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Abstract
Stieltjes derivatives represent a new unification of discrete and continuous calculus
consisting in a differentiation process with respect to a given non-decreasing
function g. This notion infers a new class of differential equations which has shown to
have many applications. Herein we explore the use of such derivatives in the study of
multivalued equations, the so-called g-differential inclusions. Such multivalued
differential problems simply consist in replacing the usual derivatives by Stieltjes
derivatives (also known as g-derivatives). Using Baire category methods, we
investigate extremal solutions for g-differential inclusions. It is shown that
g-differential inclusions offer an alternative approach to measure-driven problems;
therefore, the existence of extremal solutions for measure differential inclusions is
obtained as a simple consequence of the results for this new type of inclusions.
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1 Introduction
Studying phenomena involving mixed discrete-continuous behavior (so-called hybrid sys-
tems) is, in general, a difficult task. When discrete perturbations occur on a finite set of
moments, the theory of impulsive differential equations offers the necessary tools, but for
dealing with infinitely many abrupt changes more refined methods are needed. Some pos-
sible approaches to address such problems rely on generalized differential equations [21,
26, 28], measure differential equations [10, 17, 25], and the analysis on time scale domains
[5, 13]. Remarkably, under certain assumptions, these approaches happen to be equivalent
(see [17, 18, 30]).

When dealing with problems in control theory, economics, or game theory, one has
to consider set-valued functions; and consequently, the models may involve multivalued
differential equations (i.e., differential inclusions, [2]). In the recent development of the
theory of differential inclusions, the study of measure differential inclusions has gained
popularity as it includes as special cases differential and difference inclusions, impulsive
and hybrid problems (cf. [11–13, 16, 27, 29, 31]).

In [24], the notion of derivative with respect to monotone functions g has been revital-
ized. Earlier studies on such a kind of derivatives and its connection with Stieltjes inte-
grals include Young [34], Daniell [14], Ward [33] and, more recently, Bendová and Malý
[4]. With the latest attention brought to the study of Stieltjes differentiability in [24], a new
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class of differential problems has gained popularity: the so-called g-differential equations
[20]. These equations can be regarded as the Stieltjes-differential counterpart of measure
differential equations, and they have shown to be widely applicable to solving practical
problems (e.g., [22, 23]).

In the present paper, we extend the notion of g-differential equation to the set-valued
case by introducing a class of differential inclusions based on the notion of Stieltjes deriva-
tive. In other words, we consider inclusions in which the usual derivative is replaced by a
derivative with respect to a monotone function g ; therefore called g-differential inclusions.
In some sense, this type of inclusions encompasses measure-driven inclusions, offering a
new approach to impulsive multivalued problems.

Our aim is to establish the existence of extremal solutions for g-differential inclusions,
i.e., inclusions of the form

x′
g(t) ∈ F

(
t, x(t)

)
μg-a.e.

x(0) = 0,

where x′
g stands for the derivative with respect to a given non-decreasing function g .

Herein, we follow the approach to Stieltjes derivatives found in [20, 24]; while this deriva-
tive seems fairly suitable for our purposes, we acknowledge that other definitions available
in the literature may allow for a study within more general classes of functions, e.g., [4,
33]. Like in [7, 8, 15], which are concerned with the particular case of classical differen-
tial inclusions, in the present work we use methods from the Baire category theory. More
precisely, for w : [0, 1] →R

n, we consider an auxiliary problem

x′
g(t) ∈ Fw(t)(t, x(t)

)
μg-a.e.

x(0) = 0,

where Fw(t, x) denotes the subset of F(t, x) which maximizes the inner product with w,
that is,

Fw(t, x) =
{

y ∈ F(t, x); 〈y, w〉 = max
z∈F(t,x)

〈z, w〉
}

.

We prove that the set of all continuous functions w : [0, 1] → R
n for which the solutions

of the g-differential problem above satisfy also the extremal problem

x′
g(t) ∈ ext F

(
t, x(t)

)
μg-a.e.

x(0) = 0

is residual in C([0, 1],Rn) (Theorem 14). As a consequence, we obtain the existence of ex-
tremal solutions for g-differential inclusions, wherefrom we deduce an analogue theorem
for measure-driven inclusions.

Besides the clear importance of the knowledge on extremal solutions in optimization
theory and in relaxation problems, it is worth mentioning that our result can be seen as
the first existence theorem for measure differential inclusions with non-convex right-hand
side. Namely, we obtain a generalization of Filippov’s classical result contained in [19].
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2 Preliminary results. Integrals and derivatives
Throughout this paper, Pck(Rn) stands for the family of non-empty convex compact sub-
sets of Rn. By μg we denote the Lebesgue–Stieltjes measure generated by a non-decreasing
left-continuous function g .

The results and proofs in this paper rely deeply on the theories of Lebesgue and
Lebesgue–Stieltjes integral. We fix the notation

ˆ
[0,t)

f (s) dμ and
ˆ

[0,t)
f (s) dg(s)

respectively for the Lebesgue integral of f with respect to a Borel measure μ, and for the
Lebesgue–Stieltjes integral of f with respect to a monotone function g . Recalling that every
finite Borel measure in R agrees with some Lebesgue–Stieltjes measure, we can find a non-
decreasing left-continuous function g : R → R so that μ(B) = μg(B) for every Borel set B
(see [9, Theorem 3.21]). Hence, the integral notions above are in some sense equivalent.

Next, following [24], we recall some basic definitions and properties of Stieltjes deriva-
tives (see also [25]).

Definition 1 Let g : [0, 1] →R be a non-decreasing left-continuous function. The deriva-
tive with respect to g (or the g-derivative) of a function f : [0, 1] → R

n at a point t ∈ [0, 1]
is given by

f ′
g (t) = lim

s→t

f (s) – f (t)
g(s) – g(t)

if g is continuous at t,

f ′
g (t) = lim

s→t+

f (s) – f (t)
g(s) – g(t)

if g is discontinuous at t,

provided the limit exists.

It is worth mentioning that if t is a point of discontinuity of g , the g-derivative f ′
g (t) exists

if and only if the sided limit f (t+) exists, and in this case

f ′
g (t) =

f (t+) – f (t)
g(t+) – g(t)

. (1)

Note that Definition 1 has no meaning in the parts of the domain in which g is constant;
denote such a region by Cg . However, as observed in [24], this is not a big loss because
μg(Cg) = 0.

Fundamental theorems of calculus are essential when taking into account the connec-
tion between integrals and derivatives. Such a result has been proven in [33] for Perron–
Stieltjes integral, while for Lebesgue–Stieltjes integrals it reads as follows [24, Theo-
rem 2.4].

Theorem 2 Let g : [0, 1] → R be a non-decreasing left-continuous function. If f : [0, 1] →
R

n is Lebesgue–Stieltjes integrable with respect to g and

F(t) =
ˆ

[0,t)
f (s) dg(s), t ∈ [0, 1],

then F ′
g = f on [0, 1]\N , where N ⊂ [0, 1] and μg(N) = 0.
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Related to the result above, we have the following notion of absolute continuity which
traces back to the work of Ward in [33].

Definition 3 Let g : [0, 1] → R be a non-decreasing left-continuous function. A function
f : [0, 1] → R

n is absolutely continuous with respect to g (or g-absolutely continuous) if
for every ε > 0 there exists δ > 0 such that

m∑

j=1

∥∥f (bj) – f (aj)
∥∥ < ε

for any family {(aj, bj)} of disjoint subintervals of [0, 1] satisfying

m∑

j=1

(
g(bj) – g(aj)

)
< δ.

By ACg([0, 1],Rn) we denote the set of all g-absolutely continuous functions.

Notably, a function in ACg([0, 1],Rn) shares some properties with g , namely: it is left-
continuous on (0, 1], it is continuous at the points where g is continuous, and it is constant
in the intervals where g is constant (cf. [24, Proposition 5.3]). Moreover, every g-absolutely
continuous function is of bounded variation, therefore also regulated (i.e., it has only dis-
continuities of first kind).

As one could expect, the function F from Theorem 2 is g-absolutely continuous
[33, Theorem 12]. The following result, a second fundamental theorem of calculus for
Lebesgue–Stieltjes, has been proven in [24, Theorem 5.4] (a version involving a more
general notion of integral can be found in [33, Theorem 13]).

Theorem 4 Let g : [0, 1] → R be a non-decreasing left-continuous function. If F : [0, 1] →
R

n is g-absolutely continuous, then F ′
g exists μg -a.e., and

F(t) = F(0) +
ˆ

[0,t)
F ′

g(s) dg(s) for every t ∈ [0, 1].

A particular case of g-absolute continuity is a consequence of a Lipschitz-type property
that we define in the sequel.

Definition 5 Let g : [0, 1] → R be a non-decreasing left-continuous function. Then f :
[0, 1] →R

n is said to be g-Lipschitz with (Lipschitz) constant M > 0 if
∥
∥f (t) – f

(
t′)∥∥ ≤ M

(
g(t) – g

(
t′)), whenever 0 ≤ t′ < t ≤ 1.

The next result describes a class of functions which are g-Lipschitz.

Lemma 6 Let g : [0, 1] → R be a non-decreasing left-continuous function, and let f :
[0, 1] →R

n be a μg -measurable function with ‖f (t)‖ ≤ M on [0, 1] for some constant M > 0.
Then the function F : [0, 1] →R

n defined by

F(t) =
ˆ

[0,t)
f (s) dg(s), t ∈ [0, 1],

is g-Lipschitz with constant M.
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Proof Indeed, the following inequality

∥∥F(t) – F
(
t′)∥∥ =

∥
∥∥
∥

ˆ
[t′ ,t)

f (s) dg(s)
∥
∥∥
∥ ≤ M

ˆ
[t′ ,t)

dg(s) = M
(
g(t) – g

(
t′))

holds for every choice of 0 ≤ t′ < t ≤ 1. �

We remark that every g-absolute continuous function f is bounded and g-continuous;
in other words, for each t ∈ [0, 1], f satisfies the following: given ε > 0 there exists δ > 0
such that

∣
∣g(s) – g(t)

∣
∣ < δ ⇒ ∥

∥f (s) – f (t)
∥
∥ < ε.

(It is worth highlighting that the notion of continuity with respect to a function also ap-
pears in [33] with a slightly different connotation.)

The space of g-continuous functions,BCg([0, 1],Rn), endowed with the supremum norm
is a Banach space (see [20] for details). Next, we recall a useful criterion for compactness
presented in [20, Proposition 5.6].

Theorem 7 Let S ⊂ ACg([0, 1],Rn) be such that {x(0) : x ∈ S} is bounded. If there exists
h : [0, 1] →R Lebesgue–Stieltjes integrable with respect to g such that

∥∥x′
g(t)

∥∥ ≤ h(t) for μg-a.e. t ∈ [0, 1] and for all x ∈ S ,

then S is relatively compact in BCg([0, 1],Rn).

3 Main results
The notion of derivative with respect to monotone functions infers a new class of dif-
ferential equations [20]. Along these lines, one can also consider a more general class of
differential inclusions:

x′
g(t) ∈ F

(
t, x(t)

)
μg-a.e.

x(0) = 0,
(2)

where F : [0, 1] × R
n → Pck(Rn) is a multifunction and g : [0, 1] → R is a non-decreasing

left-continuous function. Differential inclusions of the form (2) will be called g-differential
inclusions, where the derivative x′

g is understood in the sense of Definition 1. Clearly, in
the case when g is the identity function, problem (2) corresponds to a classical differential
inclusion (see [2, 32]).

A solution of problem (2) is defined in a natural way as follows.

Definition 8 A function x ∈ ACg([0, 1],Rn) is a solution of problem (2) if there exists
N ⊂ [0, 1], with μg(N) = 0, such that the g-derivative of x satisfies

x′
g(t) ∈ F

(
t, x(t)

)
for every t ∈ [0, 1]\N ,

and x(0) = 0.
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Note that, by considering derivatives with respect to non-decreasing functions g , al-
though the inclusion in (2) is not meaningful at the points of the set Cg , we can still infer
some property about the solution. Indeed, the g-absolute continuity ensures that the so-
lution remains constant in the intervals where g is constant (cf. [24, Proposition 5.3]).
Moreover, recalling the expression of the g-derivative at discontinuity points (1), it be-
comes clear in which manner the jumps of a solution of (2) are controlled by the set-valued
function F .

Remark 9 By Theorem 4, a solution x ∈ACg([0, 1],Rn) of (2) satisfies

x(t) =
ˆ

[0,t)
x′

g(s) dg(s), t ∈ [0, 1].

Thus, if F is a bounded multifunction, it follows from Lemma 6 that x is g-Lipschitz con-
tinuous.

To motivate the study of problem (2), consider a measure differential inclusion

dx(t) ∈ F
(
t, x(t)

)
dμ, x(0) = 0, (3)

where μ is a finite regular Borel measure. According to [11], a function x : [0, 1] →R
n is a

solution of (3) if there exists a μ-integrable function f : [0, 1] →R
n such that

x(t) =
ˆ

[0,t)
f (s) dμ, t ∈ [0, 1], and f (t) ∈ F

(
t, x(t)

)
μ-a.e. (4)

Since the integral above can be understood as a Lebesgue–Stieltjes integral with respect
to some non-decreasing left-continuous function g , that is,

x(t) =
ˆ

[0,t)
f (s) dg(s), t ∈ [0, 1],

it follows from Theorem 2 and (4) that x′
g(t) = f (t) ∈ F(t, x(t)) μg -a.e. Besides, as observed

in Sect. 2, the function x is g-absolutely continuous; in other words, a solution x of (3) is
a solution of problem (2) for some choice of g .

On the other hand, if x is a solution of (2), then x is g-absolutely continuous and Theo-
rem 4 ensures that

x(t) =
ˆ

[0,t)
x′

g(s) dg(s), t ∈ [0, 1].

Since x′
g(t) ∈ F(t, x(t)) μg -a.e., we conclude that x is the solution of measure differential

inclusion

dx(t) ∈ F
(
t, x(t)

)
dμg , x(0) = 0.

This indicates a correspondence between g-differential inclusions and measure differen-
tial inclusions.
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Theorem 10 Let F : [0, 1] ×R
n →Pck(Rn). The following assertions hold:

1. Given a finite regular Borel measure μ, if x : [0, 1] →R
n is a solution of the measure

differential inclusion (3), then x is a solution of a g-differential inclusion (2) for some
function g : [0, 1] →R such that μ = μg .

2. Given a non-decreasing left-continuous function g : [0, 1] →R, if x : [0, 1] → R
n is a

solution of the g-differential inclusion (2), then x is a solution of a measure
differential inclusion (3) with μ = μg .

Impulsive differential inclusions represent another important class of problems which
pertains to g-differential inclusions. Indeed, let us consider an impulsive problem with
multivalued jumps Ik : Rn → Pck(Rn), k = 1, . . . , m, described by the following differential
inclusion:

y′(t) ∈ F
(
t, y(t)

)
a.e. in [0, 1] \ {tk : k = 1, . . . , m},

y(tk+) – y(tk) ∈ Ik
(
y(tk)

)
,

y(0) = 0,

(5)

where F : [0, 1] × R
n → Pck(Rn), 0 < t1 < · · · < tm < 1. Traditionally, the solutions y are

considered in the space of piecewise continuous functions, which are left-continuous and
have right limit at the discontinuity points, e.g., [3].

For t ∈ [0, 1] and y ∈R
n, put

g(t) = t +
m∑

k=1

χ(tk ,1](t),

F(t, y) =

⎧
⎨

⎩
F(t, y), if t ∈ [0, 1] \ {tk : k = 1, . . . , m},
Ik(y), if t = tk for some k = 1, . . . , m.

Thus, it is not hard to see that, with this particular choice of g and F , the impulsive problem
(5) corresponds to a g-differential inclusion (2). Indeed, if y is a solution (in the sense
described above) of the impulsive problem (5), then y′

g(t) = y′(t) at the points t in [0, 1]\{tk :
k = 1, . . . , m} where the usual derivative exists, while by (1) we know that

y′
g(tk) =

y(tk+) – y(tk)
g(tk+) – g(tk)

= y(tk+) – y(tk) for k = 1, . . . , m.

In summary, y′
g(t) ∈ F(t, y(t)) a.e. in [0, 1].

Naturally, our object of study allows for a more general formulation of impulsive prob-
lems as countably many impulse moments can be accounted. Recall that since any mono-
tone real function has at most a countable number of discontinuity points, the Lebesgue–
Stieltjes measure μg generated by such a function g can be decomposed as follows:

μg = μC
g +

∞∑

n=1

(
g
(
t+
k
)

– g(tk)
)
δtk ,

where A = {tk , k ∈ N} is the set of atoms of μg , δtk stands for the Dirac measure concen-
trated at the point tk , and μC

g is the nonatomic part of the measure μg (i.e., the Stieltjes
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measure generated by the continuous part of g). Using the definition of the g-derivative,
problem (2) can be rewritten as follows:

x′
g(t) ∈ F

(
t, x(t)

)
μC

g -a.e. in [0, 1] \ A,

x(tk+) – x(tk–) ∈ (
g(tk+) – g(tk)

)
Ik

(
x(tk)

)
, tk ∈ A,

x(0) = 0,

where the multifunctions F , Ik , k ∈N, are such that, for t ∈ [0, 1] and y ∈R
n,

F(t, y) =

⎧
⎨

⎩
F(t, y), if t /∈ A,

Ik(y), if t = tk ∈ A.

In the particular case when the continuous part of g generates the Lebesgue measure, the
problem above corresponds to an impulsive differential inclusion with multivalued jumps
and with possibly countably many fixed impulse points. Therefore, the investigation of
g-differential inclusions may extend what is found in the literature regarding impulsive
differential inclusions [1, 3].

Our main goal is to discuss the question of extremal solutions for problem (2). In other
words, the focus of our attention is the g-differential problem associated with (2)

x′
g(t) ∈ ext F

(
t, x(t)

)
μg-a.e.

x(0) = 0,
(6)

which is to be understood as the g-derivative x′
g(t) taking values within the set of extreme

points of F(t, x(t)). We recall that, for some convex set C ⊂ R
n, a point a is called an ex-

treme point of C if, for any u, v ∈ C, the equality a = u+v
2 implies a = u = v.

In what follows by F and F ext we denote the solution set of (2) and (6), respectively.
Given w ∈R

n, for t ∈ [0, 1] and x ∈R
n, let Fw(t, x) be the compact convex subset of F(t, x)

consisting in all points maximizing the inner product with w:

Fw(t, x) =
{

y ∈ F(t, x); 〈y, w〉 = max
z∈F(t,x)

〈z, w〉
}

.

Under the assumption that F is a bounded Pompeiu–Hausdorff continuous multifunction,
for each continuous function w : [0, 1] →R

n, taking

Fw(t, x) = Fw(t)(t, x),

we have that Fw : [0, 1]×R
n →Pck(Rn) defines a set-valued function which is upper semi-

continuous with respect to the second variable. Thanks to the equivalence between g-
differential inclusions and measure differential inclusions, Theorem 10, the solvability of
the problem

x′
g(t) ∈ Fw(t)(t, x(t)

)
μg-a.e., x(0) = 0, (7)
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is equivalent to the existence of solution of

dx(t) ∈ Fw(
t, x(t)

)
dμg , x(0) = 0. (8)

Noting that for F bounded and continuous the multifunction Fw satisfies the assumptions
of [11, Theorem 6], problem (8) has a solution; as a consequence, we have the following
result.

Theorem 11 Let g : [0, 1] → R be a non-decreasing left-continuous function and F :
[0, 1] ×R

n →Pck(Rn) be a bounded Pompeiu–Hausdorff continuous multifunction. Then,
for every w ∈ C([0, 1],Rn), problem (7) has at least one solution.

Let Fw denote the set of solutions of (7). We will see that the inclusion Fw ⊂ F ext,
w ∈ C([0, 1],Rn), somehow defines a generic property in the space of continuous functions.
In other words, for ‘almost’ any choice of w ∈ C([0, 1],Rn), the solutions of (7) also satisfy
inclusion (6).

One important tool in the further investigation is the so-called Choquet function ([6],
p. 158) defined as follows: for K ∈Pck(Rn) and y ∈ R

n, if y ∈ K put

Φ(K , y) = sup

{ˆ 1

0

∥∥f (ξ ) – y
∥∥2 dξ ; f : [0, 1] → K ,

ˆ 1

0
f (ξ ) dξ = y

}
,

otherwise, we set Φ(K , y) = –∞.

Lemma 12 Let x ∈ACg([0, 1],Rn) be given. Then x ∈F ext if and only if

ˆ
[0,1)

Φ
(
F
(
t, x(t)

)
, x′

g(t)
)

dg(t) = 0.

Proof Recall that Φ(K , y) = 0 if and only if y is an extreme point of the convex set K . Con-
sequently, x ∈F ext if and only if Φ(F(t, x(t)), x′

g(t)) = 0 μg -a.e. in [0, 1], which is then equiv-
alent to

ˆ
[0,1)

Φ
(
F
(
t, x(t)

)
, x′

g(t)
)

dg(t) = 0

(due to the positivity of the function Φ). �

In what follows B denotes the closed unit ball in R
n, while ∂B corresponds to its bound-

ary.
Inspired by the methods used in [7], we will consider an auxiliary function φ : [0, 1] ×

R
n × ∂B → R defined by

φ(t, x, w) = max
{
Φ

(
F(t, x), y

)
; y ∈ Fw(t, x)

}
.

Further, for λ > 0, we denote

φλ(t, x, w) = max
{
φ
(
t, x′, w′) – λ

∣∣x′ – x
∣∣ – λ

∣∣w′ – w
∣∣; x′ ∈ R

n, w′ ∈ ∂B
}

.
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In other words, for each t ∈ [0, 1], φλ(t, ·, ·) corresponds to the minimum of all λ-Lipschitz
continuous functions which are greater than φ(t, ·, ·).

In the next lemma we summarize some properties of these auxiliary functions φ and φλ.
Its proof follows the same arguments used by Bressan in [7], pp. 2395–2396, and we omit
it.

Lemma 13 Let F : [0, 1] ×R
n →Pck(Rn) be a Pompeiu–Hausdorff continuous multifunc-

tion such that F(t, x) ⊂ B for every (t, x) ∈ [0, 1] × R
n. The functions φ,φλ : [0, 1] × R

n ×
∂B →R, λ > 0, defined above satisfy:

(i) φ is upper semicontinuous.
(ii) φ(t, x, w) = 0 for a.e. w ∈ ∂B and for all x ∈R

n, t ∈ [0, 1].
(iii) φλ(t, x, w) → φ(t, x, w) when λ → ∞, pointwise in [0, 1] ×R

n × ∂B.
(iv) for every δ > 0, there exists λ > 0 such that

 
∂B

φλ(t, x, w) dw < δ for every x ∈ B, t ∈ [0, 1],

where we integrate with respect to the probability measure uniformly distributed
over the sphere ∂B.

The main result of this paper is stated below.

Theorem 14 Let g : [0, 1] → R be a non-decreasing left-continuous function and F :
[0, 1] × R

n → Pck(Rn) be a bounded Pompeiu–Hausdorff continuous multifunction such
that

for every w, x ∈R
n, t ∈ A, the set Fw(t, x) is a singleton, (P)

where A = {tk , k ∈ N} is the set of atoms of μg . Then

W =
{

w ∈ C
(
[0, 1],Rn);Fw ⊂F ext}

is a residual subset of C([0, 1],Rn).

Proof In the case n = 1, note that

W ⊇ {
w ∈ C

(
[0, 1],R

)
; w(t) = 0 μg-a.e.

} ⊃
∞⋂

k=1

Ck ,

where for each k ∈ N

Ck :=
{

w ∈ C
(
[0, 1],R

)
; w ≡ 0 in Aw, μg(Aw) < 1/k, where Aw ⊂ [0, 1]

is a finite union of intervals whose endpoints belong to [0, 1] \ A
}

.

Thus, to see that W is residual, it is enough to show that Ck , k ∈N, is a dense open subset
of C([0, 1],R).
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Each Ck is dense. Indeed, given h ∈ C([0, 1],R) and ε > 0, we know that there exists a
polynomial Pε such that

sup
t∈[0,1]

∥
∥Pε(t) – h(t)

∥
∥ <

ε

2
.

Let x1, . . . , xpε be the roots of Pε . If x
 ∈ A for some 
, then choose δ > 0 such that xi + δ /∈ A
for every i = 1, . . . , pε and |Pε(t – δ) – Pε(t)| < ε

2 for every t ∈ [0, 1]. Thus the polynomial
P∗

ε (t) = Pε(t – δ) clearly belongs to Ck for every k ∈ N and

sup
t∈[0,1]

∥
∥P∗

ε (t) – h(t)
∥
∥ < ε,

proving that any ε-neighborhood of the function h intersects Ck , k ∈N.
Each Ck is open. Indeed, given w ∈ Ck , denote by p the number of intervals of Aw, and

let

α =
1
k – μg(Aw)

2
, δ <

α

2p
,

where δ is chosen in such a way that there are no atoms of μg in the neighborhood of Aw

of radius δ. Then any function f ∈ C([0, 1],R) with

sup
t∈[0,1]

∥∥f (t) – w(t)
∥∥ < δ

has the property that it is null at most on the set Af formed by Aw together with 2p intervals
of length α

2p each. Hence, μg(Af ) ≤ μg(Aw) + 2p α
2p < 1

k and f ∈ Ck , so the case n = 1 is
clarified.

Now assume n ∈ N, n ≥ 2. In view of Lemma 12, we can write

W =
{

w ∈ C
(
[0, 1],Rn);

ˆ
[0,1)

Φ
(
F
(
t, x(t)

)
, x′

g(t)
)

dg(t) = 0 for every x ∈Fw
}

.

Thus, to prove that W is of second Baire category in C([0, 1],Rn), it suffices to show that,
for every ε > 0,

W ε =
{

w ∈ C
(
[0, 1],Rn);

ˆ
[0,1)

Φ
(
F
(
t, x(t)

)
, x′

g(t)
)

dg(t) < ε for every x ∈Fw
}

is open and dense in C([0, 1],Rn). This will be done in two steps. Without loss of generality
we can assume that F(t, x) ⊂ B for every (t, x) ∈ [0, 1] ×R

n.
Step I. Prove that W ε is open (equivalently, prove that its complement is closed). To this

end, consider a sequence of functions {wk}k such that wk /∈ W ε and wk converges uniformly
to w ∈ C([0, 1],Rn). For each k ∈N, there exists xk ∈Fwk such that

ˆ
[0,1)

Φ
(
F
(
t, xk(t)

)
, (xk)′g(t)

)
dg(t) ≥ ε. (9)

The fact that (xk)′g(t) ∈ F(t, xk(t)) ⊂ B μg -a.e. means that

∥∥(xk)′g(t)
∥∥ ≤ 1 for μg-a.e. t ∈ [0, 1] and for all k ∈N, (10)
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and by Theorem 7 we can find a subsequence of {xk}k (for simplicity, not relabeled) which
converges uniformly to a g-continuous bounded function x : [0, 1] → R

n. Therefore, for
any s < t in [0, 1],

∥
∥xk(t) – xk(s)

∥
∥ ≤

ˆ
[s,t)

∥
∥(xk)′g(τ )

∥
∥dg(τ ) ≤ g(t) – g(s), ∀k ∈N,

whence ‖x(t) – x(s)‖ ≤ g(t) – g(s), showing that x ∈ACg([0, 1],Rn). On the other hand, the
continuity of F implies that for each t ∈ [0, 1] the sequence of sets F(t, xk(t)) converge in
the Pompeiu–Hausdorff distance to F(t, x(t)). Consequently x′

g(t) ∈ F(t, x(t)) μg -a.e. and

〈
x′

g(t), w(t)
〉
= lim

k→∞
〈
(xk)′g(t), wk(t)

〉

= lim
k→∞

max
z∈F(t,xk (t))

〈
z, wk(t)

〉
= max

z∈F(t,x(t))

〈
z, w(t)

〉
μg-a.e.

In summary, x ∈Fw. It remains to show that

ˆ
[0,1)

Φ
(
F
(
t, x(t)

)
, x′

g(t)
)

dg(t) ≥ ε.

The upper semicontinuity of Φ [6, Proposition 4.2] implies that

lim sup
k

Φ
(
F
(
t, xk(t)

)
, (xk)′g(t)

) ≤ Φ
(
F
(
t, x(t)

)
, x′

g(t)
)
. (11)

Note that by (10), for μg -a.e. t ∈ [0, 1] and for all k ∈ N, we have

ˆ 1

0

∥
∥f (s) – (xk)′g(t)

∥
∥2ds ≤ 4

for every f : [0, 1] → F(t, xk(t)) such that
´ 1

0 f (s) ds = (xk)′g(t). Thus,

Φ
(
F
(
t, xk(t)

)
, (xk)′g(t)

) ≤ 4, k ∈N,μg-a.e. t ∈ [0, 1],

and by the reverse Fatou lemma:

lim sup
k

ˆ
[0,1)

Φ
(
F
(
t, xk(t)

)
, (xk)′g(t)

)
dg(t)

≤
ˆ

[0,1)
lim sup

k
Φ

(
F
(
t, xk(t)

)
, (xk)′g(t)

)
dg(t).

This together with (9) and (11) yields

ˆ
[0,1)

Φ
(
F
(
t, x(t)

)
, x′

g(t)
)

dg(t) ≥ ε;

in other words, w /∈ W ε .
Step II. Show that W ε is dense in C([0, 1],Rn). Since F([0, 1] ×R

n) ⊂ B, we clearly have
Fw(t, x) = Fw/|w|(t, x), x, w ∈ R

n, t ∈ [0, 1]. Recalling that functions in C([0, 1],Rn) can be
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uniformly approximated by continuous functions w : [0, 1] → R
n \ {0}, we prove the den-

sity of W ε by showing that for an arbitrary continuous function z : [0, 1] → ∂B and any
ρ > 0, we have

W ε ∩ B(z, 4ρ) = ∅,

where B(z, 4ρ) stands for the open ball in the space C([0, 1], ∂B), centered in z, with radius
4ρ . In other words, we will construct a continuous function w : [0, 1] → ∂B such that

sup
t∈[0,1]

∥∥w(t) – z(t)
∥∥ ≤ 4ρ,

ˆ
[0,1)

Φ
(
F
(
t, x(t)

)
, x′

g(t)
)

dg(t) < ε

for every x ∈ACg([0, 1],Rn) satisfying x′
g(t) ∈ Fw(t)(t, x(t)) μg -a.e. in [0, 1].

Following Lemma 13(iv), one may choose λ > 0 such that

 
S(y)

φλ(t, x,ς ) dς ≤ ε

4
, x ∈ B, y ∈ ∂B, t ∈ [0, 1], (12)

where S(y) = {ς ∈ ∂B : |ς –y| < ρ}. By reasoning like in Step 4 of the proof of [7, Theorem 2],
we know that we can choose ν points p1(0), . . . , pν(0) in the spherical cap S(z(0)) such that

∣
∣∣
∣∣
1
ν

ν∑

j=1

h
(
pj(0)

)
–
 

S(z(0))
h(ς ) dς

∣
∣∣
∣∣
≤ ε

4

for every λ-Lipschitz continuous function h : Rn → R. Moreover, for each s ∈ [0, 1], the
points defined by pj(s) = Θ(s)pj(0), j = 1, . . . ,ν (where Θ(s) is a rotation mapping z(s) to
z(0)), share the same property. From this it follows that, for each s ∈ [0, 1], we can choose
a finite number of points pj(s) ∈ S(z(s)), j = 1, . . . ,ν (with ν depending only on ρ) such that
the inequality

∣∣
∣∣
∣
1
ν

ν∑

j=1

f
(
t, pj(s)

)
–
 

S(z(s))
f (t,ς ) dς

∣∣
∣∣
∣
≤ ε

4
(13)

holds for any choice of t ∈ [0, 1] and for every function f : [0, 1] ×R
n →R such that f (t, ·)

is λ-Lipschitz continuous.
Let gC denote the continuous part of g . Given N ∈ N, consider a division 0 = s0 < s1 <

· · · < sN = 1 such that

gC(si) – gC(si–1) =
gC(1) – gC(0)

N
, i = 1, . . . , N .

Again by the continuity of gC , we can divide each subinterval [si–1, si] into ν parts si–1 =
si,0 < si,1 < · · · < si,ν = si such that

gC(si,j) – gC(si,j–1) =
gC(1) – gC(0)

Nν
, i = 1, . . . , N , j = 1, . . . ,ν. (14)
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Define zN (s) = pj(si) for s ∈ [si,j–1, si,j), i = 1, . . . , N , j = 1, . . . ,ν . Therefore, for N sufficiently
large, we have

sup
s∈[0,1]

∥∥zN (s) – z(s)
∥∥ < 2ρ. (15)

Let x : [0, 1] → R
n be a g-Lipschitz continuous function with constant 1 (Definition 5).

Thus

ˆ
[0,1)

φλ
(
t, x(t), zN (t)

)
dgC(t)

=
N∑

i=1

ν∑

j=1

ˆ
[si,j–1,si,j)

φλ
(
t, x(t), pj(si)

)
dgC(t)

≤
N∑

i=1

ν∑

j=1

ˆ
[si,j–1,si,j)

φλ
(
t, x(si), pj(si)

)
dgC(t)

+
N∑

i=1

ν∑

j=1

ˆ
[si,j–1,si,j)

(
φλ

(
t, x(t), pj(si)

)
– φλ

(
t, x(si), pj(si)

))
dgC(t). (16)

Noting that for each t ∈ [0, 1] the function φλ(t, ·, ·) is λ-Lipschitz continuous, we get the
following estimate:

N∑

i=1

ν∑

j=1

ˆ
[si,j–1,si,j)

(
φλ

(
t, x(t), pj(si)

)
– φλ

(
t, x(si), pj(si)

))
dgC(t)

≤
N∑

i=1

ν∑

j=1

ˆ
[si,j–1,si,j)

λ
∥∥x(t) – x(si)

∥∥dgC(t)

≤
N∑

i=1

ν∑

j=1

ˆ
[si,j–1,si,j)

λ
(
g(si) – g(t)

)
dgC(t)

≤
N∑

i=1

ν∑

j=1

λ
(
g(si) – g(si–1)

)
μC

g
(
[si,j–1, si,j)

)
.

This together with (14) yields

N∑

i=1

ν∑

j=1

ˆ
[si,j–1,si,j)

(
φλ

(
t, x(t), pj(si)

)
– φλ

(
t, x(si), pj(si)

))
dgC(t)

≤ λ
gC(1) – gC(0)

N

N∑

i=1

(
g(si) – g(si–1)

)

= λ
gC(1) – gC(0)

N
(
g(1) – g(0)

)
.
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On the other hand, for each i = 1, . . . , N , applying (13) with the choice f (t,ς ) =
φλ(t, x(si),ς ) and using (12), we obtain

ν∑

j=1

φλ
(
t, x(si), pj(si)

)
< ν

ε

4
+ ν

 
S(z(si))

φλ
(
t, x(si),ς

)
dς ≤ ν

ε

2
.

Therefore, using (14), the term in (16) can be estimated as follows:

N∑

i=1

ν∑

j=1

ˆ
[si,j–1,si,j)

φλ
(
t, x(si), pj(si)

)
dgC(t)

≤ ν
ε

2

N∑

i=1

μC
g
(
[si,j–1, si,j)

)
=

(
gC(1) – gC(0)

)ε

2
.

In summary

ˆ
[0,1)

φλ
(
t, x(t), zN (t)

)
dgC(t) ≤ (

gC(1) – gC(0)
)
(

ε

2
+

λ

N
(
g(1) – g(0)

)
)

.

Hence, for N sufficiently large, we have

ˆ
[0,1)

φλ
(
t, x(t), zN (t)

)
dgC(t) ≤ 3ε

4
.

Having in mind (15), we can choose a continuous function w : [0, 1] → ∂B such that

sup
t∈[0,1]

∥
∥w(t) – z(t)

∥
∥ ≤ 4ρ and μC

g
({

t ∈ [0, 1]; w(t) = zN (t)
})

<
ε

4
.

By (P), for each k ∈N, Fw(tk , x(tk)) is a singleton, thus

φ
(
tk , x(tk), y

)
= 0 for all y ∈ ∂B.

Moreover, F([0, 1] ×R
n) ⊂ B implies φ ≤ 1, and consequently φλ ≤ 1. Thus

ˆ
[0,1)

φ
(
t, x(t), w(t)

)
dg(t)

=
ˆ

[0,1)
φ
(
t, x(t), w(t)

)
dgC(t) +

∞∑

k=1

φ
(
tk , x(tk), w(tk)

)(
g(tk+) – g(tk)

)

≤
ˆ

[0,1)
φλ

(
t, x(t), w(t)

)
dgC(t)

≤
ˆ

[0,1)
φλ

(
t, x(t), zN (t)

)
dgC(t) +

ˆ
{t;w(t) =zN (t)}

φλ
(
t, x(t), w(t)

)
dgC(t) < ε,

that is,

ˆ
[0,1)

φ
(
t, x(t), w(t)

)
dg(t) < ε
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for every function x : [0, 1] →R
n which is g-Lipschitz continuous with constant 1. In par-

ticular, the inequality holds for x ∈Fw (see Remark 9 and Lemma 6). Hence, recalling the
definition of φ, we get

ˆ
[0,1)

Φ
(
F
(
t, x(t)

)
, x′

g(t)
)

dg(t) ≤
ˆ

[0,1)
φ
(
t, x(t), w(t)

)
dg(t) < ε, x ∈Fw,

proving that W ε
⋂

B(z, 4ρ) = ∅ and, consequently, that W ε is indeed dense. �

Remark 15 Clearly, for g continuous, property (P) plays no role. Furthermore, if g is the
identity function, x′

g coincides with the usual derivative x′, and consequently Theorem 14
corresponds to a generalization of [7, Theorem 1] to non-autonomous differential inclu-
sions. When dealing with impulsive differential inclusions (5), property (P) is automati-
cally satisfied if, like in [3], the multifunctions Ik describing the jumps at the impulse points
are single-valued. However, this property allows for more interesting cases of multivalued
jumps; for example, if the values of Ik are balls or if their boundaries do not contain seg-
ments.

According to Theorem 14, the set of continuous functions w satisfying the relationFw ⊂
F ext is ‘large’ enough. Recalling that Theorem 11 ensures that Fw is non-empty for any
choice of w ∈ C([0, 1],Rn), we conclude the following.

Theorem 16 Let g : [0, 1] → R be a non-decreasing left-continuous function and F :
[0, 1] × R

n → Pck(Rn) be a bounded Pompeiu–Hausdorff continuous multifunction with
property (P). Then the g-differential inclusion (6) admits at least one solution.

Combining the theorem above with the correspondence described in Theorem 10, we
get the following result regarding extremal solutions for measure differential inclusions.

Corollary 17 Let μ be a finite regular Borel measure and F : [0, 1] × R
n → Pck(Rn) be a

bounded Pompeiu–Hausdorff continuous multifunction such that the set Fw(t, x) is a sin-
gleton for every w, x ∈R

n, whenever {t} ⊂ [0, 1] is an atom of μ. Then the problem

dx(t) ∈ F
(
t, x(t)

)
dμ, x(0) = 0,

admits extremal solutions.

Another important consequence of Theorem 14 is an existence result for non-convex
valued g-differential inclusions generalizing the classical result in [19].

Theorem 18 Let g : [0, 1] → R be a non-decreasing left-continuous function and G :
[0, 1] × R

n → 2R
n be a bounded multifunction with compact values, continuous with re-

spect to the Pompeiu–Hausdorff distance and such that, for each discontinuity point t of g
and for every x ∈ R

n, the set G(t, x) is convex and satisfies (P). Then the problem

x′
g(t) ∈ G

(
t, x(t)

)
μg-a.e., x(0) = 0,

admits at least one solution.
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Proof Define F : [0, 1] ×R
n →Pck(Rn) by

F(t, x) = conv
(
G(t, x)

)
.

By Mazur’s theorem, F(t, x) is, indeed, convex and compact in R
n. Furthermore, the hy-

pothesis over G ensures that F has property (P). Therefore, by Theorem 14, the problem

x′
g(t) ∈ ext F

(
t, x(t)

)
μg-a.e., x(0) = 0

admits a solution. Recalling that compact sets contain the extreme points of their closed
convex hulls (Krein–Millman theorem), the result follows. �

Thanks to the relation previously described between g-differential inclusions and dif-
ferential inclusions driven by measures, we then obtain the following Filippov-type result
for measure differential inclusions.

Corollary 19 Let μ be a finite regular Borel measure and G : [0, 1] × R
n → 2R

n be a
bounded multifunction with compact values, continuous with respect to the Pompeiu–
Hausdorff distance and such that, when {t} ⊂ [0, 1] is an atom of μ, we have G(t, x) convex
and for every w, x ∈R

n, the set Gw(t, x) is a singleton. Then the problem

dx(t) ∈ G
(
t, x(t)

)
dμ, x(0) = 0,

admits at least one solution.
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