supy∈R+ H(y) < +∞, we

could find that

dV3(y) ≤ eκtH dt –
2

U3

(
1 + V1(y)

)–1
3∑

i=1

σi(t)yi(t) dBi(t). (25)

Integrating inequality (25) on the interval [0, t], then multiplying e–κt and taking expecta-
tions on both sides, it is not difficult to show that

E
[(

1 + V1(y)
)] ≤ V2(y0)E

[
e–κt] +

H
κ
E

[
1 – e–κt],

where y0 =
∑3

i=1 yi(0). Thus,

lim sup
t→+∞

E

[
1

U2
(y)

]

≤ lim sup
t→+∞

E
[(

1 + V1(y)
)]

≤ lim sup
t→+∞

[
V2(y0)

eκt +
H(1 – e–κt)

κ

]

=
H
κ

. (26)

On the other hand, since m ≤ mi ≤ ∏
0<tk<t(1 + hik) ≤ Mi ≤ M and by the previous trans-

formation xi(t) =
∏

0<tk<t(1 + hik)yi(t), we have

M–2

( 3∑

i=1

xi

)2

≤ U2(y) ≤
( 3∑

i=1

yi

)2

≤ m–2

( 3∑

i=1

xi

)2

≤ 4m–2
3∑

i=1

x2
i ,

which yields

(
m2

4

)
( 3∑

i=1

x2
i

)–

≤ U–2(y).

Consequently,

lim sup
t→+∞

E

[(
m2

4

)
( 3∑

i=1

x2
i

)–]

≤ lim sup
t→+∞

E
[
U–2(y)

] ≤ H
κ

,

which leads to

lim sup
t→+∞

E
[∣
∣x(t)

∣
∣–] ≤

(
m2

4

)–

lim sup
t→+∞

E
[
U–2(y)

] ≤ 4H
κm2

.
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Then, for any ε > 0, set β = ( κm2ε
4H )

1
 , it follows from Chebyshev’s inequality (see [57]) that

lim sup
t→+∞

P
{∣
∣x(t)

∣
∣ < β

}
= lim sup

t→+∞
P
{∣
∣x(t)

∣
∣– > β–

} ≤ lim
t→+∞

E[|x(t)|–]
β–

≤ ε.

In other words,

lim inf
t→+∞ P

{∣
∣x(t)

∣
∣ ≥ β

} ≥ 1 – ε. (27)

Next we show that, for arbitrary ε > 0, there exists a constant δ > 0 such that

lim inf
t→+∞ P

{
x(t) ≤ δ

} ≥ 1 – ε.

Let q > 2, applying Itô’s formula to the non-impulsive system (3),

d
(
etyq

1(t)
)

= etyq
1(t) dt + qetyq–1

1 (t) dy1(t) +
1
2

q(q – 1)etyq–2
1 (t)

(
dy1(t)

)2

= etyq
1(t)

[

1 + q
(

r1(t) +
(q – 1)σ 2

1 (t)
2

– α1(t)
∏

0<tk<t

(1 + h1k)y1(t)

–
c1(t)

∏
0<tk <t(1 + h3k)y3(t)

a1(t) + a2(t)
∏

0<tk<t(1 + h1k)y1(t) + a3(t)
∏

0<tk<t(1 + h3k)y3(t)

– β1(t)
∏

0<tk<t

(1 + h2k)y2(t)
)]

dt + qetyq
1(t)σ1(t) dB1(t)

≤ etyq
1(t)

[

1 + qru
1 +

q(q – 1)(σ u
1 )2

2
– qαl

1m1y1(t)
]

dt

+ qetσ1(t)yq
1(t) dB1(t). (28)

Integrating (28) on the interval [0, t] yields

etyq
1(t) – yq

1(0) ≤
∫ t

0
esyq

1(s)
[

1 + qru
1 +

q(q – 1)(σ u
1 )2

2
– qαl

1m1y1(s)
]

ds

+ q
∫ t

0
esσ1(s)yq

1(s) dB1(s). (29)

Taking expectations on both sides of (29) we obtain

E
[
etyq

1(t)
] ≤ yq

1(0) + E

[∫ t

0
esyq

1(s)
[

1 + qru
1 +

q(q – 1)(σ u
1 )2

2
– qαl

1m1y1(s)
]

ds
]

.

Denote

g(y1) = yq
1

[

1 + qru
1 +

q(q – 1)(σ u
1 )2

2
– qαl

1m1y1

]

,

then we have

g ′(y1) = q
[

1 + qru
1 +

q(q – 1)(σ u
1 )2

2
– (q + 1)αl

1m1y1

]

yq–1
1
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and

g ′′(y1) = q
(

(q – 1)
[

1 + qru
1 +

q(q – 1)(σ u
1 )2

2

]

– q(q + 1)αl
1m1y1

)

yq–2
1 .

It is easy to see that g(y1) has a unique maximum y∗
1 = 1+qru

1 +
q(q–1)(σu

1 )2
2

(q+1)αl
1m1

since

g ′′(y∗
1
)

= –q
[

1 + qru
1 +

q(q – 1)(σ u
1 )2

2

]
(
y∗

1
)q–2 < 0.

Therefore,

g(y1) ≤ g
(
y∗

1
)

=
[1 + qru

1 + q(q–1)(σu
1 )2

2 ]q+1

(q + 1)q+1(αl
1m1)q

:= Θ1(q),

which yields

E
[
etyq

1(t)
] ≤ yq

1(0) + Θ1(q)E
[∫ t

0
esyq

1(s) ds
]

= yq
1(0) + Θ1(q)

(
et – 1

)
.

On the other hand, by applying Itô’s formula and the last two equations of system (3) then
making some estimations, we can easily see that

d
(
etyq

2(t)
) ≤ etyq

2(t)
[

1 + qru
2 +

q(q – 1)(σ u
2 )2

2
– qαl

2m2y2(t)
]

dt + qetσ2(t)yq
2(t) dB2(t),

d
(
etyq

3(t)
) ≤ etyq

3(t)
[

1 + q
(

ru
3 +

eu
1

al
2

+
eu

2

bl
2

)

+
q(q – 1)(σ u

3 )2

2
– qαl

3m3y3(t)
]

dt

+ qetσ3(t)yq
3(t) dB3(t).

Then, similar to the above discussions, we can also derive that

E
[
etyq

i (t)
] ≤ yq

i (0) + Θi(q)E
[∫ t

0
esyq

i (s) ds
]

= yq
i (0) + Θi(q)

(
et – 1

)
, i = 2, 3, (30)

where

Θ2(q) =
[1 + qru

2 + q(q–1)(σu
2 )2

2 ]q+1

(q + 1)q+1(αl
2m2)q

,

Θ3(q) =
[1 + q(ru

3 + eu
1

al
2

+ eu
2

bl
2

) + q(q–1)(σu
3 )2

2 ]q+1

(q + 1)q+1(αl
3m3)q

.

Combining (29) and (30), we can conclude that

E
[
etyq

i (t)
] ≤ yq

i (0) + Θi(q)
(
et – 1

)
, i = 1, 2, 3. (31)

Multiplying e–t on both sides of (31) and taking the superior limit yield

lim sup
t→+∞

E
[
yq

i (t)
] ≤ lim sup

t→+∞
yq

i (0) + Θi(q)(et – 1)
et = Θi(q), i = 1, 2, 3. (32)
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This leads to

lim sup
t→+∞

E
[
xq

i (t)
] ≤ lim sup

t→+∞
E

[ ∏

0<tk<t

(1 + hik)qyq
i (t)

]

≤ Θi(q)(Mi)q, i = 1, 2, 3.

Then, for any ε > 0, let δ =
√

Θ
ε

, it follows from Chebyshev’s inequality that

lim sup
t→+∞

P
{∣
∣x(t)

∣
∣ > δ

}
= lim sup

t→+∞
P
{∣
∣x(t)

∣
∣2 > δ2} ≤ lim

t→+∞
E[|x(t)|2]

δ2 = ε,

where Θ =
∑3

i=1 Θi(q)(Mi)2. As a consequence,

lim sup
t→+∞

P
{∣
∣x(t)

∣
∣ ≤ δ

} ≥ 1 – ε. (33)

According to Definition 2.1, it follows from (27) and (33) that system (2) is stochastically
permanent. �

Remark 3 From inequality (32), we can get

lim sup
t→+∞

1
t

∫ t

0
E

[
yq

i (t)
]

ds ≤ [
yq

i (0) – Θi(q)
]

lim sup
t→+∞

1
t

∫ t

0
e–s ds + Θi(q)

= Θi(q), i = 1, 2, 3.

Therefore, system (2) has the property

lim sup
t→+∞

1
t

∫ t

0
E

[
xq

i (t)
]

ds ≤ Θi(q)(Mi)q, i = 1, 2, 3.

4 Asymptotic properties
In this section we will discuss the asymptotic properties of the solution of system (2).

Theorem 4.1 If Assumption 2.1 holds and any solution x(t) = (x1(t), x2(t), x3(t))T of system
(2) has the property that

lim sup
t→+∞

ln xi(t)
ln t

≤ 1 a.s.

and, moreover, 2r̂ – (σ̌ )2 > 0, then

lim inf
t→+∞

ln |xi(t)|
ln t

≥ –
σ̌ )2

2r̂ – (σ̌ )2 a.s.

Proof It follows from Itô’s formula and combining with inequality (4), (5) and (6) that

d
(
et ln yi(t)

)
= et ln yi(t) dt + et d

(
ln yi(t)

)

≤ et[ln yi(t) + δi(t) – miα
l
i yi(t)

]
dt + etσi(t) dBi(t). (34)
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Integrating above inequality (34) on the interval [0, t] yields

et ln yi(t) – ln yi(0) ≤
∫ t

0
es[ln yi(s) + δi(s) – miα

l
i yi(s)

]
ds + Ni(t), (35)

where Ni(t) =
∫ t

0 etσi(s) dBi(s) is the exponential martingale, whose quadratic variation is

〈
Ni(t), Ni(t)

〉
=

∫ t

0
e2sσ 2

i (s) ds, i = 1, 2, 3.

Thus, it follows from the exponential martingale inequality (see [57]) that

P

{

sup
0≤t≤kγ

[

Ni(t) –
1
2

e–kγ
〈
Ni(t), Ni(t)

〉
]

> ρekγ ln k
}

≤ k–ρ , ρ > 1,γ > 0.

By virtue of the Borel–Cantelli lemma, for almost all ω ∈ Ω , there exists k0(ω) such that,
for every k ≥ k0(ω),

Ni(t) ≤ 1
2

e–kγ
〈
Ni(t), Ni(t)

〉
+ ρekγ ln k =

1
2

e–kγ

∫ t

0
e2sσ 2

i (s) ds + ρekγ ln k, (36)

for 0 ≤ t ≤ kγ . Substituting inequality (36) into (35) and making some estimations yield

et ln yi(t) – ln yi(0) ≤
∫ t

0
es

[

ln yi(s) + δu
i +

(σ u
i )2

2
– miα

l
i yi(s)

]

ds + ρekγ ln k.

If we denote

f (yi) = ln yi + δu
i +

(σ u
i )2

2
.

Then f ′(yi) = 1
yi

– miα
l
i , f ′′(yi) = – 1

y2
i

< 0, this means y∗
i = 1

miα
l
i

is the unique maximum of
the function f (yi), i.e.f (yi) ≤ f (y∗

i ).
Thus,

et ln yi(t) ≤ ln yi(0) +
1

miα
l
i

∫ t

0
es ds + ρekγ ln k

= ln yi(0) +
1

miα
l
i

(
et – 1

)
+ ρekγ ln k. (37)

Multiplying e–t on both sides of (37) yields

ln yi(t) ≤ ln e–tyi(0) +
1

miα
l
i

(
1 – e–t) + ρekγ –t ln k.

For (k – 1)γ ≤ t ≤ kγ and k ≥ k0(ω), if t → ∞, then k → ∞.
Therefore,

lim sup
t→+∞

ln yi(t)
ln t

≤ lim sup
t→+∞

ln e–tyi(0) + 1
miα

l
i
(1 – e–t) + ρekγ –t ln k

ln t
= ρeγ .
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Let ρ → 1 and γ → 0, then lim supt→+∞
ln yi(t)

ln t ≤ 1. Since Assumption 2.1 holds,

lim sup
t→+∞

ln xi(t)
ln t

= lim sup
t→+∞

∑
0<tk<t ln(1 + hik) + ln yi(t)

ln t
≤ 1.

Now, we prove the next part. By (26), there exists a constant C1 > 0 such that

lim sup
t→+∞

E
[(

1 + V1(y)
)] ≤ C1, t ≥ 0. (38)

At the same time, it follows from (24) that

dV2(y) ≤ 
(
1 + V1(y)

)–2[–
(
2r̂ – (2 + 1)(σ̌ )2)V 2

1 (y) + 2MφV
3
2

1 (y) + 2MφV
1
2

1 (y)

+
(
3(σ̌ )2 – 2r̂

)
V1(y)

]
dt –

2

U3

(
1 + V1(y)

)–1
3∑

i=1

σi(t)yi(t) dBi(t)

≤ C2
(
1 + V1(y)

) dt –
2

U3

(
1 + V1(y)

)–1
3∑

i=1

σi(t)yi(t) dBi(t), (39)

where C2 = max{|2r̂ – (2 + 1)(σ̌ )2|, Mφ, |3(σ̌ )2 – 2r̂|}. Let μ > 0 be sufficiently small for

C2μ + 24μ
1
2

√

σ̌ 2 <
1
2

. (40)

Let k = 1, 2, . . . , making use of (39) shows that

E

[
lim sup

(k–1)μ≤t≤kμ

(
1 + V1

(
y(t)

))
]

≤ E
[(

1 + V1
(
y
(
(k – 1)μ

)))] + E

[

lim sup
(k–1)μ≤t≤kμ

∣
∣
∣
∣

∫ t

(k–1)μ
C2

(
1 + V1

(
y(s)

)) ds
∣
∣
∣
∣

]

+ E

[

lim sup
(k–1)μ≤t≤kμ

∣
∣
∣
∣
∣

∫ t

(k–1)μ

2

U3(y(s))
(
1 + V1

(
y(s)

))–1
3∑

i=1

σi(s)yi(s) dBi(s)

∣
∣
∣
∣
∣

]

. (41)

We compute that

E

[

lim sup
(k–1)μ≤t≤kμ

∣
∣
∣
∣

∫ t

(k–1)μ
C2

(
1 + V1

(
y(s)

)) ds
∣
∣
∣
∣

]

≤ E

[∫ t

(k–1)μ

∣
∣C2

(
1 + V1

(
y(s)

))∣∣ds
]

≤ C2μE
[

lim sup
(k–1)μ≤t≤kμ

(
1 + V1

(
y(t)

))
]

. (42)
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On the other hand, by the famous Burkholder–Davis–Gundy inequality (see [57]), it is
easy to derive that

E

[

lim sup
(k–1)μ≤t≤kμ

∣
∣
∣
∣
∣

∫ t

(k–1)μ

2

U3(y(s))
(
1 + V1

(
y(s)

))–1
3∑

i=1

σi(s)yi(s) dBi(s)

∣
∣
∣
∣
∣

]

≤
3∑

i=1

E

[

lim sup
(k–1)μ≤t≤kμ

∣
∣
∣
∣

∫ t

(k–1)μ

2

U3(y(s))
(
1 + V1

(
y(s)

))–1(
σi(s)yi(s) dBi(s)

)
∣
∣
∣
∣

]

≤ 4
3∑

i=1

E

[(∫ kμ

(k–1)μ
42(1 + V1

(
y(s)

))2–2V 3
1
(
y(s)

)
σ 2

i (s)y2
i (s) ds

) 1
2
]

= 4
3∑

i=1

E

[(∫ kμ

(k–1)μ
42(1 + V1

(
y(s)

))2 V 2
1 (y(s))

(1 + V1(y(s))2
σ 2

i (s)y2
i (s)

(
∑3

i=1 yi(s))2
ds

) 1
2
]

≤ 8

√

σ̌ 2
3∑

i=1

E

[(∫ kμ

(k–1)μ

(
1 + V1

(
y(s)

))2 ds
) 1

2
]

≤ 24μ
1
2

√

σ̌ 2E
[

lim sup
(k–1)μ≤t≤kμ

(
1 + V1

(
y(t)

))
]
. (43)

Substituting (43) and (42) into (41) results in

E

[
lim sup

(k–1)μ≤t≤kμ

(
1 + V1

(
y(t)

))
]

≤ E
[(

1 + V1
(
y
(
(k – 1)μ

)))]

+
(
C2μ + 24μ

1
2

√

σ̌ 2
)
E

[
lim sup

(k–1)μ≤t≤kμ

(
1 + V1

(
y(t)

))
]
.

Applying (38) and (40), we can show that

E

[
lim sup

(k–1)μ≤t≤kμ

(
1 + V1

(
y(t)

))
]

≤ 2C1.

Let ε > 0 be arbitrary. Then, by the Chebyshev inequality, we obtain

P

{
ω : sup

(k–1)μ≤t≤kμ

(
1 + V1

(
y(t)

)) > (kμ)1+ε
}

≤ 2C1

(kμ)1+ε
, k = 1, 2, . . .

By the Borel–Cantelli lemma [59], for almost all ω ∈ Ω , there exists an integer k0 = k0(ω)
such that

ln(1 + V1(y(t)))

ln t
≤ (1 + ε) ln(kμ)

ln((k – 1)μ)

for k ≥ k – 0 and (k – 1)μ ≤ t ≤ kμ. That is to say

lim sup
t→+∞

ln(1 + V1(y(t)))

ln t
≤ 1 + ε.
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Letting ε → 0 gives

lim sup
t→+∞

ln(|y(t)|–2)
ln t

≤ 1.

Consequently,

lim inf
t→+∞

ln(|y(t)|)
ln t

≥ –
1

2
.

But this holds for any  that satisfies 2r̂ > (2 + 1)(σ̌ )2, we therefore have

lim inf
t→+∞

ln(|y(t)|)
ln t

≥ –
σ̌ )2

2r̂ – (σ̌ )2 .

It then follows that

lim inf
t→+∞

ln(|x(t)|)
ln t

≥ lim inf
t→+∞

ln(m|y(t)|)
ln t

≥ –
σ̌ )2

2r̂ – (σ̌ )2 .

This completes the proof of this theorem. �

Remark 4 Theorem 4.1 shows that, for any ε > 0, there exists a random variable Tε > 0
such that t– 1

2r̂–(σ̌ )2
+ε ≤ |x(t)| ≤ t1+ε for t ≥ Tε almost surely. That is to say, the solution will

not decay faster than t– 1
2r̂–(σ̌ )2

+ε and will not grow faster than t1+ε with probability one. We
are now in the position to estimate the limit of the average in time of the sample paths of
solutions.

5 Global attractivity
In this section we give the definition of global attractivity and some useful lemmas to study
the global attractivity of system (2).

Definition 5.1 Let x(t) = (x1(t), x2(t), x3(t))T , z(t) = (z1(t), z2(t), z3(t))T be two arbitrary so-
lutions of system (2) with initial values x(0), z(0) ∈R

+, respectively. If limt→+∞ |x(t)–z(t)| =
0 a.s., then we say system (2) is globally attractive.

Lemma 5.1 (see [60]) Let X(t) be an n-dimensional stochastic process on t ≥ 0. Suppose
that there exist positive constants α, β , c such that

E
∣
∣X(t) – X(s)

∣
∣α ≤ c|t – s|1+β , o ≤ s, t < ∞.

Then there exists a continuous modification X(t) of X(t) which has the property that for
every ϑ ∈ (0, β

α
) there is a positive random variable h(ω) such that

P

{

ω : sup
0<|t–s|<h(ω),0≤s,t<∞

|X(t,ω) – X(t,ω)|
|t – s|ϑ ≤ 2

1 – 2–ϑ

}

= 1.

In other words, almost every sample path of X(t) is locally but uniformly Hölder continuous
with exponent ϑ .



Qi et al. Advances in Difference Equations        (2019) 2019:235 Page 22 of 35

Lemma 5.2 (see [60]) Let Assumption 2.1 hold. If y(t) = (y1(t), y2(t), y3(t))T is a solution
of (3) with initial values y(0) ∈ R

+, then almost every sample path of yi(t) (1 ≤ i ≤ 3) is
uniformly continuous for t ≥ 0.

Proof By (32), there exists T > 0, such that E[yq
i (t)] ≤ 3

2Θ1(q) for all t ≥ T . Moreover, it
follows from the continuity of E[yq

i (t)] that there is a Θ2(q) > 0 such that E[yq
i (t)] ≤ Θ2(q)

for t ≥ T . Let Θ(q) = max{ 3
2Θ1(q),Θ2(q)}, then, for all t ≤ 0,

E
[
yq

i (t)
] ≤ Θ(q).

Clearly, the first equation of system (3) is equivalent to the following equation:

y1(t) =
∫ t

0
y1(s)

[

r1(s) – α1(s)
∏

0<tk<s

(1 + h1k)y1(s) – β1(s)
∏

0<tk<s

(1 + h2k)y2(s)

–
c1(s)

∏
0<tk <s(1 + h3k)y3(s)

a1(s) + a2(s)
∏

0<tk<s(1 + h1k)y1(s) + a3(s)
∏

0<tk<s(1 + h3k)y3(s)

]

ds

+ y1(0) +
∫ t

0
σ1(s)y1(s)dB1(s).

Therefore,

E

∣
∣
∣
∣y1(t)

[

r1(t) – α1(t)
∏

0<tk<t

(1 + h1k)y1(t) – β1(t)
∏

0<tk<t

(1 + h2k)y2(t)

–
c1(t)

∏
0<tk<t(1 + h3k)y3(t)

a1(t) + a2(t)
∏

0<tk<t(1 + h1k)y1(t) + a3(t)
∏

0<tk<t(1 + h3k)y3(t)

]∣
∣
∣
∣

q

= E

[
∣
∣y1(t)

∣
∣q

∣
∣
∣
∣r1(t) – α1(t)

∏

0<tk<t

(1 + h1k)y1(t) – β1(t)
∏

0<tk<t

(1 + h2k)y2(t)

–
c1(t)

∏
0<tk<t(1 + h3k)y3(t)

a1(t) + a2(t)
∏

0<tk<t(1 + h1k)y1(t) + a3(t)
∏

0<tk<t(1 + h3k)y3(t)

∣
∣
∣
∣

q]

≤ 1
2
E

[∣
∣y1(t)

∣
∣2q] +

1
2
E

[∣
∣
∣
∣r1(t) – α1(t)

∏

0<tk<t

(1 + h1k)y1(t) – β1(t)
∏

0<tk<t

(1 + h2k)y2(t)

–
c1(t)

∏
0<tk<t(1 + h3k)y3(t)

a1(t) + a2(t)
∏

0<tk<t(1 + h1k)y1(t) + a3(t)
∏

0<tk<t(1 + h3k)y3(t)

∣
∣
∣
∣

2q]

≤ 1
2
Θ1(2q) + 42q–1

[
(
ru

1
)2q + αu

1 M1E
[∣
∣y1(t)

∣
∣2q] + βu

1 M2E
[∣
∣y2(t)

∣
∣2q] +

(
cu

1

al
3

)2q]

≤ 1
2
Θ(2q) + 42q–1

[
(
ru

1
)2q +

(
cu

1

al
3

)2q

+
(
αu

1 M1 + βu
1 M2

)
Θ(2q)

]

:= G1(q).

By the famous moment inequality for stochastic integrals (see [58]), we obtain, for 0 ≤
t1 ≤ t2 and q > 2,

E

[∣
∣
∣
∣

∫ t2

t1

σ1(s)y1(s)dB1(s)
∣
∣
∣
∣

q]

≤ [(
σ 2

1
)u]q

[
q(q – 1)

2

] q
2

(t2 – t1)
q–2

2

∫ t2

t1

E
[∣
∣y1(s)

∣
∣q]ds
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≤ [(
σ 2

1
)u]q

[
q(q – 1)

2

] q
2

(t2 – t1)
q
2 Θ(q).

Then, for 0 < t1 < t2 < ∞, t2 – t1 ≤ 1, 1
q + 1

p = 1, we can derive that

E
[∣
∣y1(t2) – y1(t1)

∣
∣q]

= E

[∣
∣
∣
∣

∫ t2

t1

y1(s)
[

r1(s) – α1(s)
∏

0<tk<s

(1 + h1k)y1(s) – β1(s)
∏

0<tk<s

(1 + h2k)y2(s)

–
c1(s)

∏
0<tk<s(1 + h3k)y3(s)

a1(s) + a2(s)
∏

0<tk<s(1 + h1k)y1(s) + a3(s)
∏

0<tk <s(1 + h3k)y3(s)

]

ds

+
∫ t2

t1

σ1(s)y1(s)dB1(s)
∣
∣
∣
∣

q]

≤ 2q–1
E

[∣
∣
∣
∣

∫ t2

t1

y1(s)
[

r1(s) – α1(s)
∏

0<tk<s

(1 + h1k)y1(s)

– β1(s)
∏

0<tk<s

(1 + h2k)y2(s)

–
c1(s)

∏
0<tk<s(1 + h3k)y3(s)

a1(s) + a2(s)
∏

0<tk<s(1 + h1k)y1(s) + a3(s)
∏

0<tk <s(1 + h3k)y3(s)

]

ds
∣
∣
∣
∣

q]

+ 2q–1
E

[∣
∣
∣
∣

∫ t2

t1

σ1(s)y1(s)dB1(s)
∣
∣
∣
∣

q]

≤ 2q–1(t2 – t1)
q
p

∫ t2

t1

E

[∣
∣
∣
∣y1(s)

[

r1(s) – α1(s)
∏

0<tk<s

(1 + h1k)y1(s)

– β1(s)
∏

0<tk<s

(1 + h2k)y2(s)

–
c1(s)

∏
0<tk<s(1 + h3k)y3(s)

a1(s) + a2(s)
∏

0<tk<s(1 + h1k)y1(s) + a3(s)
∏

0<tk <s(1 + h3k)y3(s)

]∣
∣
∣
∣

q]

ds

+ 2q–1[(σ 2
1
)u]q

[
q(q – 1)

2

] q
2

(t2 – t1)
q
2 Θ(q)

≤ 2q–1(t2 – t1)
q
p +1G1(q) + 2q–1[(σ 2

1
)u]q

[
q(q – 1)

2

] q
2

(t2 – t1)
q
2 Θ(q)

≤ 2q–1(t2 – t1)
q
2

[

(t2 – t1)
q
2 +

[
q(q – 1)

2

] q
2
]

G2(q)

≤ 2q–1(t2 – t1)
q
2

[

1 +
[

q(q – 1)
2

] q
2
]

G2(q),

where G2(q) = max{G1(q), [(σ 2
1 )u]qΘ(q)}. Then it follows from Lemma 5.1 that almost ev-

ery sample path of y1(t) is locally but uniformly Hölder continuous with exponent ϑ for
every ϑ ∈ (0, q–2

2q ) and therefore almost every sample path of y1(t) is uniformly continu-
ous on t ≥ 0. Similarly, we can show that almost every sample path of y2(t) and y3(t) are
uniformly continuous on t ≥ 0. �
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Lemma 5.3 (see [61]) Let f be a non-negative function defined on t ≥ 0 such that f is
integrable on t ≥ 0 and is uniformly continuous on t ≥ 0. Then limt→+∞ f (t) = 0.

Theorem 5.1 If Assumption 2.1 holds and

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A = αl
1 + β l

2 + cl
1al

2
au

3
+ cl

2bl
2

bu
3

– eu
1 > 0,

B = αl
2 + β l

1 – eu
2 > 0,

C = αl
3 + cl

1 + cl
2 – eu

1 au
3

al
2

– eu
2 bu

3
bl

2
> 0,

(44)

then system (2) is globally attractive.

Proof Let x(t) = (x1(t), x2(t), x3(t))T , z(t) = (z1(t), z2(t), z3(t))T be two arbitrary solutions of
system (2) with initial values x(0), z(0) ∈ R

+, respectively. Let y(t) = (y1(t), y2(t), y3(t))T ,
y(t) = (y1(t), y2(t), y3(t))T be two arbitrary solution of system (3) with initial values
y(0), y(0) ∈R

+, respectively.
Then

xi(t) =
∏

0<tk<t

(1 + hik)yi(t), zi(t) =
∏

0<tk<t

(1 + hik)yi(t).

Define

V (t) =
3∑

i=1

∣
∣ln yi(t) – ln yi(t)

∣
∣.

By Itô’s formula

d+V (t) =
3∑

i=1

sgn
(
yi(t) – yi(t)

)
d
(
ln yi(t) – ln yi(t)

)

= sgn
(
y1(t) – y1(t)

)
[

–α1(t)
∏

0<tk<t

(1 + h1k)
(
y1(t) – y1(t)

)

–
( c1(t)

∏
0<tk<t(1 + h3k)y3(t)

a1(t) + a2(t)
∏

0<tk <t(1 + h1k)y1(t) + a3(t)
∏

0<tk <t(1 + h3k)y3(t)

–
c1(t)

∏
0<tk <t(1 + h3k)y3(t)

a1(t) + a2(t)
∏

0<tk <t(1 + h1k)y1(t) + a3(t)
∏

0<tk <t(1 + h3k)y3(t)

)

– β1(t)
∏

0<tk<t

(1 + h2k)
(
y2(t) – y2(t)

)
]

dt

+ sgn
(
y2(t) – y2(t)

)
[

–α2(t)
∏

0<tk<t

(1 + h2k)
(
y2(t) – y2(t)

)

–
( c2(t)

∏
0<tk <t(1 + h3k)y3(t)

b1(t) + b2(t)
∏

0<tk<t(1 + h1k)y1(t) + b3(t)
∏

0<tk<t(1 + h3k)y3(t)
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–
c2(t)

∏
0<tk<t(1 + h3k)y3(t)

b1(t) + b2(t)
∏

0<tk<t(1 + h1k)y1(t) + b3(t)
∏

0<tk<t(1 + h3k)y3(t)

)

– β2(t)
∏

0<tk<t

(1 + h1k)
(
y1(t) – y1(t)

)
]

dt

+ sgn
(
y3(t) – y3(t)

)
[

–α3(t)
∏

0<tk<t

(1 + h3k)
(
y3(t) – y3(t)

)

+
( e1(t)

∏
0<tk <t(1 + h1k)y1(t)

a1(t) + a2(t)
∏

0<tk <t(1 + h1k)y1(t) + a3(t)
∏

0<tk <t(1 + h3k)y3(t)

–
e1(t)

∏
0<tk <t(1 + h1k)y1(t)

a1(t) + a2(t)
∏

0<tk <t(1 + h1k)y1(t) + a3(t)
∏

0<tk <t(1 + h3k)y3(t)

)

+
( e2(t)

∏
0<tk<t(1 + h2k)y2(t)

b1(t) + b2(t)
∏

0<tk<t(1 + h1k)y2(t) + b3(t)
∏

0<tk<t(1 + h3k)y3(t)

–
e2(t)

∏
0<tk<t(1 + h2k)y2(t)

b1(t) + b2(t)
∏

0<tk<t(1 + h1k)y2(t) + b3(t)
∏

0<tk<t(1 + h3k)y3(t)

)]

dt

≤ –α1(t)
∣
∣x1(t) – z1(t)

∣
∣dt – α2(t)

∣
∣x2(t) – z2(t)

∣
∣dt – α3(t)

∣
∣x3(t) – z3(t)

∣
∣dt

– c1(t)
∣
∣
∣
∣

a2(t)x3(t)(z1(t) – x1(t)) + (a1(t) + a2(t)x1(t))(x3(t) – z3(t))
(a1(t) + a2(t)x1(t) + a3(t)x3(t))(a1(t) + a2(t)z1(t) + a3(t)z3(t))

∣
∣
∣
∣dt

– β1(t)
∣
∣x2(t) – z2(t)

∣
∣dt – β2(t)

∣
∣x1(t) – z1(t)

∣
∣dt

– c2(t)
∣
∣
∣
∣

b2(t)x3(t)(z1(t) – x1(t)) + (b1(t) + b2(t)x1(t))(x3(t) – z3(t))
(b1(t) + b2(t)x1(t) + b3(t)x3(t))(b1(t) + b2(t)z1(t) + b3(t)z3(t))

∣
∣
∣
∣dt

+ e1(t)
∣
∣
∣
∣

a3(t)x1(t)(z3(t) – x3(t)) + (a1(t) + a3(t)x3(t))(x1(t) – z1(t))
(a1(t) + a2(t)x1(t) + a3(t)x3(t))(a1(t) + a2(t)z1(t) + a3(t)z3(t))

∣
∣
∣
∣dt

+ e2(t)
∣
∣
∣
∣

b3(t)x2(t)(z3(t) – x3(t)) + (b1(t) + b3(t)x3(t))(x2(t) – z2(t))
(b1(t) + b2(t)x2(t) + b3(t)x3(t))(b1(t) + b2(t)z2(t) + b3(t)z3(t))

∣
∣
∣
∣dt

≤ –αl
1
∣
∣x1(t) – z1(t)

∣
∣dt – αl

2
∣
∣x2(t) – z2(t)

∣
∣dt – αl

3
∣
∣x3(t) – z3(t)

∣
∣dt

–
cl

1al
2

au
3

∣
∣x1(t) – z1(t)

∣
∣dt – cl

1
∣
∣x3(t) – z3(t)

∣
∣dt – β l

1
∣
∣x2(t) – z2(t)

∣
∣dt

– β l
2
∣
∣x1(t) – z1(t)

∣
∣dt –

cl
2bl

2
bu

3

∣
∣x1(t) – z1(t)

∣
∣dt – cl

2
∣
∣x3(t) – z3(t)

∣
∣dt

+
eu

1au
3

al
2

∣
∣x3(t) – z3(t)

∣
∣dt + eu

1
∣
∣x1(t) – z1(t)

∣
∣dt +

eu
2bu

3

bl
2

∣
∣x3(t) – z3(t)

∣
∣dt

+ eu
2
∣
∣x2(t) – z2(t)

∣
∣dt

= –
[
A

∣
∣x1(t) – z1(t)

∣
∣ + B

∣
∣x2(t) – z2(t)

∣
∣ + C

∣
∣x3(t) – z3(t)

∣
∣
]

dt

= –
[

A
∏

0<tk <t

(1 + h1k)
∣
∣y1(t) – y1(t)

∣
∣ + B

∏

0<tk <t

(1 + h2k)
∣
∣y2(t) – y2(t)

∣
∣

+ C
∏

0<tk <t

(1 + h3k)
∣
∣y3(t) – y3(t)

∣
∣

]

dt

= –
[
Am1

∣
∣y1(t) – y1(t)

∣
∣ + Bm2

∣
∣y2(t) – y2(t)

∣
∣ + Cm3

∣
∣y3(t) – y3(t)

∣
∣
]

dt.
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Integrating both sides gives

V (t) ≤ V (0) –
∫ t

0

[
Am1

∣
∣y1(t) – y1(t)

∣
∣ + Bm2

∣
∣y2(t) – y2(t)

∣
∣ + Cm3

∣
∣y3(t) – y3(t)

∣
∣
]

ds.

Therefore

V (t) +
∫ t

0

[
Am1

∣
∣y1(t) – y1(t)

∣
∣ + Bm2

∣
∣y2(t) – y2(t)

∣
∣ + Cm3

∣
∣y3(t) – y3(t)

∣
∣
]

ds

≤ V (0) < ∞.

Making use of V (t) ≥ 0 and (44) results in

∣
∣yi(t) – yi(t)

∣
∣ ∈ L1[0,∞).

Consequently, by Lemmas 5.2 and 5.3, one can observe that

lim
t→+∞

∣
∣yi(t) – yi(t)

∣
∣ = 0 a.s.

Then

lim
t→+∞

∣
∣xi(t) – zi(t)

∣
∣ = lim

t→+∞
∏

0<tk<t

(1 + hik)
∣
∣yi(t) – yi(t)

∣
∣ ≤ M lim

t→+∞
∣
∣yi(t) – yi(t)

∣
∣ = 0, a.s.

This completes the proof. �

6 Conclusion and numerical simulations
In this paper, a stochastic non-autonomous one-predator–two-prey system with
Beddington–DeAngelis functional response and impulsive perturbations is proposed and
investigated. First, we obtain some sufficient conditions for extinction, non-persistence
in the mean, weak persistence, persistence in the mean and stochastic permanence of the
solution, and we verify some asymptotic behaviors of the solutions of system (2), such as
the limit of the average in time, the lower-growth rate, the upper-growth rate and global
attractivity. Now we summarize the key results as follows:

(I):
(1) If δ∗

i = lim supt→+∞
1
t [

∑
0<tk <t ln(1 + hik) +

∫ t
0 δi(s) ds] < 0, then the ith species

(i = 1, 2, 3) in system (2) is extinct.
(2) If δ∗

i = 0, then the ith species (i = 1, 2, 3) in system (2) is non-persistent in the mean.
(3) If δ∗

i > 0, then the ith species (i = 1, 2, 3) in system (2) is weakly persistent.
(4) If θi∗ > 0, then the ith species (i = 1, 2, 3) in system (2) is persistent in the mean.
(5) If (σ̌ )2 < 2r̂ and Assumption 2.1 holds, then system (2) is stochastically permanent.

(II): The solution xi(t) (i = 1, 2, 3) obeys

x∗
i =

θi∗
αu

i
≤ lim inf

t→+∞
1
t

∫ t

0
xi(s) ds ≤ lim sup

t→+∞
1
t

∫ t

0
xi(s) ds ≤ δ∗

i

αl
i

= x∗
i a.s.

(III): Under Assumption 2.1, the solution of system (2) satisfies

lim sup
t→+∞

ln xi(t)
ln t

≤ 1 a.s.
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In addition, if 2r̂ – (σ̌ )2 > 0, then

lim inf
t→+∞

ln |xi(t)|
ln t

≥ –
1

2r̂ – (σ̌ )2 a.s.

(IV): If A, B, C > 0 and Assumption 2.1 holds, then system (2) is globally attractive. By our
results, we can analyze that the smaller stochastic perturbations cannot affect the stochas-
tic permanence and extinction of the population. However, if the stochastic perturbations
are larger, the stochastic permanence of the populations will be extinct. Similarly, the small
impulsive perturbations have a little influence on the stochastic permanence and extinc-
tion of the populations. However, if the impulsive perturbations are large, the stochastic
permanence and extinction of the populations could be changed.

We will give some numerical experiments to verify our analytical results by using the
Milstein method (see [62]) by supplementing impulsive perturbations into it. We choose
the same initial value (x1(0), x2(0), x3(0)) = (0.5, 0.5, 0.5) and the same parameters in the
following numerical examples.

The parameters are as follows:

r1(t) = 1.2 + 0.02 sin t, r2(t) = 1.12 + 0.02 sin t, r3(t) = 0.38 + 0.02 sin t,

α1(t) = 0.24 + 0.01 sin t, α2(t) = 0.3 + 0.01 sin t, α3(t) = 0.45 + 0.01 sin t,

a1(t) = 0.9 + 0.01 sin t, a2(t) = 1.12 + 0.01 sin t, a3(t) = 0.86 + 0.01 sin t,

b1(t) = 1.2 + 0.01 sin t, b2(t) = 0.76 + 0.01 sin t, b3(t) = 0.84 + 0.01 sin t,

c1(t) = 0.42 + 0.01 sin t, e1(t) = 0.3 + 0.01 sin t, β1(t) = 0.14 + 0.01 sin t,

c2(t) = 0.35 + 0.01 sin t, e2(t) = 0.28 + 0.01 sin t, β2(t) = 0.1 + 0.01 sin t.

At first, we will discuss the effects of different stochastic perturbations to system (2)
under the same impulse interference in following Examples 1–6.

Let h1k = h2k = h3k = e–0.2 – 1, it is easy to verify that

e–0.4 ≤
∏

0<tk <t

(1 + hik) ≤ e–0.1,

which means the Assumption 2.1 holds. In system (2) without stochastic perturbations,
we can see that the prey and predator populations are all permanent (see Fig. 1).

Example 1 Let σ 2
1 (t) = σ 2

2 (t) = σ 2
3 (t) = 0.1 + 0.04 sin t. Then we get (σ̌ )2 = 0.14 < 2r̂ = 0.72,

and the Assumption 2.1 holds. According to Theorem 3.5, we can see that the prey pop-
ulation x1(t), x2(t) and the predator population x3(t) are all stochastically permanent (see
Fig. 2).

Example 2 Let σ 2
2 (t) = σ 2

3 (t) = 0.1 + 0.04 sin t, σ 2
1 (t) = 2.56 + 0.04 sin t. Then we get δ∗

1 =
–0.08 < 0. By Theorem 3.1, we can see that the prey population x1(t) will be extinct
(see Fig. 3(a),(c)) and the population x2(t), x3(t) are all stochastically permanent (see
Fig. 3(a),(d)).
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Figure 1 (a) is the time sequence diagram and (b) the phase portrait of system (2) without stochastic
perturbations and impulse.(x1(0), x2(0), x3(0)) = (0.5, 0.5, 0.5), σ 2

1 (t) = σ 2
2 (t) = σ 2

3 (t) = 0

Figure 2 Stochastic permanence of the three population of system (2). (a) is the time sequence diagram and
(b) the phase portrait of system (2).(x1(0), x2(0), x3(0)) = (0.5, 0.5, 0.5), σ 2

1 (t) = σ 2
2 (t) = σ 2

3 (t) = 0.1 + 0.04 sin t

Figure 3 Extinction of the prey population x1(t) of system (2). (a) Time sequence diagram and (b) the phase
portrait of system (2).(x1(0), x2(0), x3(0)) = (0.5, 0.5, 0.5), σ 2

2 (t) = σ 2
3 (t) = 0.1 + 0.04 sin t, σ 2

1 (t) = 2.56 + 0.04 sin t
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Figure 4 Extinction of the prey population x2(t) of system (2). (a) Time sequence diagram and (b) the phase
portrait of system (2).(x1(0), x2(0), x3(0)) = (0.5, 0.5, 0.5), σ 2

1 (t) = σ 2
3 (t) = 0.1 + 0.04 sin t, σ 2

2 (t) = 2.5 + 0.04 sin t

Example 3 Let σ 2
1 (t) = σ 2

3 (t) = 0.1 + 0.04 sin t, σ 2
2 (t) = 2.5 + 0.04 sin t. Then we get δ∗

2 =
–0.13 < 0. By Theorem 3.1, we can see that the prey population x2(t) will be extinct
(see Fig. 4(a),(c)) and the population x1(t), x3(t) are all stochastically permanent (see
Fig. 4(a),(d)).

Example 4 Let σ 2
1 (t) = σ 2

2 (t) = 0.1 + 0.04 sin t, σ 2
3 (t) = 2.2 + 0.04 sin t. Then we get δ∗

3 =
–0.0376 < 0. By Theorem 3.1, we can see that the predator population x3(t) will be extinct
(see Fig. 5(a),(c)) and the prey population x1(t), x2(t) are all stochastically permanent (see
Fig. 5(a),(d)).

Example 5 Let σ 2
1 (t) = σ 2

2 (t) = 0.1+0.04 sin t, σ 2
3 (t) = 2.1624+0.04 sin t. Then we get δ∗

3 = 0.
According to Theorem 3.2, we can see that the population x3(t) is non-persistent in the
mean (see Fig. 6(a),(c)).

Example 6 Let σ 2
1 (t) = σ 2

2 (t) = σ 2
3 (t) = 0.1 + 0.04 sin t. By Theorem 3.1, 3.2 and 3.4, we can

calculate that δ∗
1 = 1.15, δ∗

2 = 1.07, δ∗
3 = 0.996, δ1∗ = 1.15, δ2∗ = 1.07, δ3∗ = 0.33, x∗

1 = 0.466,
x∗

2 = 0.2784, x∗
3 = 0.7174, x∗

1 = 5, x∗
2 = 3.6897, x∗

3 = 2.2636.
Denote x∗

i (t) = 1
t
∫ t

0 xi(s) ds (i = 1, 2, 3). Since

lim inf
t→+∞

1
t

∫ t

0
xi(s) ds ≤ x∗

i (t) ≤ lim sup
t→+∞

1
t

∫ t

0
xi(s) ds a.s. i = 1, 2, 3,

then we have 0.466 ≤ x∗
1(t) ≤ 5, 0.2784 ≤ x∗

2(t) ≤ 3.6897, 0.7174 ≤ x∗
3(t) ≤ 2.2636. In

Fig. 7(a), we can see that the persistence in the mean of system (2). In Fig. 7(b), it is clear
to see that the curve of x∗

i (t) gradually transcend the line x∗
i (t) and stays between the x∗

i (t)
and x∗

i (t) lines of the same color, which verify the conclusion.
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Figure 5 Extinction of the predator population x3(t) of system (2). (a) Time sequence diagram and (b) the
phase portrait of system (2).(x1(0), x2(0), x3(0)) = (0.5, 0.5, 0.5), σ 2

1 (t) = σ 2
2 (t) = 0.1 + 0.04 sin t,

σ 2
3 (t) = 2.2 + 0.04 sin t

Figure 6 Non-persistent in the mean of the predator population x3(t) of system (2). (a) Time sequence
diagram and (b) the phase portrait of system (2).(x1(0), x2(0), x3(0)) = (0.5, 0.5, 0.5), σ 2

1 (t) = σ 2
2 (t) = 0.1 + 0.04 sin t,

σ 2
3 (t) = 2.1624 + 0.04 sin t
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Figure 7 Persistence in the mean of system (2). (a) Time sequence diagram and (b) the phase portrait of
system (2).(x1(0), x2(0), x3(0)) = (0.5, 0.5, 0.5), σ 2

1 (t) = σ 2
2 (t) = σ 2

3 (t) = 0.1 + 0.04 sin t

Figure 8 Impulsive perturbations to system (2): stochastic permanence to extinction. (a) Time sequence
diagram and (b) the phase portrait of system (2).(x1(0), x2(0), x3(0)) = (0.5, 0.5, 0.5),
σ 2
1 (t) = σ 2

2 (t) = σ 2
3 (t) = 0.1 + 0.04 sin t

Finally, we give Example 7 to discuss the effect of the impulsive perturbations on system
(2), according to the choice of parameters in Example 1.

Example 7 Let h1k = h2k = e–1.2 – 1, h3k = e–0.6 – 1. In Fig. 8, one can easily see that all of
the species in system (2) become extinct gradually. This means suitable impulsive con-
trol strategy might be useful for the permanence of the system while arbitrary impulsive
perturbations might lead to the extinction of system (2).

Therefore, through the numerical simulations given in Examples 1–6, we can see that
the large stochastic disturbance is disadvantageous for the persistence of the population.
However, the small stochastic perturbation is little effects on the permanence and extinc-
tion of the population. By Fig. 8, we can see that the small impulsive perturbations cannot
affect the stochastic permanence and extinction of the prey and predator populations. But
the large impulsive perturbations can lead to population extinction.

On the other hand, if a3(t) = b3(t) = 0, the Beddington–DeAngelis functional response
converts to the Holling II functional response in system (2), then the system (2) be-
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comes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1(t) = x1(t)[r1(t) – α1(t)x1(t) – c1(t)x3(t)
a1(t)+a2(t)x1(t)

– β1(t)x2(t)] dt + σ1(t)x1(t) dB1(t),

dx2(t) = x2(t)[r2(t) – α2(t)x2(t) – c2(t)x3(t)
b1(t)+b2(t)x2(t)

– β2(t)x1(t)] dt + σ2(t)x2(t) dB2(t),

dx3(t) = x3(t)[r3(t) – α3(t)x3(t) + e1(t)x1(t)
a1(t)+a2(t)x1(t)

+ e2(t)x2(t)
b1(t)+b2(t)x2(t) ] dt + σ3(t)x3(t) dB3(t),

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

t �= tk , k ∈ N ,

x1(t+) = (1 + h1k)x1(t),

x2(t+) = (1 + h2k)x2(t),

x3(t+) = (1 + h3k)x3(t),

⎫
⎪⎪⎬

⎪⎪⎭

t = tk , k ∈ N .

(45)

Therefore, we can obtain the following results.
(I):
(1) If δ∗

i = lim supt→+∞
1
t [

∑
0<tk <t ln(1 + hik) +

∫ t
0 δi(s) ds] < 0, then the ith species

(i = 1, 2, 3) in system (45) is extinct.
(2) If δ∗

i = 0, then the ith species (i = 1, 2, 3) in system (45) is non-persistent in the mean.
(3) If δ∗

i > 0, then the ith species (i = 1, 2, 3) in system (45) is weakly persistent.
(4) If θi∗ > 0, then the ith species (i = 1, 2, 3) in system (45) is persistent in the mean,

where

θ1∗ = δ1∗ –
(

βu
1 δ∗

2

αl
2

+
cu

1δ
∗
3

al
1α

l
3

)

, θ2∗ = δ2∗ –
(

βu
2 δ∗

1

αl
1

+
cu

2δ
∗
3

bl
1α

l
3

)

, θ3∗ = δ3∗,

δi∗ = lim inf
t→+∞

1
t

[ ∑

0<tk <t

ln(1 + hik) +
∫ t

0

(

ri(s) –
1
2
σ 2

i (s)
)

ds
]

, i = 1, 2, 3.

(5) If (σ̌ )2 < 2r̂ and Assumption 2.1 holds, then system (45) is stochastically permanent.
(II) The solution xi(t) (i = 1, 2, 3) obeys

x∗
i =

θi∗
αu

i
≤ lim inf

t→+∞
1
t

∫ t

0
xi(s) ds ≤ lim sup

t→+∞
1
t

∫ t

0
xi(s) ds ≤ δ∗

i

αl
i

= x∗
i a.s.

(III) Under Assumption 2.1, the solution of system (45) satisfies

lim sup
t→+∞

ln xi(t)
ln t

≤ 1 a.s.

In addition, if 2r̂ – (σ̌ )2 > 0, then

lim inf
t→+∞

ln |xi(t)|
ln t

≥ –
1

2r̂ – (σ̌ )2 a.s.

By comparison, we see that the results of the B-D functional response are more accurate
than those of the Holling II functional response. Now we show some simulations to verify
our main results.
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Figure 9 Persistence in the mean of system (2). (a) Time sequence diagram and (b) the phase portrait of
system (2).(x1(0), x2(0), x3(0)) = (0.5, 0.5, 0.5), σ 2

1 (t) = σ 2
2 (t) = σ 2

3 (t) = 0.1 + 0.04 sin t

Example 8 The parameter values are the same as those given in Example 6. By the results
of the Holling II functional response in system (45), we can calculate that δ∗

1 = 1.15, δ∗
2 =

1.07, δ∗
3 = 0.996, δ1∗ = 1.15, δ2∗ = 1.07, δ3∗ = 0.33, x∗

1 = –0.4713 < 0, x∗
2 = –0.164 < 0, x∗

3 =
0.7174, x∗

1 = 5, x∗
2 = 3.6897, x∗

3 = 2.2636. We can see that the values of x∗
1 and x∗

2 of system
(45) are smaller than those of system (2). Therefore, our results can be verified in Fig. 9.
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