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Abstract
This paper investigates a gene expression model, which is mediated by sRNAs (small
RNAs) and includes discrete and distributed delays. We take both the strong and
weak kernel forms of distributed delay into consideration. The discrete time delay is
chosen as the bifurcation parameter. By analyzing the distribution of characteristic
values, we obtain the sufficient conditions of stability and examine the existence of
periodic oscillations. When the discrete time delay is small and not greater than the
threshold, the equilibrium of the gene expression model is asymptotically stable.
When the bifurcation parameter exceeds the critical value, the model can produce
limit cycles. Finally, numerical simulations are implemented to verify the correctness
of our theoretical results.

Keywords: Hopf bifurcation; Local stability; Periodic oscillation; Distributed delay;
Genetic expression model

1 Introduction
The study of bifurcation phenomena has aroused the interest of scientists in many fields.
Both theoretical and experimental results show that the phenomenon of bifurcation is a
common physical phenomenon in various disciplines [1, 2]. In system theory, bifurcation
theory can be used to discuss the generation and disappearance of bifurcation phenomena
in nonlinear systems [3–8]. For gene networks, the bifurcation theory is a useful tool for
studying the dynamic performance in regulation process [9–15].

The gene regulatory network systematically studies the function and behavior of genes
in the highly connected cell environment [16, 17], and it regards the gene as a whole or-
ganizational structure. With the development of information technology and computer
science progress in recent years, the gene expression model has been widely addressed
[18–20]. On the basis of a comprehensive interpretation of cell metabolism, it has played
a great role in exploring the mechanism of life activities, the cause and treatment of the
disease. A mathematical model of gene expression mediated by sRNAs is put forward in
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[13–15]:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = –cx(t) – dy(t)x(t) + g(z(t – τ1)),

ẏ(t) = e – dy(t)x(t) – fy(t),

ż(t) = –bz(t) + ax(t – τ2),

(1)

where x(t), y(t), and z(t) represent the densities of mRNA, sRNA, and protein, respectively.
a represents the synthesis rate of protein. b, c, and f are the degradation rates of protein,
mRNA, and sRNA. d is the matching rate of sRNA with mRNA. e is the transcription rate
of sRNA. g(p(t – τ1)) denotes the generation rate of mRNA. τ1 and τ2 stand for the time
delays. All of the above parameters are positive.

Due to the complexity of the interaction of gene information in reality, the time delay
of the system is not invariable [21–23], and it may produce complicated nonlinear phe-
nomena with the change of time. According to literature [24–28], we find that there may be
more than one kind of time delay in practical engineering systems. Scholars usually neglect
the existence of two kinds of time delay in order to obtain simple differential equations. In
most cases, gene regulatory networks with sRNA have mixed delays due to their complex
network models. In order to describe the genetic process of organisms more accurately,
we introduce the distributed delays to exactly describe the change of the time delay in
the reality. This paper takes the following gene expression model having distributed and
discrete delays into consideration:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = –cx(t) – dy(t)x(t) + g[
∫ t

–∞ T(t – x)z(x) dx],

ẏ(t) = e – dy(t)x(t) – fy(t),

ż(t) = –bz(t) + ax(t – τ ).

(2)

The time delay kernel function T is presumed to satisfy some conditions as follows:
(i) T : [0,∞) → [0,∞);

(ii) T is piecewise continuous;
(iii)

∫ ∞
0 T(x) dx = 1,

∫ ∞
0 xT(x) dx < ∞.

The standard mathematical form of T(x) is as follows:

T(x) = σ n+1 xne–σx

n!
, x ∈ (0,∞), n = 0, 1, (3)

where the positive real number σ stands for the rate of fading of past memories. n = 0
and n = 0 denote the weak and strong kernel, respectively. The forms of weak and strong
kernel respectively read as follows:

T(x) = σ e–σx, x ∈ (0,∞), (4)

T(x) = σ 2xe–σx, x ∈ (0,∞). (5)

Compared with the discrete time delay, the distributed time delay possesses a more
complex mathematical form, and it may degenerate to the discrete time delay if taking
the delta function as the kernel function [29]. This makes it unfavorable for theoretical
analysis. There have been a great number of scholars who pay attention to bifurcation



Qing et al. Advances in Difference Equations        (2019) 2019:240 Page 3 of 17

dynamics for various models with distributed time delays, such as predator-prey models
[30], neural network models [31], Kuramoto oscillators [32], turbidostat models [33], and
virus dynamics models [34].

However, so far, there are few results on the study of bifurcation for gene expression
processes which have distributed delays. Distributed delays in Gamma-type were incor-
porated in a cyclic gene expression network [35], and the bifurcation and oscillation were
discussed. But their model does not take sRNAs into account, which is depicted in the
second equation in system (2). The influence of distributed time delays on dynamical be-
haviors of a mathematical model of gene expression was studied [36]. Both the cases of the
weak and strong delay kernels were addressed. But the model proposed in [36] includes
only distributed delays, no discrete delays and sRNAs, while model (2) has mixed delays
and is mediated by not only mRNAs and protein, but also sRNAs.

We summarize the main contributions of this article as follows: (1) We first incorporate
distributed time delays into genetic expression processes with sRNAs and put forward a
novel mathematical model with mixed delays. (2) The proposed model can capture the
effects of the distributed delay on the temporal and spatial dynamics of gene expression
process. (3) The Hopf bifurcation theory is applied to investigate the dynamic character-
istics of a gene expression model with distributed and discrete time delays. (4) Our model
and analysis method are applicable to the analysis of gene expression information.

Next, the organization of this paper is as follows. In the case of weak kernel, the stability
and local bifurcation of the gene expression model with sRNAs and mixed delays are dis-
cussed in Sect. 2. We investigate the existence of periodic oscillations in the case of strong
kernel in Sect. 3. In Sect. 4, we give some numerical simulations to support the theoretic
results. In Sect. 5, the conclusion is drawn.

2 Case of the weak kernel
For system (2), we consider the weak kernel form and let

u(t) =
∫ t

–∞
σ e–σ (t–x)p(x) dx.

Then we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ(t) = –cx(t) – dy(t)x(t) + g(u(t)),

ẏ(t) = e – dy(t)x(t) – fy(t),

ż(t) = –bz(t) + ax(t – τ ),

u̇(t) = σ z(t) – σu(t).

(6)

Assume that (x∗, y∗, z∗, u∗) is the equilibrium point of system (6), and let y1 = x – x∗, y2 =
y– y∗, y3 = z – z∗, y4 = u– u∗. Then the linearized system of (6) at (x∗, y∗, z∗, u∗) is as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẏ1(t) = –(c + dy∗)y1(t) – dx∗y2(t) + g ′(u∗)y4(t),

ẏ2(t) = –dy∗y1(t) – (f + dx∗)y2(t),

ẏ3(t) = –by3(t) + ay1(t – τ ),

ẏ4(t) = σy3(t) – σy4(t).

(7)
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Then we have the following characteristic equation of system (7):

det

⎛

⎜
⎜
⎜
⎝

λ + (c + dy∗) dx∗ 0 –g ′(u∗)
dy∗ λ + (f + dx∗) 0 0

–ae–λτ 0 λ + b 0
0 0 –σ λ + σ

⎞

⎟
⎟
⎟
⎠

= 0. (8)

From (8), we have

λ4 + q1λ
3 + q2λ

2 + q3λ + q4 + (q5λ + q6)e–λτ = 0, (9)

where

q1 = b + σ + c + f + dx∗ + dy∗,

q2 = bσ + bc + σ c + bf + σ f + cf + bdx∗ + bdy∗ + σdx∗ + σdy∗ + cdx∗ + dfy∗,

q3 = bσ c + bσ f + bcf + σ cf + bσdx∗ + bσdy∗ + bcdx∗ + σ cdx∗ + bdfy∗ + σdfy∗,

q4 = bσ cf + bσ cdx∗ + bσdfy∗,

q5 = –aσ g ′(u∗),

q6 = –aσ fg ′(u∗) – aσdg ′(u∗)x∗.

If iω (ω > 0) is the pure imaginary root of (9), we have

ω4 – q2ω
2 + q4 + q6 cosωτ + q5ω sinωτ

+ i
(
–q1ω

3 + q3ω + q5ω cosωτ – q6 sinωτ
)

= 0. (10)

Combining the properties of trigonometric functions, we separate the real and imaginary
parts and get

⎧
⎨

⎩

q6 cosωτ + q5ω sinωτ = –ω4 + q2ω
2 – q4,

q5ω cosωτ – q6 sinωτ = q1ω
3 – q3ω.

(11)

Then

⎧
⎨

⎩

cosωτ = n1ω4+n2ω2+n3
n4ω2+n5

,

sinωτ = n6ω5+n7ω3+n8ω

n4ω2+n5
,

(12)

where

n1 = q1q5 – q6, n2 = q2q6 – q3q5,

n3 = –q4q6, n4 = q2
5, n5 = q2

6,

n6 = –q2
5, n7 = q2q5 – q1q6, n8 = q3q6 – q4q5.
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This leads to

d1ω
10 + d2ω

8 + d3ω
6 + d4ω

4 + d5ω
2 + d6 = 0, (13)

with

d1 = n2
6, d2 = 2n6n7 + n2

1,

d3 = 2n1n2 + n2
7 + 2n6n8,

d4 = n2
2 – 2n1n3 + 2n7n8 – n2

4,

d5 = n8 – 2n2n3 – 2n4n5, d6 = n2
3 – n2

5.

Letting z = ω2, (13) becomes

d1z5 + d2z2 + d3z3 + d4z2 + d5z + d6 = 0. (14)

Define

h(z) = d1z5 + d2z2 + d3z3 + d4z2 + d5z + d6. (15)

Lemma 1 If d6 < 0, there exists at least one positive root for (14).

Proof By simply calculating, we can easily get h(0) = d6 < 0 and note that limz→+∞ h(z) =
+∞. Then there exists h(za) = 0 for za ∈ (0, +∞). �

We assume that (14) has five positive roots shown as zk , k = 1, 2, . . . , 5. Clearly, ωk = √zk ,
k = 1, 2, . . . , 5. Thus

τ
(j)
k =

1
ωk

{

arccos

[
n1ω

4 + n2ω
2 – n3

n4ω2 + n5

]

+ 2jπ
}

,

k = 1, 2, . . . , 5; j = 0, 1, 2, . . . . (16)

Assume that τ0 = τ 0
k0

= min{τ 0
k }, and ω0 = ωk0 . When τ = 0, (9) turns to be

λ4 + q1λ
3 + q2λ

2 + (q3 + q5)λ + q4 + q6 = 0. (17)

We denote

D1 = q1, D2 = q1q2 – q3 – q5,

D3 = q1
[
q2(q3 + q5) – q1(q4 + q6)

]
– (q3 + q5)2,

D4 = (q4 + q6)D3,

and take the hypothesis as follows:

(H1) Di > 0, i = 1, 2, 3, 4.
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It follows from the Routh–Hurwitz criterion that if (H1) holds, all roots of (17) have neg-
ative real parts.

Lemma 2 Premeditate the exponential polynomial

R
(
ω, e–ωσ1 , . . . , e–ωσm

)

= ωn + R(0)
1 ωn–1 + · · · + R(0)

n–1ω + R(0)
n

+
[
R(1)

1 ωn–1 + · · · + R(1)
n–1ω + R(1)

n
]
e–ωσ1 + · · ·

+
[
R(m)

1 ωn–1 + · · · + R(m)
n–1ω + R(m)

n
]
e–ωσm ,

where σi ≥ 0 (j = 1, 2, . . . , m) and Ri (i = 1, 2, . . . , m) are constant. As (σ1,σ2, . . .σm) change,
the sum of the order of the zeros of R(ω, e–ωσ , . . . , e–ωσm ) in the open right half plane can be
modified only if a zero appears on or crosses the imaginary axis.

Considering the transversal condition, we give the following hypothesis:

(H2) Re

[
d(λ(τ ))

dτ

]

τ=τ0

	= 0.

We differentiate (9) and obtain the derivative of delay as follows:

[
dλ

dτ

]–1

=
(4λ3 + 3q1λ

2 + 2q2λ + q3)eλτ + q5

q5λ2 + q6λ
–

τ

λ
.

Then

Re

[
dλ

dτ

]–1

τ=τ
j
k

=
1
M

{[
(3q1q5 – 4q6)ω4

k + (2q2q6 – q3q5)ω2
k
]

cos
(
ωkτ

j
k
)

– q2
5ω

2
k –

[
4q5ω

5
k + (3q1q6 – 2q2q5)ω3

k – q3q6ωk
]

sin
(
ωkτ

j
k
)}

,

where M = q52ω4
k + q2

6ω
2
k . Note that

sign

{

Real

[
dλ

dτ

]

τ=τ
j
k

}

= sign

{

Real

[
dλ

dτ

]–1

τ=τ
j
k

}

.

Next, we can derive the following theorem.

Theorem 1 Under (H1) and (H2), we have the following results.
(i) When τ ∈ (0, τ0), the trajectories of model (6) converge to the equilibrium point

(x∗, y∗, z∗, u∗).
(ii) When τ > τ0, model (6) presents an oscillatory dynamic near the unstable

equilibrium point (x∗, y∗, z∗, u∗). More concretely, there exists a Hopf bifurcation
when τ = τ0.

Remark 1 For a gene expression model, it is challenging for us to construct the sufficient
conditions of periodic oscillation and local stability when introducing the distributed de-
lays, because the simplification of distributed delays with weak kernel can increase the
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dimension of the system. The results indicate that the gene expression model with mixed
time delay can also produce bifurcation.

3 Case of the strong kernel
In view of the complexity of system (2) with strong kernel, we let

u(t) =
∫ t

–∞
σ e–σ (t–x)p(x) dx,

v(t) =
∫ t

–∞
σ 2(t – x)e–σ (t–x)p(x) dx.

Then system (2) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = –cx(t) – dy(t)x(t) + g(v(t)),
ẏ(t) = e – dy(t)x(t) – fy(t),
ż(t) = –bz(t) + ax(t – τ ),
u̇(t) = σ z(t) – σu(t),
v̇(t) = σu(t) – σv(t).

(18)

We assume (x∗, y∗, z∗, u∗, v∗) is one equilibrium point of system (18), and let y1 = x – x∗,
y2 = y – y∗, y3 = z – z∗, y4 = u – u∗, y5 = v – v∗. Then the linearized system of (18) at
(x∗, y∗, z∗, u∗, v∗) is as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẏ1(t) = –(c + dy∗)y1(t) – dx∗y2(t) + g ′(v∗)y4(t),
ẏ2(t) = –dy∗y1(t) – (f + dx∗)y2(t),
ẏ3(t) = –by3(t) + ay1(t – τ ),
ẏ4(t) = σy3(t) – σy4(t),
ẏ5(t) = σy4(t) – σy5(t).

(19)

Then we have the following characteristic equation of system (19):

det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

λ + (c + dy∗) dx∗ 0 –g ′(v∗) 0
dy∗ λ + (f + dx∗) 0 0 0

–ae–λτ 0 λ + b 0 0
0 0 –σ λ + σ 0
0 0 0 –σ λ + σ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0. (20)

Then

λ5 + q1λ
4 + q2λ

3 + q3λ
2 + q4λ + q5 +

(
q6λ

2 + q7λ + q8
)
e–λτ = 0, (21)

where

q1 = b + 2σ + c + f + dx∗ + dy∗,

q2 = σ 2 + 2bσ + bc + 2σ c + bf + 2σ f + cf + bdx∗ + bdy∗ + 2σdx∗

+ 2σdy∗ + cdx∗ + dfy∗,
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q3 = bσd2 + σ 2c + σ 2f + 2bσ c + 2bσ f + bcf + 2σ cf + σ 2dx∗ + σ 2dy∗

+ 2bσdx∗ + 2bσdy∗ + bcdx∗ + 2σ cdx∗ + bdfy∗ + 2σdfy∗,

q4 = bσ 2c + bσ 2f + σ 2cf + 2bσ cf + bσ 2dx∗ + bσ 2dy∗ + σ 2cdx∗

+ σ 2dfy∗ + 2bσ cdx∗ + 2bσdfy∗,

q5 = bσ 2cf + bσ 2cdx∗ + bσ 2dfy∗,

q6 = –aσ g ′(v∗),

q7 = –aσ 2g ′(v∗) – aσ fg ′(v∗) – aσdg ′(v∗),

q8 = –aσ fg ′(v∗) – aσ 2dg ′(v∗)x∗.

In order to solve the crossing frequency, we let λ = iω (ω > 0) and (21) turns to

ω5i – q1ω
4 – q2ω

3i – q3ω
2 + q4ωi + q5

+
(
q7ωi – q6ω

2 + q8
)
(cosωτ – i sinωτ ) = 0. (22)

It follows that

⎧
⎨

⎩

(–q6ω
2 + q8) cosωτ + q7ω sinωτ = –q1ω

4 + q3ω
2 – q5,

q7ω cosωτ – (–q6ω
2 + q8) sinωτ = –ω5 + q2ω

3 – q4ω.
(23)

Thus,

⎧
⎪⎪⎨

⎪⎪⎩

cosωτ =
n1ω

6 + n2ω
4 + n3ω

2 + n4

n5ω4 + n6ω2 + n7
,

sinωτ =
n8ω

7 + n9ω
5 + n10ω

3 + n11ω

n5ω4 + n6ω2 + n7
.

(24)

This leads to

d1ω
14 + d2ω

12 + d3ω
10 + d4ω

8 + d5ω
6 + d6ω

4 + d7ω
2 + d8 = 0, (25)

in which

d1 = n2
8, d2 = 2n8n9 + n2

1,

d3 = 2n1n2 + n2
9 + 2n8n10,

d4 = n2
2 + 2n1n3 + 2n8n11 + 2n9n10 – n2

5,

d5 = 2n1n4 + 2n2n3 + n2
10 + 2n9n11 – 2n5n6,

d6 = 2n2n4 + n2
3 + 2n10n11 – n2

6 – 2n5n7,

d7 = 2n3n4 + n2
11 – 2n6n7,

d8 = n2
4 – n2

7.
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Letting z = ω2, (25) becomes

d1z7 + d2z6 + d3z5 + d4z4 + d5z3 + d6z2 + d7z + d8 = 0. (26)

Define

l(z) = d1z7 + d2z6 + d3z5 + d4z4 + d5z3 + d6z2 + d7z + d8. (27)

Lemma 3 If d8 < 0, there exists at least one positive root for (26).

Proof By simply calculating, we can easily get l(0) = d8 < 0 and note that limz→+∞ l(z) =
+∞. Therefore, there exists l(z0) = 0 for z0 ∈ (0, +∞). �

Suppose that (26) has seven roots with positive real parts defined as zk , k = 1, 2, . . . , 7.
Clearly, ωk = √zk , k = 1, . . . , 7. Thus

τ
(j)
k =

1
ωk

{

arccos

[
n1ω

6 + n2ω
4 + n3ω

2 + n4

n5ω4 + n6ω2 + n7

]

+ 2jπ
}

,

k = 1, 2, . . . , 7; j = 0, 1, 2, . . . . (28)

Define τ0 = τ 0
k0

= min{τ 0
k }, and ω0 = ωk0 . When τ = 0, (21) turns to be

λ5 + q1λ
4 + q2λ

3 + (q3 + q6)λ2 + (q4 + q7)λ + q5 + q8 = 0. (29)

Define

D1 = q1, D2 = q1q2 – q3 – q6,

D3 = (q3 + q6)(q1q2 – q3 – q6) – q1
[
q1(q4 + q7) – q5 – q8

]
,

D4 = (q4 + q7)D3 – (q5 + q8)
{

q1
(
q2

2 – q4 – q7
)

–
[
(q3 + q6)q2 – q5 – q8

]}
,

D5 = (q5 + q8)D4.

For the correctness of the theory, we give the following necessary assumption:

(H3) Di > 0, i = 1, 2, . . . , 5.

It complies with the Routh–Hurwitz criterion that the equilibrium point of system (18)
without delays is asymptotically stable if (H3) holds.

We give the following hypothesis:

(H4) Re

[
d(λ(τ ))

dτ

]

τ=τ0

	= 0.

Consider the derivative of (21) with the respect to τ :

[
dλ

dτ

]–1

=
(5λ4 + 4q1λ

3 + 3q2λ
2 + 2q3λ + q4)eλτ + 2q6λ + q7

q6λ3 + q7λ2 + q8λ
–

τ

λ
. (30)
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Then

Re

[
d(λ(τ ))

dτ

]–1

τ=τ
j
k

=
1
N

{[
(5ω4

k cos
(
ωkτ

j
k
)

+ 4q1ω
3
k sin

(
ωkτ

j
k
)

– 3q2ω
2
k cos

(
ωkτ

j
k
)

– 2q3ωk sin
(
ωkτ

j
k
)

+ q4 cos
(
ωkτ

j
k
)](

–q7ω
2
k
)

+
[
5ω4

k sin
(
ωkτ

j
k
)

– 4q1ω
3
k cos

(
ωkτ

j
k
)

– 3q2ω
2
k sin

(
ωkτ

j
k
)

+ 2q3ωk cos
(
ωkτ

j
k
)

+ q4 sin
(
ωkτ

j
k
)](

q8ωk – q6ω
3
k
)

+ 2q6ωk
(
q8ωk – q6ω

3
k
)

– q2
7ω

2
k
}

,

where N = q2
7ω

4
k + (q8ωk – q6ω

3
k)2. Note that

sign

{

Real

[
dλ

dτ

]

τ=τ
j
k

}

= sign

{

Real

[
dλ

dτ

]–1

τ=τ
j
k

}

.

Combining with the above theoretical analysis, we can draw the following theorem.

Theorem 2 Under the conditions of (H3) and (H4), we have the following results.
(i) When τ ∈ (0, τ0), the trajectories of model (18) converge to the equilibrium point

(x∗, y∗, z∗, u∗, v∗).
(ii) When τ > τ0, model (18) shows an oscillatory dynamic. Furthermore, a Hopf

bifurcation takes place at the equilibrium point (x∗, y∗, z∗, u∗, v∗) when τ = τ0.

Remark 2 The appearance of strong kernel may greatly increase the dimension of the gene
model, which makes the dynamic characteristics of the model more complicated. As the
bifurcation parameters change, the phase diagrams of u and v can also produce limit cy-
cles.

4 Numerical example
We will make some MATLAB simulations of the gene expression model to support the
theoretical analysis obtained above in this section.

We take the following model with weak kernel form into consideration:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ(t) = –0.2x(t) – y(t)x(t) + 200
100+u2 ,

ẏ(t) = 1 – y(t)x(t) – 0.25y(t),

ż(t) = –0.1z(t) + x(t – τ ),

u̇(t) = 1.2z(t) – 1.2u(t),

(31)

which includes an equilibrium point (x∗, y∗, z∗, u∗) = (1, 0.8, 10, 10). By calculating, we can
obtain that τ0 = 6.834. It is known from Theorem 1 that system (31) is asymptotically stable
at the equilibrium point when τ ∈ (0, τ0) (see Figs. 1 and 2), while system (31) produces a
limit cycle when τ > τ0 (see Figs. 3 and 4).
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Figure 1 The equilibrium (1, 0.8, 10, 10) of system (31) is asymptotically stable when τ = 6.6 < τ0 = 6.834

Figure 2 The phase plots of system (31). It is asymptotically stable when τ = 6.6 < τ0 = 6.834
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Figure 3 A Hopf bifurcation occurs when τ = 7 > τ0 = 6.834, which means that system (31) is unstable

Figure 4 The phase plots of system (31). It is unstable with τ = 7 > τ0 = 6.834
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Next, we consider the case of strong kernel. The model is as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = –0.2x(t) – y(t)x(t) + 200
100+v2 ,

ẏ(t) = 1 – y(t)x(t) – 0.25y(t),

ż(t) = –0.1z(t) + x(t – τ ),

u̇(t) = 1.2z(t) – 1.2u(t),

v̇(t) = 1.2u(t) – 1.2v(t).

(32)

There is an equilibrium point (x∗, y∗, z∗, u∗, v∗) = (1, 0.8, 10, 10, 10) for system (32). A Hopf
bifurcation occurs and a periodic oscillation appears around the equilibrium point when τ

crosses the critical value τ0 = 6.153 which is calculated by (28). From Theorem 2, when τ ∈
(0, τ0), the equilibrium (x∗, y∗, z∗, u∗, v∗) is stable (see Figs. 5 and 6). When τ passes through
an appropriate value, it can cause the loss of stability of equilibrium (x∗, y∗, z∗, u∗, v∗), and
system (32) produces an oscillation phenomenon (see Figs. 7 and 8).

Remark 3 From the aforementioned simulation, we can clearly observe that the bifurca-
tion parameter τ0 in system (31) is smaller than that in system (32). This phenomenon
indicates that the system with strong kernel can advance the generation of bifurcation,
which means the stable domain of the system can shrink accordingly. Seen from long-
term, it may play an important role in analyzing the stability of gene expression processes.

Remark 4 It can be found that after the coordinate transformations, the dimension of
the gene network with the strong kernel is higher than that of the weak kernel. However,
the genetic models with strong kernel or weak kernel are asymptotically stable when the

Figure 5 The equilibrium (1, 0.8, 10, 10, 10) of system (32) is asymptotically stable when τ = 5.8 < τ0 = 6.153
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Figure 6 The phase plots of system (32). It is asymptotically stable when τ = 5.8 < τ0 = 6.153

Figure 7 A Hopf bifurcation occurs when τ = 6.5 > τ0 = 6.153, which means that system (32) is unstable
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Figure 8 The phase plots of system (32). It is unstable when τ = 6.5 > τ0 = 6.153

bifurcation parameters are less than the critical value, and generate limit cycles when the
bifurcation parameters are greater than the critical value.

5 Conclusion
We introduce distributed time delays into a gene expression model with sRNA in this
paper. Specifically, we take two forms of distributed delays into consideration. The intro-
duction of distributed time delay increases the dimension of the network and makes the
dynamic behaviors more complex. However, it can describe the time delay of the actual
genetic express process more accurately. Here, we take the time delay as the bifurcation
parameter to reveal the dynamic behavior of the model. Based on the bifurcation analy-
sis of the gene expression model, we obtain that the model is asymptotically stable when
the time delay is suitable. Meanwhile, when the delay is greater than the critical value, the
model will lose the stability and produce limit cycles.

This paper mainly discusses the effects of distributed delay of the strong kernel and the
weak kernel on the stability and periodic oscillation of gene regulatory networks. We con-
sider the case where the delay core is 0 and 1. Our future work will be devoted to the
dynamical analysis of genetic regulatory networks having a delay core greater than 1. The
dimension of the network may increase greatly, which makes the analysis more challeng-
ing.
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