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Abstract
This paper proposes a series-representations for the solution of initial value problems
of linear inhomogeneous fractional differential equation with continuous variable
coefficients. It is proved that the solution of the problem is determined by adding the
solution of the inhomogeneous differential equations with the homogeneous initial
conditions to the linear combination of the canonical fundamental system of solution
for corresponding homogeneous fractional differential equation and the
inhomogeneous initial values. The effectiveness of the theoretical analysis is
illustrated with two examples.
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1 Introduction
The fractional modelings have aroused much attention in the fields of both engineering
and mathematics due to their significant applications in diverse scientific areas such as
electromagnetism [1], behaviors of physical phenomena [2], signal processing [3], and
control engineering [4]. A lot of theoretical research has been carried on the existence
and uniqueness of solution of fractional differential equations (FDEs) over the last years
[5–10]. Currently, methods for solving FDEs with initial conditions can be classified into
two classes, namely, approximative method and analytical methods. Typical approxima-
tive methods include the operational matrix method based on orthogonal functions, the
predictor–corrector method, fractional Euler method, and so on ([11–16]). The most
practical analytical methods are the Adomian decomposition method, the homotopy anal-
ysis method, the homotopy perturbation method, the Laplace transform method, and the
variational iteration method ([17–21]).

In [22], a solution of general linear inhomogeneous fractional differential equations with
constant coefficients has been obtained by using the Adomian decomposition method
and one proved that this solution is equal to the solution represented by Green’s func-
tion. A theory on the system of linear inhomogeneous fractional differential equation has
been studied, and the solution was represented in terms of the Green function for the case
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of constant matrix coefficients in [23]. In [24], a power series solution method for some
linear fractional differential equations with continuous variable coefficients has been pre-
sented. In [25], a generalization of Duhamel’s method for one-term fractional differen-
tial equations with constant coefficients has been proposed in the case when the classical
Duhamel’s principle does not hold true for differential equations with Caputo fractional
derivative. A fractional power series method has been introduced for the solution of frac-
tional heat-like equations with variable coefficients in [26].

Our work proposes series-representations for the solution of linear inhomogeneous
fractional differential equation with continuous variable coefficients and inhomogeneous
initial conditions. The fractional derivative is of Caputo type in the proposed prob-
lem.

The remainder of the paper is organized as follows. In Sect. 2, some definitions of frac-
tional calculus are introduced. Section 3 gives series-representations of solutions for initial
value problems of linear inhomogeneous fractional differential equation with continuous
variable coefficients. In Sect. 4, the effectiveness of the proposed theory is illustrated with
two examples. Finally, the conclusion to our work is summarized in Sect. 5.

2 Preliminaries
Definition 2.1 Let R = (–∞, +∞) and R+ = (0, +∞). We denote the space of functions f
by Cn

r [0, T], where f satisfies f : (0, T] → R (∀T > 0) and trf (n)(t) ∈ C[0, T] for 0 ≤ r < 1. In
particular, denote C0

r [0, T] by Cr[0, T].

Definition 2.2 ([27]) Let α ∈ R+, f ∈ Cr[0, T], 0 ≤ r < 1. Then

Iα
0+f (t) =

1
Γ (α)

∫ t

0
(t – τ )α–1f (τ ) dτ , t > 0,

is called a fractional integral of order α (α > 0) of the function f in the sense of Riemann–
Liouville. In particular, we denote I0f (t) = f (t).

Definition 2.3 ([27]) Let n – 1 < α ≤ n, n ∈ N, In–αf ∈ Cn
γ [0, T] and 0 ≤ γ < 1. Then

Dα
0+f (t) = DnIn–αf (t), Dn =

dn

dtn ,

is called the fractional derivative of order α of the function f in the sense of Riemann–
Liouville.

Definition 2.4 ([27]) Let n – 1 < α ≤ n, n ∈ N, In–αf ∈ Cn
r [0, T], 0 ≤ r < 1. Then

cDα
0+f (t) = Dα

0+

[
f (t) –

n–1∑
k=0

f (k)(0)
k!

tk

]
,

is called the Caputo fractional derivative of order α of the function f .

Remark When α = n, we have cDα
0+f (t) = Dα

0+f (t) = Dnf (t).
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Definition 2.5 Let n ∈ N. We define the set

ACn[a, b] :=
{

f : [a, b] → R
∣∣∣Dn–1f ∈ AC[a, b], D =

d
dt

}
.

Here AC1[a, b] = AC[a, b] is the set of absolutely continuous functions on [a, b].

Definition 2.6 We denote by Iα(L1) the set of functions f which are represented as an
integral of order α > 0 of some integrable function ϕ ∈ L1(0, T), that is, f = Iαϕ.

3 Main result
Now we consider a linear inhomogeneous fractional differential equation with continuous
variable coefficients

cDα0
0+y(t) +

m∑
i=1

ai(t)cDαi
0+y(t) = g(t), t ∈ [0, T], (1)

with the initial condition

Dky(t) |t=+0= bk ∈ R, k = 0, 1, . . . , n0 – 1, (2)

where α0,αi ∈ R+, i = 1, . . . , m satisfy α0 > 0, α0 > α1 > · · · > αm ≥ 0 and n0, ni are non-
negative integers that satisfy n0 – 1 < α0 ≤ n0, ni – 1 < αi ≤ ni, i = 1, . . . , m.

We can write the corresponding homogeneous differential equation of Eq. (1) by

cDα0
0+y(t) = –

m∑
i=1

ai(t)cDαi
0+y(t), 0 < t < T . (3)

In order to consider all possible cases for the homogeneous equation (3), we introduce the
following index sets Hj provided by αi, i = 0, 1, . . . , m:

Hj
d= {i : 0 ≤ αi ≤ j, i = 1, . . . , m}, j = 0, 1, . . . , n0 – 1.

Here, we set hj = min Hj if Hj �= ∅ (where ∅ is the empty set).

Remark Let k ∈ Hj ⇒ αk ≤ j and Hi ⊂ Hj (i < j). If Hj �= ∅, let hj = min Hj which is the
smallest index of fractional orders of Eq. (3) that do not exceed j. Then it is evident that
m–hj +1 is the number of element of Hj and hi ≥ hj (i < j). Thus when i < j, hi –hj represents
the number of such order αk that i < αk ≤ j and in particular, if hi = hj, then Eq. (3) has no
such fractional orders αk that i < αk ≤ j.

Then there are the following possible cases:
Case 1. H0 �= ∅. In this case Hj �= ∅, j = 0, 1, . . . , n0 – 1.
Case 2. n0 ≥ 2 and there exists a j0 ∈ {0, 1, . . . , n0 – 2} such that Hj0 = ∅ and Hj0+1 �= ∅. In

this case Hj = ∅, j = 0, 1, . . . , j0 and Hj �= ∅, j = j0 + 1, . . . , n0 – 1.
Case 3. Hn0–1 = ∅. In this case Hj = ∅, j = 0, 1, . . . , n0 – 1.
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Definition 3.1 The linear homogeneous fractional differential equation (3) is called of
type 1,2,3, respectively, when Eq. (3) correspond to the cases 1, 2, 3 dependent on the
patterns of distances between adjacent fractional orders.

Definition 3.2 A system of functions yj(t) (j = 0, 1, . . . , n0 – 1) is called a canonical funda-
mental system of solutions of the homogeneous equation (3) if it satisfies

cDα0
0+yj(t) = –

m∑
i=1

ai(t)cDαi
0+yj(t), 0 < t < T ,

Dkyj(t)|t=+0 =

⎧⎨
⎩

1, j = k,

0, j �= k, k, j = 0, 1, . . . , n0 – 1.

First, we consider the problem for solving the linear inhomogeneous fractional differ-
ential equations Eq. (1) with variable coefficients and the homogeneous initial condition

Dky(t) |t=0+= 0, k = 0, 1, . . . , n0 – 1. (4)

Lemma 3.1 Let g(t), ai(t) ∈ C[0, T], i = 1, . . . , m. Then the initial value problem (1) and
(4) has the unique solution y(t) ∈ Cα0,n0–1[0, T], which is the limit y(t) = liml→∞ yl(t) of the
approximation sequence

y0(t) = Iα0
0+ g(t), (5)

yl(t) = y0(t) – Iα0
0+

m∑
i=1

ai(t)cDαi
0+yl–1(t), l = 1, 2, . . . , (6)

where Cα0,n0–1[0, T] := Cα0,n0–1
0 [0, T] = {y(x) ∈ Cn0–1[0, T], cDα0

0+y ∈ C[0, T]} and the norm
is

‖y‖Cα0,n0–1[0,T] =
n0–1∑
k=0

∥∥y(k)∥∥
C[0,T] +

∥∥cDα0
0+y

∥∥
C[0,T].

Proof First we prove the uniqueness and existence of solution for the initial value problem
(1) and (4). Let assume that y(t) ∈ Cα0,n0–1[0, T] satisfy Eqs. (1) and (4). Then if cDα0

0+y(t) =
z(t), we take cDα0

0+y(t) ∈ C[0, T] and z(t) ∈ C[0, T]. We can rewrite as

Iα0
0+

cDα0
0+y(t) = Iα0

0+ z(t).

Also the left of the above equation has been changed,

Iα0
0+

cDα0
0+y(t) = y(t) –

n0–1∑
j=0

Djy(0)Φj+1(t), Φj+1(t) =
tj

j!
.

By the homogeneous initial condition (4), we obtain

Iα0
0+

cDα0
0+y(t) = y(t).
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Namely y(t) = Iα0
0+ z(t). Therefore cDαi

0+y(t) = Iα0–αi
0+ z(t) and Eq. (1) changes to the integral

equation

z(t) +
m∑

i=1

ai(t)Iα0–αi
0+ z(t) = g(t). (7)

Thus, for the solution y(t) ∈ Cα0,n0–1[0, T] of Eqs. (1) and (4), cDα0
0+y(t) = z(t) satisfies the

integral equation Eq. (7).
Conversely let assume that z(t) ∈ C[0, T] is the solution of Eq. (7). Since g(t) ∈ C[0, T],

Iα0
0+ z(t) + Iα0

0+

m∑
i=1

ai(t)Iα0–αi
0+ z(t) = Iα0

0+g(t).

Let y(t) := Iα0
0+ z(t). Then we have cDαi

0+y(t) = Iα0–αi
0+ z(t) and

y(t) + Iα0
0+

m∑
i=1

ai(t)cDαi
0+y(t) = Iα0

0+ g(t).

That is,

cDα0
0+y(t) +

m∑
i=1

ai(t)cDαi
0+y(t) = g(t).

Also we get

Dky(t)|t=+0 = DkIα0
0+z(t)|t=+0 = Iα0–k

0+ z(t)|t=+0 = 0, (k = 0, 1, . . . , n0 – 1).

Therefore for the solution z(t) ∈ C[0, T] of integral equation Eq. (7), Iα0
0+ z(t) = y(t) ∈

Cα0,n0–1[0, T] satisfies the initial value problem (1) and (4).
Thus the uniqueness and existence of solution for Eqs. (1) and (4) are equivalent to the

ones of integral equation Eq. (7).
Now let prove the uniqueness and existence of solution for integral equation (7). Equa-

tion (7) can be rewritten

z(t) = g(t) –
m∑

i=1

ai(t)Iα0–αi
0+ z(t). (8)

We define the operator T by Tz(t) := g(t) –
∑m

i=1 ai(t)Iα0–αi
0+ z(t). Then Eq. (8) is expressed

z(t) = Tz(t), namely T : C[0, T] → C[0, T].
In C[0, T], we use the k-norm ‖z‖k = maxk e–kt|z(t)| which is equivalent to the max-

norm.
For ∀t ∈ [0, T], by the fact that Iα0–αi ekt ≤ ekt

kα0–αi , the following expression is derived:

∣∣Tz1(t) – Tz2(t)
∣∣

=

∣∣∣∣∣–
m∑

i=1

ai(t)Iα0–αi
0+

(
z1(t) – z2(t)

)∣∣∣∣∣ ≤
m∑

i=1

‖ai‖maxIα0–αi
0+

∣∣z1(t) – z2(t)
∣∣
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=
m∑

i=1

‖ai‖maxIα0–αi
0+ ekte–kt∣∣z1(t) – z2(t)

∣∣ ≤ ‖z1 – z2‖k

m∑
i=1

‖ai‖maxIα0–αi
0+ ekt

≤ ‖z1 – z2‖k

m∑
i=1

‖ai‖max
ekt

kα0–αi
.

So we can obtain

e–kt∣∣Tz1(t) – Tz2(t)
∣∣ ≤

( m∑
i=1

‖ai‖max
1

kα0–αi

)
‖z1 – z2‖k .

If w(k) :=
∑m

i=1 ‖ai‖max
1

kα0–αi , then ∃k0 ∈ R+; ∀k > k0, w(k0) < 1, w0 := w(k0), ‖Tz1 – Tz2‖k0 ≤
w0‖z1 – z2‖k0 , i.e. the operator T : C[0, T] → C[0, T] is a contractive operator which is
relative to ‖ · ‖k0 . By the equivalence of ‖ · ‖max and ‖ · ‖k0 , T : C[0, T] → C[0, T] is the
contractive operator which is relative to ‖ · ‖max.

Therefore by using Banach fixed point theorem, the integral equation (7) has a unique
solution in the sense of the norm ‖ · ‖max and the sequence {zn(t)} which is constructed by
zn(t) = g(t) –

∑m
i=1 ai(t)Iα0–αi

0+ zn–1(t) converges in the sense of the norm ‖ · ‖max in C[0, T].
Next let prove the convergence of the approximative sequence (5) and (6). Since g(t) ∈

C[0, T], the sequence {zn(t)} constructed by the approximative expression

⎧⎨
⎩

z0 = g(t),

zn = g(t) –
∑m

i=1 ai(t)Iα0–αi
0+ zn–1(t),

(9)

convergent in the sense of ‖ · ‖max.
From Eq. (9),

⎧⎨
⎩

Iα0
0+z0 = Iα0

0+g(t),

Iα0
0+zn = Iα0

0+ g(t) – Iα0
0+

∑m
i=1 ai(t)Iα0–αi

0+ zn–1(t)

and since Iα0
0+ zk = yk , Iα0–αi

0+ zk–1(t) = cDαi
0+yk(t), we have

⎧⎨
⎩

y0 = Iα0
0+ g(t),

yl = y0 – Iα0
0+

∑m
i=1 ai(t)cDαi

0+yl(t),

i.e., Eqs. (5) and (6), where yl ∈ Cα0,n0–1[0, T].
We prove the convergence of sequence {yl} in Cα0,n0–1[0, T]. Since yk = Iα0

0+zk ,

cDα0
0+yk = zk ,

Dlyk = Iα0–l
0+ zk , l = 0, 1, . . . , n0 – 1,

are obtained. So

∥∥cDα0
0+yk∥∥

max = ‖zk‖max,

∥∥Dlyk∥∥
max ≤ Tα0–l

Γ (α0 – l + 1)
‖zk‖max, l = 0, 1, . . . , n0 – 1,
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are satisfied. From the above two equations, we have

n0–1∑
l=1

∥∥Dlyk∥∥
max +

∥∥cDα0
0+yk∥∥

max ≤
(n0–1∑

l=1

Tα0–l

Γ (α0 – l + 1)
+ 1

)
‖zk‖max.

Since {zk} converges, the sequence {yk} constructed by Eqs. (5) and (6) converges in
Cα0,n0–1[0, T]. �

Lemma 3.2 Let γ = n0 – α0(∈ [0, 1)), n0 = n1, ai ∈ C1
γ [0, T] and Dn0–α0

0+ ai ∈ C[0, T], i =
1, . . . , m. Also let assume that H0 �= ∅, that is, Eq. (3) is of type 1. Then there exists the
unique canonical fundamental system yj(t) ∈ Cn0

γ [0, T], (j = 0, 1, . . . , n0 – 1) of the solution
for Eq. (3) and it is written

yj(t) = Φj+1(t) +
∞∑

k=0

(–1)k+1Iα0
0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]k m∑
i=hj

ai(t)Φj+1–αi (t),

j = 0, 1, . . . , n0 – 1, (10)

where

Φj+1(t) =
tj

j!
.

Proof Let find the canonical system as the limit in Cn0
γ [0, T] of the approximation sequence

y0
j (t) = Φj+1(t), (11)

yl+1
j (t) = Φj+1(t) – Iα0

0+

[ m∑
i=1

ai(t)cDαi
0+yl

j(t)

]
, l = 0, 1, 2, . . . . (12)

First, we will obtain y0(t). Let j = 0 in Eq. (11), then y0
0(t) = Φ1(t) and from Eq. (12), we have

y1
0(t) = Φ1(t) – Iα0

0+

m∑
i=1

ai(t)cDαi
0+y0

0(t) = Φ1(t) – Iα
0+

m∑
i=1

ai(t)cDαi
0+Φ1(t). (13)

Also

cDαi
0+Φ1(t) = Dαi

0+

[
Φ1(t) –

ni–1∑
k=0

DkΦ1(0)Φk+1(t)

]
, i = 1, 2, . . . , m. (14)

Since H0 �= ∅, we have h0 = min H0 = m. For i = m, αm = nm = 0,

cDαi
0+Φ1(t) = Dαm

0+ Φ1(t) = Φ1(t).

If i = 1, . . . , m – 1, then αi > 0 and from ni – 1 < αi ≤ ni, we have ni ≥ 1. Since

DkΦ1(0) =

⎧⎨
⎩

1, k = 0,

0, k �= 0,
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in (14), then cDαi
0+Φ1(t) = 0 for i = 1, . . . , m – 1 and

cDαi
0+Φ1(t) =

⎧⎨
⎩

Φ1(t), i = h0 = m,

0, i = 1, . . . , m – 1.

Substituting this into Eq. (13), then the first approximation of y0(t) is given by

y1
0(t) = Φ1(t) – Iα0

0+am(t)Φ1(t) (15)

and since h0 = m and αm = 0, we can rewrite it as

y1
0(t) = Φ1(t) – Iα0

0+

m∑
i=h0

ai(t)Φ1–αi (t).

Thus we get the first term (k = 0) of Eq. (10) in the case of j = 0.
Now let prove y1

0(t) ∈ Cn0
γ [0, T]. From Eq. (15), we have

Dn0–1y1
0(t) = Dn0–1Φ1(t) – Dn0–1Iα0

0+ am(t)Φ1(t) = –Iα0–n0+1
0+ am(t)Φ1(t).

From am(t)Φ1(t) = am(t) ∈ C[0, T] and α0 –n0 +1 > 0, Iα0–n0+1
0+ am(t)Φ1(t) ∈ C[0, T] is found,

that is,

y1
0(t) ∈ Cn0–1[0, T].

On the other hand, from am(t)Φ1(t) = am(t) ∈ C1
γ [0, T] and α0 – n0 + 1 > 0, we have

Iα0–n0+1
0+ am(t)Φ1(t) ∈ C1

γ [0, T]. Therefore

Dn0 y1
0(t) = Dn0Φ1(t) – Dn0 Iα0

0+am(t)Φ1(t) = –DIα0–n0+1
0+ am(t)Φ1(t) ∈ Cγ [0, T].

Thus we proved y1
0(t) ∈ Cn0

γ [0, T].
Next we consider the case of j = 0, l = 1 in Eq. (12) to find the second approximation of

y0(t). We have

y2
0(t) = Φ1(t) – Iα0

0+

m∑
i=1

ai(t)cDαi
0+y1

0(t)

= Φ1(t) – Iα0
0+

m∑
i=1

ai(t)cDαi
0+

[
Φ1(t) – Iα0

0+

m∑
i=h0

ai(t)Φ1–αi (t)

]

= Φ1(t) – Iα0
0+

m∑
i=1

ai(t)cDαi
0+Φ1(t) + Iα0

0+

m∑
i=1

ai(t)cDαi
0+Iα0

0+

m∑
i=h0

ai(t)Φ1–αi (t).

Now let f (t) :=
∑m

i=h0
ai(t)Φ1–αi (t) and calculate cDαi

0+Iα0
0+ f (t). Then we get

cDαi
0+Iα0

0+ f (t) = Dαi
0+

[
Iα0

0+ f (t) –
ni–1∑
k=0

DkIα0
0+ f (t)

]

t=+0

Φk+1(t).
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Here since k ≤ ni – 1 < αi < α0, i = 1, . . . , m, we have α0 – k > 0, k = 0, 1, . . . , ni – 1 and thus
we can rewrite it as

DkIα0
0+ f (t) = DkIkIα0–k

0+ f (t) = Iα0–k
0+ f (t).

Since f (t) ∈ C[0, T], we have

DkIα0
0+ f (t)|t=+0 = Iα0–k

0+ f (t)|t=+0 = 0,

and therefore

cDαi
0+Iα0

0+ f (t) = Dαi
0+Iα0

0+ f (t) = Dαi
0+Iαi

0+Iα0–αi
0+ f (t) = Iα0–αi

0+ f (t).

Thus the second approximation is given as

y2
0(t) = Φ1(t) – Iα0

0+

m∑
i=1

ai(t)cDαi
0+Φ1(t) + Iα0

0+

m∑
i=1

ai(t)Iα0–αi
0+

m∑
i=h0

ai(t)Φ1–αi (t)

= Φ1(t) + (–1)1Iα0
0+

m∑
i=h0

ai(t)Φ1–αi (t) + (–1)2Iα0
0+

m∑
i=1

ai(t)Iα0–αi
0+

m∑
i=h0

ai(t)Φ1–αi (t)

= Φ1(t) +
1∑

k=0

(–1)k+1Iα0
0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]k m∑
i=h0

ai(t)Φ1–αi (t).

Since h0 = m, αm = 0, we have Φ1–αi (t) = Φ1(t) ∈ C[0, T] and therefore

Dn0 y2
0(t) = Dn0Φ1(t) +

1∑
k=0

(–1)k+1Dn0 Iα0
0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]k m∑
i=h0

ai(t)Φ1–αi (t)

=
1∑

k=0

(–1)k+1DIα0–n0+1
0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]k m∑
i=h0

ai(t)Φ1–αi (t).

Also we have

Iα0–n0+1
0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]k m∑
i=h0

ai(t)Φ1–αi (t) ∈ C1
γ [0, T].

Thus we have y2
0(t) ∈ Cn0

γ [0, T].
Now under the assumption that the lth approximation of y0(t) is provided by

yl
0(t) = Φ1(t) +

l–1∑
k=0

(–1)k+1Iα0
0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]k m∑
i=h0

ai(t)Φ1–αi (t)

and yl
0(t) ∈ Cn0

γ [0, T], we find the (l + 1)th approximation of y0(t):

yl+1
0 (t) = Φ1(t) – Iα0

0+

m∑
i=1

ai(t)cDαi
0+yl

0(t)
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= Φ1(t) – Iα0
0+

m∑
i=1

ai(t)cDαi
0+

{
Φ1(t)

+
l–1∑
k=0

(–1)k+1Iα0
0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]k m∑
i=h0

ai(t)Φ1–αi (t)

}

= Φ1(t) – Iα0
0+

m∑
i=h0

ai(t)Φ1–αi (t)

– Iα0
0+

m∑
i=1

ai(t)
l–1∑
k=0

(–1)k+1Iα0–αi
0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]k m∑
i=h0

ai(t)Φ1–αi (t)

= Φ1(t) +
l∑

k=0

(–1)k+1Iα0
0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]k m∑
i=h0

ai(t)Φ1–αi (t).

Thus the (l + 1)th approximation of y0(t) is provided by

yl+1
0 (t) = Φ1(t) +

l∑
k=0

(–1)k+1Iα0
0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]k m∑
i=h0

ai(t)Φ1–αi (t).

Similar to the above, we get yl+1
0 (t) ∈ Cn0

γ [0, T].
By induction, we proved that, for any n = 0, 1, . . . , the nth approximation of y0(t) is pro-

vided by

yn
0(t) = Φ1(t) +

n–1∑
k=0

(–1)k+1Iα0
0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]k m∑
i=h0

ai(t)Φ1–αi (t)

and yn
0(t) ∈ Cn0

γ [0, T]. The sequence {yn
0(t)} converges in Cn0

γ [0, T] and we get as the first
element y0(t) of the canonical system

y0(t) = lim
n→∞ yn

0(t)

= Φ1(t) +
∞∑

k=0

(–1)k+1Iα0
0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]k m∑
i=h0

ai(t)Φ1–αi (t) ∈ Cn0
γ [0, T].

Now for any j (j = 1, . . . , n0 – 1), we find the jth element yj(t) of the canonical system. From
(11) and (12), the first approximation of yj(t) is given by

y1
j (t) = Φj+1(t) – Iα0

0+

m∑
i=1

ai(t)cDαi
0+y0

j (t) = Φj+1(t) – Iα0
0+

m∑
i=1

ai(t)cDαi
0+Φj+1(t).

Also cDαi
0+Φj+1(t) is represented as

cDαi
0+Φj+1(t) = Dαi

0+

[
Φj+1(t) –

ni–1∑
k=0

DkΦj+1(0)Φk+1(t)

]
, i = 1, . . . , m.
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If i ≥ hj, 0 ≤ αi ≤ j and ni ≤ j. Thus DkΦj+1(0) = 0, k = 0, . . . , n0 – 1. That is, we get

cDαi
0+Φj+1(t) = Dαi

0+Φj+1(t), i = hj, . . . , m.

If i < hj, then ni > j and so

ni–1∑
k=0

DkΦj+1(0)Φk+1(t) = Φj+1(t)

and thus cDαi
0+Φj+1(t) = 0, i < hj. That is, we get

cDαi
0+Φj+1(t) =

⎧⎨
⎩

Dαi
0+Φj+1(t), hj ≤ i ≤ m,

0, 1 ≤ i < hj.

Therefore the first approximation of yj(t) is provided by

y1
j (t) = Φj+1(t) – Iα0

0+

m∑
i=1

ai(t)cDαi
0+Φj+1(t) = Φj+1(t) – Iα0

0+

m∑
i=hj

ai(t)Dαi
0+Φj+1(t)

= Φj+1(t) – Iα0
0+

m∑
i=hj

ai(t)Φj+1–αi (t),

where

Φj+1–αi (t) := Dαi
0+Φj+1(t).

We have y1
j (t) ∈ Cn0

γ [0, T].
The second approximation of yj(t) is given by

y2
j (t) = Φj+1(t) – Iα0

0+

m∑
i=1

ai(t)cDαi
0+y1

j (t)

= Φj+1(t) – Iα0
0+

m∑
i=1

ai(t)cDαi
0+

[
Φj+1(t) – Iα0

0+

m∑
i=hj

ai(t)Φj+1–αi (t)

]

= Φj+1(t) – Iα0
0+

m∑
i=1

ai(t)cDαi
0+Φj+1(t) + Iα0

0+

m∑
i=1

ai(t)cDαi
0+Iα0

0+

m∑
i=hj

ai(t)Φj+1–αi (t).

Here since cDαi
0+Iα0

0+
∑m

i=hj
ai(t)Φj+1–αi (t) = Iα0–αi

0+
∑m

i=hj
ai(t)Φj+1–αi (t), we get

y2
j (t) = Φj+1(t) +

1∑
k=0

(–1)k+1Iα0
0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]k m∑
i=hj

ai(t)Φj+1–αi (t).

By induction, the nth approximation of yj(t) is given by

yn
j (t) = Φj+1(t) +

n–1∑
k=0

(–1)k+1Iα0
0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]k m∑
i=hj

ai(t)Φj+1–αi (t).
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Therefore

yj(t) = lim
n→∞ yn

j (t) = Φj+1(t) +
∞∑

k=0

(–1)k+1Iα0
0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]k m∑
i=hj

ai(t)Φj+1–αi (t).
�

Lemma 3.3 Let us assume that n0 > n1, ai ∈ C[0, T] (i = 1, . . . , m) and H0 �= ∅. Then there
exists the unique canonical fundamental system

yj(t) ∈ Cα0,n0–1[0, T], j = 0, 1, . . . , n0 – 1,

of solutions for Eq. (3) and it is written by

yj(t) = Φj+1(t) +
∞∑

k=0

(–1)k+1Iα0
0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]k m∑
i=hj

ai(t)Φj+1–αi (t),

j = 0, 1, . . . , n1 – 1, (16)

yj(t) = Φj+1(t) +
∞∑

k=0

(–1)k+1Iα0
0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]k m∑
i=1

ai(t)Φj+1–αi (t),

j = n1, n1 + 1, . . . , n0 – 1. (17)

Proof Let find the canonical system as the limit of the approximation sequence (11) and
(12). Fixing j = 0, 1, . . . , n0 – 1, we find the jth element yj(t) of the canonical system.

y0
j (t) = Φj+1(t),

y1
j (t) = Φj+1(t) – Iα0

0+

m∑
i=1

ai(t)cDαi
0 y0

j (t) = Φj+1(t) – Iα0
0+

m∑
i=1

ai(t)cDαi
0 Φj+1(t).

Let us note that, for k = 0, 1, . . . , ni – 1,

DkΦj+1(0) =

⎧⎨
⎩

1, k = j,

0, k �= j.

Since n0 > n1 ≥ ni, for j = 0, 1, . . . , n1 – 1, we get

cDαi
0+Φj+1(t) =

⎧⎨
⎩

Dαi
0+Φj+1(t), hj ≤ i ≤ m,

0, 1 ≤ i < hj.
(18)

If j = n1, . . . , n0 – 1, then k < j and thus we get

cDαi
0+Φj+1(t) = Dαi

0+Φj+1(t), i = 1, . . . , m. (19)
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Therefore the first approximation of yj(t) is given by

y1
j (t) = Φj+1(t) – Iα0

0+

m∑
i=hj

ai(t)Dαi
0+Φj+1(t) = Φj+1(t) – Iα0

0+

m∑
i=hj

ai(t)Φj+1–αi (t),

j = 0, 1, . . . , n1 – 1,

y1
j (t) = Φj+1(t) – Iα0

0+

m∑
i=1

ai(t)Dαi
0+Φj+1(t) = Φj+1(t) – Iα0

0+

m∑
i=1

ai(t)Φj+1–αi (t),

j = n1, . . . , n0 – 1.

We obtain y1
j (t) ∈ Cα0,n0–1[0, T], j = 0, 1, . . . , n0 – 1.

For j = 0, 1, . . . , n1 – 1, the second approximation is given as

y2
j (t) = Φj+1(t) – Iα0

0+

m∑
i=1

ai(t)cDαi
0+y1

j (t)

= Φj+1(t) – Iα0
0+

m∑
i=1

ai(t)cDαi
0+Φj+1(t) + Iα0

0+

m∑
i=1

ai(t)cDαi
0+Iα0

0+

m∑
i=hj

ai(t)Φj+1–αi (t). (20)

By Eq. (18) and the fact that cDαi
0+Iα0

0+
∑m

i=hj
ai(t)Φj+1–αi (t) = Iα0–αi

0+
∑m

i=hj
ai(t)Φj+1–αi (t), we

can rewrite (20) as

y2
j (t) = Φj+1(t) – Iα0

0+

m∑
i=hj

ai(t)Dαi
0+Φj+1(t) + Iα0

0+

m∑
i=1

ai(t)Iα0–αi
0+

m∑
i=hj

ai(t)Φj+1–αi (t)

= Φj+1(t) +
1∑

k=0

(–1)k+1Iα0
0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]k m∑
i=hj

ai(t)Φj+1–αi (t).

If j = n1, n1 + 1, . . . , n0 – 1, then the second approximation is given as

y2
j (t) = Φj+1(t) – Iα0

0+

m∑
i=1

ai(t)cDαi
0+y1

j (t)

= Φj+1(t) +
1∑

k=0

(–1)k+1Iα0
0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]k m∑
i=1

ai(t)Φj+1–αi (t).

Thus we have the representation of the second approximation of yj(t) as

y2
j (t) = Φj+1(t) +

1∑
k=0

(–1)k+1Iα0
0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]k m∑
i=hj

ai(t)Φj+1–αi (t),

j = 0, 1, . . . , n1 – 1,

y2
j (t) = Φj+1(t) +

1∑
k=0

(–1)k+1Iα0
0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]k m∑
i=1

ai(t)Φj+1–αi (t),

j = n1, n1 + 1, . . . , n0 – 1.
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For n = 3, 4, . . . , we can find yn
j (t) by induction and, by letting n → ∞, we get the represen-

tation (16) and (17) of the canonical fundamental system. �

Lemma 3.4 Let 0 < γ = n0 – α0 < 1, n0 = n1, ai ∈ C1
γ [0, T] and Dn0–α0

0+ ai ∈ C[0, T], i =
1, . . . , m. Let assume that Eq. (3) is of type 2. That is, let assume that n0 ≥ 2 and there
exists a j0 ∈ {0, 1, . . . , n0 – 2} such that Hj0 = ∅ and Hj0+1 �= ∅. Then there exists the unique
canonical fundamental system yj(t) ∈ Cn0

γ [0, T], j = 0, 1, . . . , n0 – 1 of solutions for Eq. (3)
and it is written by

yj(t) = Φj+1(t), j = 0, 1, . . . , j0, (21)

yj(t) = Φj+1(t) +
∞∑

k=0

(–1)k+1Iα0
0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]k m∑
i=hj

ai(t)Φj+1–αi (t),

j = j0 + 1, . . . , n0 – 1. (22)

Proof Similarly, we can see that the first approximation of yj(t) is written

y1
j (t) = Φj+1(t), j = 0, 1, . . . , j0,

y1
j (t) = Φj+1(t) – Iα0

0+

m∑
i=hj

ai(t)Φj+1–αi (t), j = j0 + 1, . . . , n0 – 1.

We get y1
j (t) ∈ Cn0

γ [0, T], j = j0 + 1, . . . , n0 – 1.
Also the second approximation of yj(t) is given as

y2
j (t) = Φj+1(t), j = 0, 1, . . . , j0,

y2
j (t) = Φj+1(t) +

1∑
k=0

(–1)k+1Iα0
0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]k m∑
i=hj

ai(t)Φj+1–αi (t),

j = j0 + 1, . . . , n0 – 1.

By induction, we get the nth approximation of yj(t),

yn
j (t) = Φj+1(t), j = 0, 1, . . . , j0,

yn
j (t) = Φj+1(t) +

n–1∑
k=0

(–1)k+1Iα0
0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]k m∑
i=hj

ai(t)Φj+1–αi (t),

j = j0 + 1, . . . , n0 – 1.

That is, the canonical fundamental system of solutions for Eq. (3) is given by (21) and (22)
and we get yj(t) ∈ Cn0

γ [0, T], j = 0, 1, . . . , n0 – 1. �

Lemma 3.5 Lets assume that n0 > n1 and ai ∈ [0, T], i = 1, . . . , m. Lets assume that Eq. (3)
is the type 2. That is, assume that n0 ≥ 2 and there exists a j0 ∈ {0, 1, . . . , n0 – 2} such that
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Hj0 = ∅ and Hj0+1 �= ∅. Then there exists the unique canonical fundamental system yj(t) ∈
Cα0,n0–1[0, T], j = 0, 1, . . . , n0 – 1 of solution for Eq. (3) and it is written by

yj(t) = Φj+1(t), j = 0, 1, . . . , j0, (23)

yj(t) = Φj+1(t) +
∞∑

k=0

(–1)k+1Iα0
0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]k m∑
i=hj

ai(t)Φj+1–αi (t),

j = j0 + 1, . . . , n1 – 1, (24)

yj(t) = Φj+1(t) +
∞∑

k=0

(–1)k+1Iα0
0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]k m∑
i=1

ai(t)Φj+1–αi (t),

j = n1, n1 + 1, . . . , n0 – 1. (25)

Proof Similarly, we can see the first approximation of yj(t) is given by

y1
j (t) = Φj+1(t), j = 0, 1, . . . , j0,

y1
j (t) = Φj+1(t) – Iα0

0+

m∑
i=hj

ai(t)Φj+1–αi (t), j = j0 + 1, . . . , n1 – 1,

y1
j (t) = Φj+1(t) – Iα0

0+

m∑
i=1

ai(t)Φj+1–αi (t), j = n1, . . . , n0 – 1.

Also we get the second approximation of y1
j (t),

y2
j (t) = Φj+1(t), j = 0, 1, . . . , j0,

y2
j (t) = Φj+1(t) +

1∑
k=0

(–1)k+1Iα0
0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]k m∑
i=hj

ai(t)Φj+1–αi (t),

j = j0 + 1, . . . , n1 – 1,

y2
j (t) = Φj+1(t) +

1∑
k=0

(–1)k+1Iα0
0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]k m∑
i=1

ai(t)Φj+1–αi (t),

j = n1, n1 + 1, . . . , n0 – 1.

In a similar way to the above proof, we can get the nth approximation of yj(t) and then,
taking n → ∞, we can get the canonical fundamental system (23) and (24) and (25) and
yj(t) ∈ Cα0,n0–1[0, T], j = 0, 1, . . . , n0 – 1. �

Lemma 3.6 Let 0 < γ = n0 – α0 < 1 and assume that ai ∈ C1
γ [0, T], i = 1, . . . , m. Let us

assume that Eq. (3) is of type 3. That is, let assume that Hn0–1 = ∅. Then Eq. (3) has the
unique canonical fundamental system {yj(t) : j = 0, 1, . . . , n0 – 1} of solutions in Cn0

γ [0, T]
and it is represented as

yj(t) = Φj+1(t), j = 0, 1, . . . , n0 – 1. (26)



Pak et al. Advances in Difference Equations        (2019) 2019:256 Page 16 of 22

Proof Let y0
j (t) = Φj+1(t), j = 0, 1, . . . , n0 – 1 and calculate the first approximation of yj(t).

Then we have

y1
j (t) = Φj+1(t) – Iα0

0+

m∑
i=1

ai(t)cDαi
0+Φj+1(t).

From the assumption of Hn0–1 = {i : 0 ≤ αi ≤ n0 – 1, i = 1, . . . , m} = ∅, it is evident that
n0 – 1 < αi ≤ n0 for all i = 1, . . . , m and thus

cDαi
0+Φj+1(t) = Dαi

0+

[
Φj+1(t) –

n0–1∑
k=0

DkΦj+1(0)Φk+1(t)

]
= 0, j = 1, . . . , n0 – 1,

and y1
j (t) = Φj+1(t), j = 1, . . . , n0 – 1. Similarly, we can easily find

yn
j (t) = Φj+1(t), j = 0, . . . , n0 – 1,

and thus we can get

yj(t) = Φj+1(t) ∈ Cn0
γ [0, T], j = 0, . . . , n0 – 1. �

Theorem 3.1 Let g(t), ai(t) ∈ C[0, T], i = 1, . . . , m. Then there exists the unique solution
y(t) ∈ Cα0,n0–1[0, T] of the initial value problem (1) and (4) and it is represented by

y(t) =
∞∑

k=0

(–1)kIα0
0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]k

g(t). (27)

Proof From the assumptions and Lemma 3.1 follow the existence and uniqueness of the
solution of Eqs. (1) and (4). Now we have to find this solution.

From Lemma 3.1, the first approximation solution is given by

y1(t) = Iα0
0+ g(t) – Iα0

0+

m∑
i=1

ai(t)cDαi
0+Iα0

0+ g(t).

With a view on the definition of the Caputo fractional derivative and the integrability of
Iα0–αi

0+ g(t), we have

cDαi
0+Iα0

0+g(t) = Dαi
0+

[
Iα0

0+g(t) –
ni–1∑
j=1

(
DjIα0

0+g
)
(0)Φj+1(t)

]
= Dαi

0+Iα0
0+g(t)

= Dαi
0+Iαi

0+Iα0–αi
0+ g(t) = Iα0–αi

0+ g(t).

So, the first approximation solution can be rewritten

y1(t) = Iα0
0+g(t) – Iα0

0+

m∑
i=1

ai(t)Iα0–αi
0+ g(t) = Iα0

0+ g(t) – Iα0
0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]
g(t)

=
1∑

k=0

(–1)kIα0
0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]k

g(t),
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Dn0–1y1(t) = Iα0–n0+1
0+ g(t) – Iα0–n0+1

0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]
g(t),

where α0 – n0 + 1 > 0, g(t) ∈ C[0, T] and [
∑m

i=1 ai(t)Iα0–αi
0+ ]g(t) ∈ C[0, T].

Hence the Lemma 3.1 yields Dn0–1y1(t) ∈ C[0, T], that is, y1(t) ∈ Cn0–1[0, T].
Moreover, we have

cDα0
0+y1(t) = cDα0

0+

[
Iα0

0+ g(t) – Iα0
0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]
g(t)

]

= Dα0
0+

[
Iα0

0+ g(t) – Iα0
0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]
g(t)

–
n0–1∑
j=1

Dj

[
Iα0

0+ g(t) – Iα0
0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]
g(t)

]∣∣∣∣
t=0

Φj+1(t)

]

= g(t) –

[ m∑
i=1

ai(t)Iα0–αi
0+

]
g(t) ∈ C[0, T],

from which y1(t) ∈ Cα0,n0–1[0, T].
Next, we find the second approximation solution, i.e., l = 2 in the expression of Eq. (6):

y2(t) = Iα0
0+ g(t) – Iα0

0+

m∑
i=1

ai(t)cDαi
0+y1(t)

= Iα0
0+ g(t) – Iα0

0+

m∑
i=1

ai(t)cDαi
0+

[
Iα0

0+ g(t) – Iα0
0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]
g(t)

]

= Iα0
0+ g(t) – Iα0

0+

m∑
i=1

ai(t)Iα0–αi
0+ g(t) + Iα0

0+

m∑
i=1

ai(t)Iα0–αi
0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]
g(t)

= Iα0
0+ g(t) – Iα0

0+

m∑
i=1

ai(t)Iα0–αi
0+ g(t) + Iα0

0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]2

g(t)

=
2∑

k=0

(–1)kIα0
0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]k

g(t).

Thus, we get the second approximation solution

y2(t) =
2∑

k=0

(–1)kIα0
0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]k

g(t).

Now, we inductively find the (l + 1)th approximation solution when the lth approximation
solution for any l ∈ N is provided by

yl(t) =
l∑

k=0

(–1)kIα0
0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]k

g(t).
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Then we have

yl+1(t) = Iα0
0+g(t) – Iα0

0+

m∑
i=1

ai(t)cDαi
0+

[ l∑
k=0

(–1)kIα0
0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]k

g(t)

]

= Iα0
0+g(t) – Iα0

0+

[ l∑
k=0

(–1)k
m∑

i=1

ai(t)cDαi
0+Iα0

0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]k

g(t)

]

= Iα0
0+g(t) – Iα0

0+

[ l∑
k=0

(–1)k
m∑

i=1

ai(t)Iα0–α
0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]k

g(t)

]

=
l+1∑
k=0

(–1)kIα0
0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]k

g(t).

Therefore, we see that, for any natural number n, the nth approximation solution is

yn(t) =
n∑

k=0

(–1)kIα0
0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]k

g(t)

and

y(t) = lim
n→∞ yn(t) =

∞∑
k=0

(–1)kIα0
0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]k

g(t),

which yields y(t) ∈ Cα0,n0–1[0, T]. �

Theorem 3.2 Let n0 – 1 < α0 ≤ n0 and n0 = n1. Assume that ai ∈ C1
r [0, T], Dn0–α0

0+ ai ∈
C[0, T], i = 1, . . . , m for γ such that 0 < γ = n0 –α0 < 1 and g(t) ∈ C[0, T]. Moreover, assume
that the case 1 holds. Then the initial value problem (1) and (2) has the unique solution
y(t) ∈ Cα0,n0–1[0, T] ∩ Cn0

γ [0, T] and it is represented by

y(t) =
n0–1∑
j=0

bjyj(t) +
∞∑

k=0

(–1)kIα0
0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]k

g(t), (28)

where yj(t) is the canonical fundamental system of solution to the corresponding homoge-
neous equation

cDα0
0+y(t) +

m∑
i=1

ai(t)cDαi
0+y(t) = 0, t ∈ [0, T],

which is obtained from Lemma 3.2.

Proof The proof follows from Theorem 3.1 and the linearity of the initial value problem
(1) and (2).

Corollary 3.2.1 Let n0 – 1 < α0 < n0, n0 > n1, g(t) ∈ C[0, T] and ai ∈ C[0, T], i = 1, . . . m.
Assume that the case 1 holds true. Then the initial value problem (1) and (2) has the unique
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solution y(t) ∈ Cα0,n0–1[0, T] and it is represented as

y(t) =
n0–1∑
j=0

bjyj(t) +
∞∑

k=0

(–1)kIα0
0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]k

g(t),

where yj(t) is obtained from Lemma 3.3.

Corollary 3.2.2 Let n0 – 1 < α0 ≤ n0 and n0 = n1. Assume that ai ∈ C1
r [0, T], Dn0–α0

0+ ai ∈
C[0, T], i = 1, . . . , m for any γ such that 0 < γ = n0 – α0 < 1 and g(t) ∈ C[0, T]. Moreover,
assume that the case 2 holds true. Then the initial value problem (1) and (2) has the unique
solution y(t) ∈ Cα0,n0–1[0, T] ∩ Cn0

γ [0, T] and it is represented as

y(t) =
n0–1∑
j=0

bjyj(t) +
∞∑

k=0

(–1)kIα0
0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]k

g(t),

where yj(t) is obtained from Lemma 3.4.

Corollary 3.2.3 Let n0 – 1 < α0 < n0, n0 > n1, g(t) ∈ C[0, T] and ai ∈ C[0, T], i = 1, . . . , m.
Assume that the case 2 holds true. Then the initial value problem (1) and (2) has the unique
solution y(t) ∈ Cα0,n0–1[0, T] and it is represented as

y(t) =
n0–1∑
j=0

bjyj(t) +
∞∑

k=0

(–1)kIα0
0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]k

g(t),

where yj(t) is obtained from Lemma 3.5.

Corollary 3.2.4 Let ai ∈ C1
r [0, T], i = 1, . . . , m for r such that 0 < γ < α0 – n0 + 1. Moreover,

assume that the case 3 holds true. Then the initial value problem (1) and (2) has the unique
solution y(t) ∈ Cα0,n0–1[0, T] ∩ Cn0

γ [0, T] and it is represented as

y(t) =
n0–1∑
j=0

bjyj(t) +
∞∑

k=0

(–1)kIα0
0+

[ m∑
i=1

ai(t)Iα0–αi
0+

]k

g(t),

where yj(t) is obtained from Lemma 3.6.

4 Examples
Example 1 We consider the fractional differential equation with continuous variable co-
efficients as

⎧⎨
⎩

cD0.8
0+ y(t) + ts · cD0.3

0+ y(t) = tβ ,

y(t)|t=+0 = 0.
(29)

Then we see that Eq. (29) satisfy the conditions of Theorem 3.1. We have

y(t) =
∞∑

k=0

(–1)kI0.8
0+

(
tksI0.5k

0+ tβ
)

= I0.8
0+

(
tβ

)
+

∞∑
k=1

(–1)k+1I0.8
0+

(
t(k+1)sI0.5(k+1)

0+ tβ
)
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= I0.8
0+

(
tβ

)
–

1
Γ (0.8)

∫ t

0
(t – z)–0.2

∞∑
k=0

(–1)kz(k+1)sI0.5(k+1)
0+ zβ dz

=
Γ (β + 1)

Γ (β + 1.8)
tβ+0.8 –

Γ (β + 1)
Γ (0.8)

∫ t

0
(t – v)–0.2vs+β+0.5E0.5,β+1.5

(
–vs+0.5)dv.

Thai is, the solution of Example 1 is expressed as

y(t) =
Γ (β + 1)

Γ (β + 1.8)
tβ+0.8 –

Γ (β + 1)
Γ (0.8)

∫ t

0
(t – v)–0.2vs+β+0.5E0.5,β+1.5

(
–vs+0.5)dv.

Example 2 We discuss the linear inhomogeneous fractional differential equation with
continuous variable coefficients as

⎧⎨
⎩

cD1.5
0+ y(t) + t0.3 · cD0.8

0+ y(t) = g(t),

Dky(t)|t=+0 = 0, k = 0, 1,
(30)

where g(t) = 2
Γ (1.5) t0.5 + 2

Γ (2.2) t1.5. The exact solution of Example 2 is y(t) = t2. We have
α0 = 1.5, m = 1, α1 = 0.8,

y(t) =
∞∑

k=0

(–1)kI1.5
0+

(
t0.3kI0.7k

0+ g(t)
)

= I1.5
0+

(
g(t)

)
+

∞∑
k=0

(–1)k+1I1.5
0+

(
t0.3(k+1)I0.7(k+1)

0+ g(t)
)

= I1.5
0+

(
g(t)

)
–

1
Γ (1.5)

∫ t

0
(t – z)0.5

∞∑
k=0

(–1)kz0.3(k+1)I0.7(k+1)
0+ g(z) dz.

Also since

I0.7(k+1)
0+ g(z) =

2
Γ (1.5)

I0.7(k+1)
0+ z0.5 +

2
Γ (2.2)

I0.7(k+1)
0+ z1.5

=
2

Γ (0.7(k + 1) + 1.5)
z0.5+0.7(k+1) +

2
Γ (2.2)

Γ (2.5)
Γ (0.7(k + 1) + 2.5)

z0.7(k+1)+1.5

and

I1.5
0+

(
g(t)

)
=

2
Γ (1.5)

I1.5
0+ t0.5 +

2
Γ (2.2)

I1.5
0+ t1.5 =

2
Γ (1.5)

Γ (1.5)
Γ (3)

t2 +
2

Γ (2.2)
Γ (2.5)
Γ (4)

t3

= t2 +
Γ (2.5)

3Γ (2.2)
t3

are satisfied, we have

y(t) = I1.5
0+

(
g(t)

)
–

1
Γ (1.5)

∫ t

0
(t – z)0.5

∞∑
k=0

(–1)kz0.3(k+1)I0.7(k+1)
0+ g(z) dz

= t2 +
Γ (1.5)

2Γ (2.2)
t3 –

2
Γ (1.5)

∫ t

0
(t – z)0.5z1.5E0.7,2.2(–z) dz

–
3

Γ (2.2)

∫ t

0
(t – z)0.5z2.5E0.7,3.2(–z) dz,

where Eα,β (x) is the Mittag-Leffler function.
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Figure 1 The error between the exact solution and
series-representation solution

Therefore the solution expression y(x) of the proposed problem is obtained as the above
equation. The error between the exact solution and series-representation solution is

	y =
Γ (1.5)

2Γ (2.2)
t3 –

2
Γ (1.5)

∫ t

0
(t – z)0.5z1.5E0.7,2.2(–z) dz

–
3

Γ (2.2)

∫ t

0
(t – z)0.5z2.5E0.7,3.2(–z) dz.

We can know that the error value is equal to almost zero. The error graph is shown in
Fig. 1.

5 Conclusion
In this paper, we have obtained series-representations for the solution of initial value prob-
lems of linear inhomogeneous fractional differential equations with continuous variable
coefficients and inhomogeneous initial conditions. We have proved that the solution of the
problem is determined by adding the solution of the inhomogeneous differential equations
with the homogeneous initial conditions to the linear combination of the canonical fun-
damental system of solution for the corresponding homogeneous fractional differential
equation and the inhomogeneous initial values. The effectiveness of the proposed the-
ory is illustrated with two examples. The representation of the solution for a multi-term
fractional differential equation under general conditions will be the object of our future
research.
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