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Abstract

In this paper, we present sufficient criteria ensuring the existence and uniqueness of
solutions for nonlinear impulsive multi-order Caputo-type generalized fractional
differential equations supplemented with nonlocal integro-initial value conditions
involving generalized fractional integrals. Extremal solutions for the given problem are
also discussed. The main tools of our study include Krasnoselskii's fixed point
theorem, Banach contraction mapping principle and monotone iterative technique.
Examples are constructed for illustrating the obtained results.
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1 Introduction

Impulsive dynamical systems involve some continuous variable dynamic characteristics,
together with certain reset maps generating impulsive switching among them. The dy-
namical behavior of impulsive systems is much more complex than that associated to
non-impulsive dynamical systems. Such systems appear in real-time software verification
[1], transportation systems [2, 3], automotive control [4, 5], etc. In consequence, the topic
of impulsive differential equations has emerged as an important area of investigation as it
accounts for several phenomena which are not addressed by the non-impulsive equations.

Arbitrary (non-integer) order differential and integral operators serve as better mod-
eling tools than their corresponding integer-order counterparts, as these operators are
capable to retrieve the historical effects of the systems and processes involved in the phe-
nomena. Fractional-order initial and boundary value problems have been investigated by
many authors in recent years; for instance, see [6—17].

Factional differential equations with impulse effects also received considerable atten-
tion in view of their applications in modeling the physical problems experiencing instan-
taneous changes. For some recent works on impulsive fractional differential equations, we
refer the reader to the papers [18—-29] and the references cited therein. In a recent work
[26], the authors discussed the existence of extremal solutions for a nonlinear impulsive
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differential equations with multi-order fractional derivatives and integral boundary con-
ditions.

In this paper, we introduce a new class of nonlinear nonlocal impulsive multi-order
problems involving Caputo-type generalized fractional derivatives and generalized frac-
tional integrals (in the sense of Katugampola). In precise terms, we investigate the follow-
ing problem:

fokfy(t) =f(t,y®), 1l<ax<2,k=0,1,2,...,p,te],
Ay(tr) = Sk(y(tr)), ANdy(ty) = Sp(y(tx)), k=1,2,...,p, (1.1)
y(O) = Zi:o )‘kplt[;;ky(sk) +1, 5)’(0) =0, b < %-k < tr+1s

where fo is the Caputo-type generalized fractional derivative of order ay, p > 0, plté"
is the generalized fractional integral of order Bx > 0, p > 0 (defined in the next section),
feCU xR,R),S,S; € C(R,R); A, & are positive constants; J = [0, T] (T >0),n e R,0=
o<ty < <tp < <ly<tpa=TJ =]\ {ti,ta,.... tm}, Ay(ta) = y(&) — ¥(t;), where y(£)
and y(;) denote the right and the left limits of y(¢) at ¢ = fx(k = 1,2,..., p), respectively;
A8y(t) have a similar meaning for §y(¢), where § = t1=* %.

In Sect. 2, we present the background material related to our work and prove an im-
portant lemma which plays a key role in the sequel. Section 3 contains the existence and
uniqueness results for problem (1.1). In Sect. 4, we prove a new comparison result and use
it to obtain the extremal solutions for problem (1.1).

2 Preliminaries
Letus fix Jo = [0, 1], Jk = (tis tks1], k = 1,2,...,pwith ¢, = T, and define PC(J,R) = {y : ] —
R:y e CUwnR),k =0,1,...,p and y(t}) and y(£;) exist with y(¢;) = y(tx),k = 1,2,...,p},
where C(J,R) denotes the space of all continuous real-valued functions on J and
PCy(,R) = {y:] — R: 8y € PC(J,R); $y(t), 8y(t;) exist and 8y is left continuous at # for
k=1,2,...,p,8 = tl“’%} with the norm ||y|| = sup,/{lly(®)lrc, ||8y(t)||PC§ }. We further re-
call that AC"(J,R) = {h : ] — R : hk,...,h"" VY e C(J,R)and h""~V is absolutely
continuous}. For 0 < € < 1, we define C ,(J,R) = {f : ] — R : (¢ — a”)’f(¢) € C,R)}
endowed with the norm ||fllc., = [I(¢” — a”)f(¢)llc. Moreover, we define the class of
functions f that have absolutely continuous §”~!-derivative, denoted by AC}(J,R), as
follows: AC}(J,R) = {f : ] > R : 8""'f € AC(J,R),8 = tl“’%}, which is equipped with
the norm |[f||c§ = ZZ:é 165Fllc. More generally, let GUR) ={f:]—>R: Yy =
CU,R),8"f € Cc,(J,R),8 = tl‘”%} be the space of functions endowed with the norm
Ifllcy, = S8 f lle + 18"fllc.,,- Here we use the convention Cj, = Cj.

ForceR,1 < g < o0, let X (a, b) denote the space of all Lebesgue measurable functions
¢ on (a, b) equipped with the norm

b d 1/q
16l = ( / !xC¢(x)|"§) <.

Definition 2.1 ([30]) The generalized fractional integral of order « >0 and p >0 of f €
X&(a,b), for —0o <a < t < b < 00, is defined by

" pl—a t Sp—l
(PLf)@) = ™) /ﬂ o) f(s) ds. (2.1)
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Note that the integral in (2.1) is called the left-sided fractional integral. Similarly, we can
define the right-sided fractional integral *I} f as

" pl—a b gP-1
Crne -4 [ s 22)

Definition 2.2 ([31]) The generalized fractional derivatives of f € X{(a, b) of order o €
(n — 1,n],n € N, associated with the generalized fractional integrals (2.1) and (2.2), are
defined for 0 <a <x < b <00 by

d n
(e (20 5) L

B pot—n+1 . 1 n t L
B I'n-a) (t pdt) /a (tr _Sp)a—n+1f(s) ds (2.3)

and
d n
C05)0) - (0 5 ) Cren)o

~ pa—n+1 - i n b L
- I'(n-o) (_t pdt) ./t‘ (sP — tp)oz—nJrlf(S) ds. (2.4)

Definition 2.3 ([32]) For @ > 0 and f € AC}[a, b], the Caputo-type generalized fractional
derivatives { D%, and { DY are defined in terms of (2.3) and (2.4) as follows:

. . 3@ (0 —ar\* o d
fDa*‘f(x) = pDa* |:f(t) - g k‘ ( p ) (x)’ 5 =X pd_x’ (25)
o (C1)F8F () (b -1\ d
0D f(x) = P DS [f(t) _ kz; kL ( : ) }(x), posir 26)

Lemma 2.4 ([32]) Let a > 0,n = [a] + 1, where [«] denotes the integer part of o, and f €
AC{[a,b] withO<a < b < oo.
1.Ifa &N, then

woon 1 L=\ NS ds e
i oo [(5F) SIS e, @)

Rl

b p_ o\ "l 1\n &1 d
eDif 5 = ml_a)/t ( a ) CSODOE e sy 0, (2.8)
2. Ifa €N, then
eDef =8"f, (DS =(1)"8f. (2.9)

Lemma 2.5 ([32]) Iff € AC§|a,b] or C}la,b] and o € R, then

n-1 (Sk b b ‘
PI%0 DR £ () =f(x)—Z( ’2(“) <x pa ) |

k=0

Page 3 of 20
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n-1 ki ok k
PILIDGf() =f(x) - Y (-1 (;f)(a)(bpl—)xp) '

k=0

In particular, for 0 < o <1, we have

PI5EDf (x) = f(x) - f(a),
PIZ DY f(x) = f(x) — f(D).

Definition 2.6 A function y € PC; (J,R) N AC2(Ji) with its Caputo generalized derivative
of order oy, k=0,1,...,p, is a solution of (1.1) if it satisfies (1.1).

Lemma 2.7 For any h € C([0,T],R),y € PC;(J,R) N AC§(]/<), the constants Sy, S (k =
1,2,...,p) and

~ C k&L — )P
9_1—§m¢0, (2.10)

the integral representation of the solution for the following impulsive nonlocal integro-
initial value problem

(DY) =h(t), O<ax<2,k=0,1,2,...,p,t €/,
k
Ay(tk) =Sk Aay(tk) =S, k=12,...,p (2.11)
=Yk oMl y (&x) +m, 8y(0) =0, & <& <tr1,

is given by

PIH(E) + A, t €,
plakh pIdz lh S, k-1 tk , pla,l 1 S*
A Z,tl[ : (f)+ 1+ D CSOPLE ) + ;) o1
+Zl1 k)pll1 h(t;) + 571+ A,

teliuk=12,...,p,

where

XP:A ’)I“"“Skh +i27m(§'€_ i) [”Ia’ 1h(t)+S]
k=0 k=1 i=1 PPL (B +1) l

kaM A D ey 5]
Pﬂk*lr Br+1) N

k=2 i=1
Ak S1< — )P [ ]

Proof Applying the operator plfi" to the fractional differential equation in (2.11) and using
k
Lemma 2.5, we obtain

N o —t?
y(t) = /’Itfh(t) +Cp+ cz,k( k )
k o

Page 4 of 20
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1-ay

0 t el tp _ tﬂ
= / sP1 (t” - sp) “h(s)ds + cyx + cz,k( k ), tei, (2.14)
Iﬁ(ak) 7% p

where ¢1 4,24 € R,k=0,1,...,p. Taking §-derivative of (2.14), we get
8y(t) =PI h(t) + cox = ﬂ /ts”_l(t” —sp)ak_Zh(s) ds+c (2.15)
J P 2= @-1 J, 2,k .

For ¢t € Jy, we have
tﬂ
y(t) =PI h(t) + c10 + Co0— (2.16)
0
and

8y(8) = "I h(E) + ca0. (2.17)

Using the condition §y(0) = 0 in (2.17), we get ¢z = 0. In consequence, (2.16) and (2.17)
take the form

y(t) =PI h(t) + cro,  tE€Jo, (2.18)
and
8y(0) =PI h(t), teo. (2.19)

Next, for t € J;, we have

tP—t]
y(t) = 'Oltai.lh(t) +C1,1 + C2,1( 1 ), (220)
P
Sy(t) = "If‘f’lh(t) + o1 (2.21)
which imply that
y(£7) = "I h(tr) + c1,05 y(8) = e (2.22)
8y(t) =1 ht),  8y(t]) = can (2.23)

Using the impulse conditions Ay(t1) = y(¢]) — ¥(¢]) = S1, Ady(tx) = 8y(t]) — 8y(¢7) = S} in
(2.22) and (2.23), we find that

-1
11 = "I h(t) + c10 + S, 21 ="13" h(ty) + S}

Substituting the values of ¢;,; and ¢y in (2.20), we obtain

—tf

tP
0= 10+ ) + 1 (NP ) 5T v un, e

Page 5 of 20
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By a similar process, for ¢ € Ji, we get

k

k-1 P _ 4P
0= E2he+ L 5]+ (oD e -5
i=1

i=1

+Z(

Fort e Ji,k=0,1,2,...,p, we have

) [ Yht) + 7]+ cror k=1,2,...,p. (2.24)

k

— "\
plﬁky(t) plak+ﬁkh( ) Z (t)O t ) k

T L e M+ 5]

k-1
(" =)t =) ¢ a1
P () + ST
+Z T D) i M S

k
— t/f)ﬁkﬂ

) tP tp Bk
I h() + S W~ )

(e
+ X srirtgp U OS] e e)

The condition y(0) = i Iﬂ *y(&x) + n, together with (2.18) and (2.25), implies that
(€L -7 -
_ _ k\Sk — 'k Z o 7%+ Bk
Lo = (1 Z pP I (Br + 1)) i M 1 e

}\k(s a1
SR e s

k=1 i=1
3 M D) ey
+ i
L TR (e 1) b
4 P\Br+1
)\/<g:/<_t)/3 o ric1-1 .
+ XI:Z pﬂk+1[‘ ﬁk +2)[ I h(tl) +Si] +1 ¢ (2.26)

which, on inserting in (2.18) and (2.24), yields the solution (2.12). The converse follows by
direct computation. This completes the proof. d

3 Existence and uniqueness results

In this section, we present the existence and uniqueness results for problem (1.1). Let
G =PC;(J,R) N AC(%(];(). By Lemma 2.7, we transform problem (1.1) into a fixed point
problem by defining an operator F: G — G as

YIRS YO) + A, e

"If]:"f(t,y(t)) L PLEE S (8 y(8) + Si(y(2))]

E)0=1 + T ﬂz"“ st + S0 (3.1)
D yME= S 01;;;; (e y(e) + S;OE)] + 4,

teluk=12,...,p,

where A is defined by (2.13).
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For convenience, for p > 1, we set

maxo<j<p 17 maxo<j<p T%*

Ar=(1+p) +(2p-1)— , (3.2)
C P ingcip (0 Tler + D) T mingzicy (09T ()
Ay - i ML — )
2712 | = pt B (o + B+ 1)
Zi M(EF = )P (el — e )
et Lt it T (B + D (i + 1)
. iki (& — 0)PR(tf — )8 — £ )1
P pbirei i LBy + 1) I (0ti-1)
iz h(Ef — )P () — o ) ! (33)
k=1 i=1 pﬂkﬂxl 1F(ﬂk"'z)]_'(o‘t 1) ’ '
1 O MilEf — )P
P Sl S LA (34)
g XI: AT (i + 1)
and
p k-1 P
Ak(gk t] ﬁk(t )
A= (2 1)— +— k
Il {ZX; PP (B +1)
p P P\Br+l
A — 1, )Pk
+ZkM . (3.5)
= pPlT (B +2)

Our first existence result for problem (1.1) relies on Krasnoselskii’s fixed point theorem
[33], which is stated below.

Lemma 3.1 (Krasnoselskii’s fixed point theorem) Suppose S is a closed convex and
nonempty subset of a Banach space X. Let A, B be the operators such that (i) Ax + Bye S
whenever x,y € S; (ii) A is compact and continuous; and (iii) B is a contraction mapping.

Then there exists w € S such that w = Aw + Bw.

Theorem 3.2 Let f:[0,T] x R — R be a continuous function, and S, S; € C(R,R). As-
sume there exist positive constants Ly, L3, My, M3 such that the following conditions hold:
(H1) 1Sk(®) = Skl < Lalx =y, 1S5 (%) = S0 < Lslx — y| with |Sk®)|l < Mo, S <
M;,Vx,ye R k=1,2,...,p;
(Hy) [f(&:p)] = ¢@),V(ty) € [0, T] x R, and ¢ € C([0, T],R").
Then problem (1.1) has at least one solution on ], provided that

L2A3 + L3A4 <1. (36)
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Proof Consider B, = {y € G : |yl < r} with r > [[9[|(A1 + Ay) + My Az + M3 Ag + 15, 1|9 =

1£2]
sup;c(o,77 1¢(t)| and define operators P and Q on B, as follows:

PIE (6 y0) + 3 (0o M (6o y(60)

+ Y0 Tk Kle NACEO)

+ XL, Y ﬁl"‘ ey @)

TR T S e, te
(PO = )LL) + Ty P oyt + DS GV L 0 (0)
X (S (e + 51 o ML f 6o y(80)
LT *fT [t y(6)
D3 # %MI“ NGO
D3RP %pq{; Yoy telk=12....p,

and

1\ ko Mgt k=1 A& )Pk (80 ¢!
E{Z Z ﬂk?(ﬁkﬂ Z(Y(tz 25:1 M *(y(t,))

PP (B +1)
+ Xk X %Si@( D) el
(N6 =1 25, sip(8) + X} e l)S*()’(tz))+Zfl(tp_t’l:)5*(y(tl))
+ (L Xk Akﬁk‘gk{;ﬂlS(y(t))+Z L B 51 0)
P, T M s ) 4 )yt ek =12, p.

Observe that P + Q = F, where the operator F : G — G is defined by (3.1). For x,y € B, and
t € Jo, we have

Px+ Qyll
p
sl )]+ o S o)
te k=0
A&l - 80)f p jeic1 s;
kzglzl:,oﬂkpﬁwrl [ t”V(t”xtm +S: ()]
I (] — )]~ of) .
ZZ : P];wl]k“ (Br+1) [pIZZ " IV(t“x(t ))| + |Si (y(t,»))}]
k=2 i=1

Lo Ml - ) PE T (8 x(E SH(y(t
+Z¥W[ ) lf( i %( z))|+| L(J’( z))|]+|77|

< ||¢||(A1+A2)+M2A3+M3A4+%<r

Next, for x,y € B, and ¢ € Jy,k=1,2,...,p, we obtain

P+ Qyll

Page 8 of 20
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< suP{pIa If (&,2(0))| + Z[plz{_ll If (8 x(2)) | + [S:(v(2)) ]

teJ i=1

k-1 P o
; Z(%)["fi?f*tf(a,x )| + 187 () ]
i=1
k P
(SR e )
i=1

+ST0@) ]+ 1, {ZA Y1 f (6o x(50)|

S B ) s @) ]

e~ = oI (B + 1)

P &L P ) () s .
o3 ) o ) 45760
k=2 i=1

p k _ Bi+1
+ZZ )¥k 5]( tk) , P[al 1= 1lf(ti:x(ti))|+ |S;k(y(tl))|]+|77|]}

1
b= = pPi F(ﬂk+2)

< |@ll(A1 + Az) + My A3 + Mz Ay + % <r.
Thus, Px + Qy € B,. It follows from the assumptions (H;) and (3.6) that Q is a contraction,

that is, for x,y € B, and t € Jy, we have

1Qy - Qz|l
= S)i?[ 2 :Z 2 2255(;:1 7 15:06) = i)
3 “‘iz;if;:? i
x |7 (v(t:) ; 121: ZZE%I: tpk)i ;1) IS5 (v(8:)) - S*(2(8)) | } }
<Lyly- z||@:k21; 2;55 _:Z)ik }
ot |

r 4 P\Br+1
A — 1, )Pk
+ Zk k(sk k)
k=1 pﬂkJrlF(ﬁk + 2)
<{LyAz + L3 Ag}llx =yl

Similarly, for x,y € B, and ¢ € J, one can obtain

1 Qy — Qzll
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k k-1 o
<su}3{ZIS,(y(tz))—Sz(Z(ti))!+Z<tk )|S* t)) - St (z(8)|
g |5 =

+ L i Z M ’Sz (y(ti)) - Si(Z(ti))|
21| & L oA T B+ D)

k-1
p k-1 0 o 0
M(EL —E)PR(E] —£1) | )
' kZ=2: le 01:3“11]:(,31( ﬁ 1) |57 (r(t) = S (2(t2)) |

L4 A (%_p p)ﬁ i+l * *

k=1

A&y Tr
<Lylly- z||[zo+ﬁ{zzpﬂk”ﬁk+l)”+L3||y—z||{<2p—1)7

i k-1 A Sk _tp ﬁk(tk _tﬂ) . ikkk@’f _t;:)ﬂku
IQI =S P (Be+l) = pP (B +2)

<{LaA3+ L3 Ay}llx - yll.

Continuity of f implies that operator P is continuous. Also, P is uniformly bounded on
B, as

1Pyl < l9lI(Ar + Ay).

In order to prove the compactness of operator P, let sup(, ¢/, [f (£,)] = f < 0. Then,
for 11,1y € Jy with 77 < 75, we have

(Py)(z2) - (Py)(w)]
~ pl—oto 1 o1 0o oto—l_ . )
_‘F(ao)[/o s () - ") (tf =s") " Jf (s, ¥(s)) ds

+ /72 Sp—l(.[2ﬂ _Sp)ao_lf(S,y(S)) ds]

1

B ]

Also, for 11,7 € Ji, k=1,2,...,p (11 < Tp), we get

|(Py)(w2) - (Py)(@)]

1-«a
P k

" | () |:./T1 (x5 —Sp)ak_l - (tf —Sp)ak_l]f(s,y(s)) ds
Lk
+ /72 Sp—l(.tzﬂ _Sp)ak_lf(S,y(S)) ds:|

1

Page 10 of 20
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k _ 2-a; ki o
+Z<(r2 - (fl f )(r&—l)/t,-lspl(tf_sp)m 2f(S,y(s))dS)

=

f
< T 2@ =) (=)™ - (=50 )

) _
o (1 =) = & =01 - )
! Zl< T (a0) )

0

From the above inequalities, it follows that [(Py)(t2) — (Py)(t1)] — 0 as 1o — 11 —
0,V11,72 € i,k =0,1,...,p, independent of y. Thus, P is equicontinuous. So P is rela-
tively compact on B,. Hence, by the Arzeld—Ascoli theorem, P is compact on B,. Thus all
the assumptions of Lemma 3.1 are satisfied. Hence the conclusion of Lemma 3.1 applies,
and so the boundary value problem (1.1) has at least one solution on J. O

In the following result, we establish the uniqueness of solutions for problem (1.1) with
the aid of the contraction mapping principle.

Theorem 3.3 Supposef € C(J x R, R), assumption (Hy) holds, and the following condition

is satisfied:
(H3) there exists a positive constant Ly such that

[f(t,x) —f(t,y)‘ <Lilx-y|, forte]andeveryx,yecR.
Then there exists a unique solution for problem (1.1) on ] if
Li(A1+ Ag) +LyAs+L3A4 < 1, (3.7)
where A1, Az, As, and Ay are given by (3.2), (3.3), (3.4), and (3.5), respectively.
Proof Setting sup,; |f(¢,0)| = My, we consider the set B, = {y € G : ||ly|| < r} with

My(Ay + Ag) + My As + M Ay + 1
r> ’
1- Ll(Al + Az)

and show that FB, C B,. For y € B, and t € ]y, we have

(Ey)(@)] = [P10F (£,5(0)) + A
< IR[If (6y®) -£ 60| + [f(,0)]]

)4
. ﬁ Do LI (60 (60) ~ £ 60 0] + |f (6 0)[]

k=0

& Ak(ék tk)
' kZZ PPl (B + 1)

1

x [ﬂ] i- l[lf(tiry(ti)) —f(ti,0)| + lf(ti,O)H + |Sl(y(tl)|]

tl
14
>

k-1
&L =) Pr(e] - £)
k=2 i=1

PP (B + 1)
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X [plzfl_l[lf(ti,y(ti)) —f(&:0)| + |[f& 0)[] + [SF ()]

+ i Z )Lk(fk - tp)ﬂkJrl
— < pP T (B +2)

i=

X [plgil_l[lf(ti:y(ti)) —f(&,0)| + | 0)|] + S (y(&))]] + Inl

- (L Il 4+ M ”) L . i i )Lk(%-]f_t]f)ak+ﬁk
- W eeor(eo+1) " 121 | & p Do+ B+ 1)

k

iz M(Ef — 1) (e —t,)
+
et Lt phiseit T (B + D (o1 + 1)

. i Z MEL — )P (el — ) (8 — )%
pPereit (B + 1IN (eti1)

k=2 i=1
r K P\Br+1 P yai_1-1 p K »
Me(EC = )P (e =8 ) Mgl -t
+;; pPerei (B + 2) I (@ia) ” 1$2] [21:, PP (Br +1)

)\k(sk - tp)ﬂk tk - tp ZZ Ak fk - tp Prer } |7)|

PPT(Be+1) et pRAT (v 2) [ 192

ul
< (LIHTH +M1||){A1 + Ao} + My Az + M3 Ay + ﬂ <r,

which, upon taking norm for ¢ € Jy, implies that ||(Fy)|| < r. For y € B, and ¢ € Jx, we have

(Fy)@)]

k
= | Lk f Ly®)+> [ (P15 f (6 9(8) + Si(y(22)]
i=1

~

(-t

i > plou -1 (tl,y(ti)) +S:‘(y(ti))]

+

k)

-t

0

M~

+

("
- (

> P17 (1o y() + 57 (@) ] + A

r—1'—‘

<1°’

[/ (6.50) £ (& 0)] +|f(£,0)]]

k

+ Z[”Zf [If (2 0(8)) = f (&, 0)| + |[f (&, 0)|] + |S:(»() ]
i=1

k=1 ,.p _.p
t, — ¢t
+ < k i >
i=1 p

x [P I (@) £ (6, 0)| + (@ 0[] + 157 (@) ]

k
ﬂ—ﬁ)
k
+
25
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x [P If (5, 3(8) (6 0)] + [ (6, 00| + 157 (v(2) ]
p

ﬁ DRI (0 (80) (€0 0) + £ 6,0
k=0

Ai(f — )
ZZka F U I (@) (6,0 + @ 0] + [0 ]

k=1 i=1

o )\k(sk —tk)ﬁk(tk _tp)
> oot

=T PR (B + 1)

X [pl;rll1 l[v tny(t )) f(ti’0)| + V(tl,O)H + |S;k(y(tl)|]

yp k
Ak(ék - t/ )ﬁk+1
Z 21: PP (By +2)

k=1

+

< P17 (1 (6 2(®) = £ (6,00 + [f (6, 0)[] + |7 (v(2) ] + |n|=

k
(If tﬂ)ak (tﬂ _ tﬂ )a, 1
< (Lalirll + My ) =242 > L
p% I (ot + 1) — poi- 1M (oo + 1)

k-1 o
)
P} o P11 (i)

+Z t il VRS WA S i Dl
pY T M (aier) ) |2] | 4= poxt P (o + B+ 1)

k

ZZ )Lk(fk —tp)ﬂk(tp —tp )aH

e~ = peria (B + DI ety + 1)

P k-1 X (Sp _ tp)ﬂk(tp Z ) (P — P et
+ ZZ k\Sk — b k —H I\ i-1

L T Bt T (B + DI (i)

k -

LSy P =

L bt phirein T (B + 2) T (@)

}\k(gk—tk)ﬁk
+Mzik+ﬁzgpﬂkf,3k+l)}
k-1 P k £ £ p kl}\ %. _tﬂ)ﬁk(tﬂ_t/’)
M k_> <k17> K&
' 3[21( P +Zl P |9|{22, PP (B + 1)
L& gl - )P In|
' ZZ PP (B +2) [ |18

k=1 i=

nl
(L1||r|| +M1||){A1 + Ao} + My Az + Mz Ay + H <r.

Consequently, we get ||Fy|| <rfort € Ji,k=0,1,...,p. Thus FB, C B,.
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Now, for y,z € G and t € J, we have

|(Fy)(2) - (F2)(8)]|
14

< I?f (6y(@®) - f(6:2(0) | + — Zkkplf;kﬂgk (60 9(50) —f (6, 2(80) |

k=0

iZM[ﬂﬂ“ (8 (&) £ (8,2(6) | + [Si(v(22)) = Si(=(8) ]

— pPeI" (B +1)

L k(] — )P (8]~ £])
+ZZ PP (B + 1)
x [PI T (6 5(@)) £ (80 2(0)) | + |7 (0(8) = S (2(0) ]
_ )Lk(gk )ﬂk+1
+Zzpﬁk+1r ,Bk+2)
x [P (6 5(®) = £ (80 2(0)) | + [} (0(8) = $*(2(0) ]
< {L1(Ay + Ag) + Ly As + Ls Ay}l x -yl

In a similar way for ¢ € Ji, we obtain

|(Ey)(e) - (F2)(0)|
< I If (6,3(0) ~£ (6.2(0)|

k
+ Z pfa' Y (8 y@) = f (t2@) | + [Si(y(@) - Si(2(8))]]

x- 5
,_. »—

P 4P
ty —t!

+

) pf% ” 1 If (£ y(8)) = f (t:28) | + |SF (v(8)) = SF (2(2)) |]

i

tr—t]
Jo

+

(5
-

M~

) 17 f (k0 9(60) £ (0 260) | + [} (9(80) - 87 (2060) ]

8- :

p
{Zx L (0 9(80) - £ (602(6)|

k=0

2o Mgl
+ ;Z ,o];kll:(ﬂk " 1) Ia lf(tl’y(tl)) —f(t2E))| + |Si(v(@) - Si(2(2))|]

. i Z MEL = )P (] — £)
P PP (B + 1)

[P35 Vf (@) £ (82(00) | + |7 (v(89) = 7 (2(6) ]

X

k
p Ak(%'k _tp)ﬂk+1

* 2 BT+ PP (B +2)

k=1 i=1
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I 03(60) = (1 2(0)] 5 0(6) -5 (a(0))

< {Li(A1 + A2) + Ly A3 + L3 Aa} |y — 2]I.
Consequently, we obtain
IFy — Fzll < {L1(Ay + Ay) + Loy As + L3 A}y —zll, t€Jik=0,1,2,...,p,

which, in view of (3.7), implies that F is a contraction. Thus the conclusion of the theorem

follows by the contraction mapping principle. d

Example 3.4 With p = 1/2,0[0 = 5/4-,0(1 = 7/4,,30 = 1/2,,31 = 3/2,)\0 = 1/3,)\1 = 1/4,&) =
1/2,& =3/2,t = 3/4, we consider the problem

ED}Y(0) = Grop (i +cost), t€[0,2]643/4k=0,1,

ly(3/4)| ly(3/4)] -
Ay(3/4) = IZ{WM)‘ A8y(3/4) = ghamyy k=12...p, (3.8)
w(0) = Yo M1 2 YE) -1, 8y(0)=0.

Using the given data, we find that |£2| &~ 0.438425, A; =~ 12.512411, A, ~ 1.442181,
A3~ 1.260667, Ay =~ 2.903232, where £2, A1, Ay, Az and A4 are given by (2.10), (3.2), (3.3),
(3.4), and (3.5), respectively. Clearly, all the assumptions of Theorem 3.2 hold with L, =
112,L3 = 1/9, My = M3 = 1,¢(¢) = 25 and p = 1. Also L As + Ly Aq ~ 04276369325 < 1.
Therefore, by Theorem 3.2, we deduce that the impulsive integro-initial value problem

(3.8) has at least one solution on [0,2]. Furthermore, the hypothesis of Theorem 3.3 is
satisfied with L; = 1/81,L, = 1/12,L3 = 1/9, M, = M3 = 1. Moreover, L1(A1 + Ay) + Ly Az +
L3 A4~ 0.599915849 < 1. So, Theorem 3.3 implies that the impulsive integro-initial value

problem (3.8) has a unique solution on [0, 2].

4 Extremal solutions
Here we discuss the existence of extremal solutions for problem (1.1). Before presenting
the main result, we define lower and upper solutions for the problem at hand and prove a

new comparison result.

Definition 4.1 Function y(t) is said to be a lower solution of problem (1.1) if

t+yt)<f(ty(), l<ap<2,k=0,1,2,...,p,t €],
Ay(te) < Sk(y(t)), Ady(t) < Sgv(t), k=1,2,...,p, (4.1)
NOEDYS )"kplﬁ y(&) +m, 8y(0) =0, tx <& < tis1.

By reversing the inequalities in the above definition, we obtain the corresponding defi-

nition of an upper solution of (1.1).
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Ak Ek tk

Lemma 4.2 (Comparison result) Ify % _, m

<landye & =PC{(J,R)NAC; (i, R)
satisfies

pD‘%"y(t)zO, O<ar<2,k=0,1,2,...,p,t €/,
Ay(ty) >0, ASy(t) =0, k=1,2,...,p, (4.2)
POEDIN )‘kplgky@k); 8y(0) =0, & <& <tre1,

then y(t) > 0,Vt € ].

Proof Consider a modified form of problem (2.11) given by

t+y(t) gt), O0<ax=<2k=0,12,..,pte],
Ay(te) = Sk ASy(t) =S5, k=1,2,...,p, (4.3)
y(0) =>4 oA plﬂky(é‘k) +1, 5y(0)=0, tr <& <tri1

where g(t) € C(J,R*) and S, S; (k =1,2,...,p),n are nonnegative constants.
Then the solution of problem (4.3) is

PINgt) +o, t€)o,
PIe(e) + 0 L g(t) + Si) | k i L 'g(t) + S7]
y(t) = Z A, . . RAPEE ’ (4.4)
+ DL (SHPLE e(e) + S+ 0,

tE]k,k=].,2,...,p,

where

1 - ap+p )\k(gk ;
L gl + ZZ [plzj{jg(m +5;]

k=0 kltlpﬂkr’g-'—l
P k-1 0
)Lk(gk _tk)ﬂk( t ) a;_1-1
Y - [P g(t) + S7] (4.5)
= PP B+ 1) i-1
? M(Ef — )Pt

+§:§:;aﬁfﬁ—:5vf”lam+sﬂ+n.

=1

In view of the nonnegative nature of the function g(¢) and constants S, S}, 1, the conclu-

sion of Lemma 4.2 follows from (4.4). O

Our next result, dealing with the extremal solutions of (1.1), relies on the following fixed
point theorem [34].

Lemma 4.3 Let [a,b] be a nonempty order interval of a subset Y of an ordered Banach
space X and let P : [a,b] — [a,b] be a nondecreasing mapping. If each sequence {Py,} C
P([a, b)) converges whenever {y,} is a monotone sequence in [a, b, then the sequence of P-
iterates of a converges to the least fixed point y, of P and the sequence of P-iterates of b
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converges to the greatest fixed point y* of P. Moreover,
y*:min{xe [a,b]:szx}, y*:max{xe [a,b]:xSPx}.

Theorem 4.4 Assume that
(A1) the functions f(t,y), Sk(), S,k = 1,..., p, are continuous and nondecreasing in y;
(Ay) there exist lower and upper solutions yo and zo € £ for problem (1.1), respectively,
such that yy < zop;

hileg 1)k
(A3) Xioo mr < -

Then problem (1.1) has extremal solutions in the sector [y, zo)-

Proof Consider problem (2.11) with &(¢) = f(t,v(£)), Sk = Sk(v()) and S = S§(v(ty)), k =
2,...,p. Let us consider the operator F defined by (3.1) from [y, zo] to £ such that y(t) =
Fv(2). First, it will be shown that F maps [yo, 2] into [y, zo].
Let y1 = Fyo,z1 = Fzo. Then y1,z; are well defined and respectively satisfy the problems

Dt+y1( ) =ftyo(0), l<ox<2,k=0,1,2,...,pte],
Ayl(tk) = Sk(yo(tk) Ady (te) = Sio(t)), k=1,2,...,p, (4.6)
Z yl (&) + 1, Sy1 (0)=0, <& <tra

and

"D“kzl(t) =f(t,z0()), l<ax<2,k=0,1,2,...,p,te],
Az (tr) = Sk(zo(t)), Aoz (t) = Si(zo(t)), k=1,2,...,p, (4.7)
21(0) = Y%, )‘kplf]:kzl(ék) +1), 821(0) =0, tx <& < trsr.

Setting u = y; — yo and using the definition of a lower solution, we get

fokfu(t)zo, l<oag<2,k=0,1,2,...,p,te],
Au(tk) >0, Adsu(ty) =0, k=1,2,...,p, (4.8)
> %0 pl u(&), 8u(0) =0, t; <& <lre,

which, by Lemma 4.2, implies that u(¢) > 0,Vt € J. Thus Fyy > yo. Similarly, using the
definition of an upper solution, one can show that Fzy < zp.
Now, we define w = z; —y; and use (4.6) and (4.7) together with assumption A; to obtain

pDakw(t) f(t7 ZO(t)) _f(tvyo(t)) = 01 1< (273 =< 2$ k = 0; 1; 2; Ry 2] t e]/v
Aw(ty) = Sk(zo(tr)) = Sk(o(tx)) =0, k=1,2,...,p,
A&U(tk) =Si(zo(t) — S{ (o)) =0, k=1,2,...,p,

=>"%0 pl (&), 8w(0) =0, tr <& <tra1.

(4.9)

Applying Lemma 4.2, we deduce that w(¢) > 0, that is, Fzo > Fyp. Thus F is nonde-
creasing and yp < Fy < z for any y € [y0,20]. In consequence, F[yo,z0] C [y0,20] and
IEyll < max{|lyoll, lz0ll} := A
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Let {y,} be a monotone sequence in [y, zo]. Then yy < Fy, <z and ||Fy,| < A.Next we
show that the sequence {Fy,} is equicontinuous. For any (¢,y) € ] x [-A, A], there exist
positive constants K, Ky such that |[f(¢,y)| < K1, |S;(y)| < K. Then, for any 71, 7 € Ji with
71 <Ty,k=1,2,...,p, we obtain

IE®)(12) - F)(z1)

- [,/Tl (e —s°) " = (o =)V (s,9(5)) ds
73

0
I (o)

+ /Tz "1 (t9 - sp)akflf(s,y(s)) ds:|

1

+i<(z§—t§)/—)(r€—tﬁ))

i=1

__fZE:fi__ f —1(0 oj—2 * '
x (F(Oli )., st = ") f (s,0(s)) ds + S (y(t,))) H

K
< 2 ) (e ) - (- )"

k . k
[(zy —t]) = (zf — e — & )4 () =) - (- t))
+I(IZ< 2 k alr(/al) 1 >+1<2Z( 2 k 1 k >’

i=1 i=1 P

which tends to zero as 1, — 77 — 0 independent of y. A similar conclusion follows for
71, T2 € Jo. Thus, {Fy,} is equicontinuous on all J,0 < k < p. So F is relatively compact on
[%0,20]. Hence, by the Arzela—Ascoli theorem, F is compact on [yo, 2], and consequently
{Fy,} converges in F([yo,20]). Thus all the hypotheses of Lemma 4.3 hold, and the conclu-
sion of Lemma 4.3 implies that F has the least and greatest fixed points in [y, 2]. This
shows that problem (1.1) has extremal solutions on [y, zo]- (I

Example 4.5 Consider the problem

1100
Ay(t) = Lanly(n),  Asy(h) =14, (4.10)

20) = ko M I y(E) + 174, 550 =0,

ED;E(E) = MBI () L y(e))?), te[0,1],641/2,k=0,1,

where p = 1/3,00 = 5/4,a7 = 3/2,80 = 1/2,81 = 3/2,A0 = 1/10,11 = 1/7,& = 1/4,&, =

314,11 = 1/2, f(£,y) = LU (1 4 43y 5, (3) = Ltan~'y, and S} (y) =

We take yo(t) = 0 as the lower solution and

2p
+i55, 0<t<3,
t)— 2p 27
ZO( - tzp 1
+p_2’ 5 Sl

as the upper solution of problem (4.10). With the given data, it is found that

1
A (EP — tP)Bk
)3 MG =B 768586259 < 1.
" pﬁkf(ﬁk + 1)
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Also, assumption (4;) is clearly satisfied. Thus, by Theorem 4.4, problem (4.10) has ex-
tremal solutions on [y, zo].

5 Conclusions

We have developed an existence theory for impulsive multi-order nonlinear Caputo-type
generalized fractional differential equations equipped with nonlocal conditions involving
Katugampola type generalized fractional integrals. The work presented in this paper is
new and significantly contributes to the existing literature on the topic. By fixing the pa-
rameters involved in the problem, we can obtain some new results as special cases of those
derived in this paper. For instance, our results correspond to those for nonlinear single or-
der Caputo-type generalized fractional differential equations with generalized fractional
integro-initial conditions if we set o; = . The results obtained in [26] appear as a special
case of those established in Sect. 4 for p = 1.
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