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1 Introduction
For a, b ∈ R, let Na = {a, a + 1, a + 2, . . .} and [a, b]Na = {a, a + 1, a + 2, . . . , b} with b – a ∈
N1. In this paper we study the existence of positive solutions for the following fractional
difference system with coupled boundary conditions:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–�ν
ν–3x(t) = f1(t + ν – 1, x(t + ν – 1), y(t + ν – 1)), t ∈ [0, T – 1]N0 ,

–�ν
ν–3y(t) = f2(t + ν – 1, x(t + ν – 1), y(t + ν – 1)), t ∈ [0, T – 1]N0 ,

x(ν – 3) = [�α
ν–3x(t)]|t=ν–α–2 = 0, y(ν – 3) = [�α

ν–3y(t)]|t=ν–α–2 = 0,

x(T + ν – 1) = ay(ξ + ν), y(T + ν – 1) = bx(η + ν),

(1.1)

where ν ∈ (2, 3], α ∈ (0, 1) are two real numbers, �ν
ν–3, �α

ν–3 are discrete fractional oper-
ators, ν – α – 2 > 0, ξ ,η ∈ [0, T – 2]N0 , a, b > 0 with ab < (ξ+1)!(η+1)!

Γ (ξ+ν+1)Γ (η+ν+1) [ Γ (T+ν)
T ! ]2, and the

nonlinearities fi(t, x, y) : [ν – 1, T + ν – 2]Nν–1 × R+ × R+ → R+ are continuous functions
(i = 1, 2, R+ = [0, +∞)).

In recent years, the fractional calculus and fractional differential equations have been
of great interest in the literature, and they have been widely applied in numerous diverse
fields including electrical engineering, chemistry, mathematical biology, control theory,
and the calculus of variations. For example, papers [1, 2] have introduced a fractional order
model for infection of CD4+T cells in HIV, which can be depicted by the system

⎧
⎪⎪⎨

⎪⎪⎩

Dα1 (T) = s – KVT – dT + bI,

Dα2 (I) = KVT – (b + δ)I,

Dα3 (V ) = NδI – cV ,
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where Dαi are fractional derivatives, i = 1, 2, 3. Till now, we have noted that by using the
techniques of nonlinear analysis, a large number of results concerning the existence and
multiplicity of solutions (or positive solutions) of nonlinear fractional differential equa-
tions can be found in the literature, we refer the reader to [3–27] and the references cited
therein. In [3], the authors studied the singular fractional p-Laplacian boundary value sys-
tem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dα
0+(ϕp(Dγ

0+u))(t) + λ1/(q–1)f (t, u(t), Dμ1
0+ u(t), Dμ2

0+ u(t), . . . , Dμn–1
0+ u(t), v(t)) = 0,

0 < t < 1,

Dβ
0+(ϕp(Dδ

0+v))(t) + μ1/(q–1)g(t, u(t), Dη1
0+u(t), Dη2

0+u(t), . . . , Dηm–1
0+ u(t)) = 0,

0 < t < 1,

u(0) = Dμi
0+u(0) = 0, Dγ

0+u(0) = Dγ +μi
0+ u(0) = 0, i = 1, 2, . . . , n – 2,

Dμn–1
0+ u(1) = χ

∫ η

0 h(t)Dμn–1
0+ u(t) dA(t),

v(0) = Dηi
0+v(0) = 0, Dδ

0+v(0) = Dδ+ηi
0+ v(0) = 0, i = 1, 2, . . . , m – 2,

Dηm–1
0+ v(1) = ι

∫ ϑ

0 a(t)Dηm–1
0+ v(t) dB(t).

(1.2)

Here, they used the mixed monotone methods to obtain the uniqueness of positive solu-
tions for (1.2) and established an iterative sequence, which can converge uniformly to the
unique solution.

In [4], the authors studied the system of nonlinear fractional differential equations with
coupled integral boundary conditions

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dα
0+u(t) + λf (t, u(t), v(t)) = 0, 0 < t < 1,

Dβ
0+v(t) + μg(t, u(t), v(t)) = 0, 0 < t < 1,

u(0) = u(i)(0) = 0, u′(1) =
∫ 1

0 v(s) dH(s), i = 1, 2, . . . , n – 2,

v(0) = v(i)(0) = 0, v′(1) =
∫ 1

0 u(s) dK(s), i = 1, 2, . . . , m – 2,

(1.3)

where the nonlinear terms f , g are sign-changing nonsingular or singular functions. They
used the Guo–Krasnosel’skii fixed point theorem to obtain the existence of positive solu-
tions for (1.3), and they also presented intervals for parameters λ and μ for the positive
solutions.

However, as is mentioned by Christopher S. Goodrich in [28], there has been little work
done in fractional difference equations, we only refer to [29–43]. For example, in [29] the
authors studied discrete fractional calculus and offered some important properties of the
fractional sum and the fractional difference operators. Also, they studied the uniqueness
of solutions for the nonlinear fractional difference equation

⎧
⎨

⎩

�νy(t) = f (t + ν – 1, y(t + ν – 1)), t = 0, 1, 2, . . . ,

�ν–1y(t)|t=0 = a0.
(1.4)

Christopher S. Goodrich has made a great contribution to the development of the the-
ory for discrete fractional calculus and associated difference equations (see [31, 32, 35–37,
39, 44]), presented and summarized many excellent results in his monograph with A. Pe-
terson [43] in this direction. For example, in [35, 36] the authors studied the following two
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fractional difference equations boundary value problems:

⎧
⎪⎪⎨

⎪⎪⎩

–�ν1 y1(t) = λ1f1(t + ν1 – 1, y1(t + ν1 – 1), y2(t + ν2 – 1)), t ∈ [1, b + 1],

–�ν2 y2(t) = λ2f2(t + ν2 – 1, y1(t + ν1 – 1), y2(t + ν2 – 1)), t ∈ [1, b + 1],

y1(ν1 – 2) = y1(ν1 + b + 1) = y2(ν2 – 2) = y2(ν2 + b + 1) = 0,

(1.5)

and
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–�ν1 y1(t) = λ1a1(t + ν1 – 1)f1(y1(t + ν1 – 1), y2(t + ν2 – 1)), t ∈ [0, b],

–�ν2 y2(t) = λ2a2(t + ν2 – 1)f2(y1(t + ν1 – 1), y2(t + ν2 – 1)), t ∈ [0, b],

y1(ν1 – 2) = ψ1(y1), y1(ν1 + b) = φ1(y1),

y2(ν2 – 2) = ψ2(y2), y2(ν2 + b) = φ2(y2),

(1.6)

where ν1,ν2 ∈ (1, 2]. They used the Guo–Krasnosel’skii fixed point theorem to obtain the
existence of positive solutions for the above two problems, where the nonlinearities in
(1.5) can be sign-changing.

Motivated by works aforementioned and some results from integer-order equations (in-
cluding differential and difference equations, see [45–55]), we study the existence of pos-
itive solutions for the fractional difference systems (1.1). We use the fixed point index
theory to establish our main results based on a priori estimates achieved by utilizing non-
negative matrices (see [10, 54, 55]) that involve some useful inequalities associated with
the Green’s functions for (1.1). Moreover, our nonlinearities fi (i = 1, 2) are allowed to grow
superlinearly and sublinearly about the linear combinations of unknown functions x, y, see
conditions (H1)–(H4) in Sect. 3.

2 Preliminaries
In this section, we first offer some necessary definitions from discrete fractional calculus.
These materials can be found in some recent papers.

Definition 2.1 (see [43]) We define tν := Γ (t+1)
Γ (t+1–ν) for any t,ν ∈ R for which the right-hand

side is well-defined. We use the convention that if t + 1 – ν is a pole of the gamma function
and t + 1 is not a pole, then tν = 0.

Definition 2.2 (see [43]) For ν > 0, the νth fractional sum of a function f is

�–ν
a f (t) =

1
Γ (ν)

t–ν∑

s=a
(t – s – 1)ν–1f (s) for t ∈ Na+ν .

We also define the νth fractional difference for ν > 0 by

�ν
af (t) = �N

a �ν–N
a f (t) for t ∈ Na+N–ν ,

where N ∈ N with 0 ≤ N – 1 < ν ≤ N .

Lemma 2.3 (see [43]) Let N ∈ N with 0 ≤ N – 1 < ν ≤ N . Then

�–ν
0 �ν

ν–N f (t) = f (t) + c1tν–1 + c2tν–2 + · · · + CN tν–N for ci ∈ R, 1 ≤ i ≤ N .
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Lemma 2.4 (see [44, Lemma 4.1]) For all ν ∈ R, we have �α
a tν = Γ (ν+1)tν–α

Γ (ν+1–α) with α > 0, if tν ,
tν–α are well-defined.

Next, we use Lemmas 2.3 and 2.4 to calculate the Green’s functions associated with (1.1).
For convenience, we let L = [ Γ (T+ν)

T ! ]2 – ab Γ (ξ+ν+1)Γ (η+ν+1)
(ξ+1)!(η+1)! , and

G(t, s) =
1

Γ (ν)

⎧
⎨

⎩

tν–1(T+ν–s–2)ν–1

(T+ν–1)ν–1 – (t – s – 1)ν–1, 0 ≤ s < t – ν + 1 ≤ T – 1;
tν–1(T+ν–s–2)ν–1

(T+ν–1)ν–1 , 0 ≤ t – ν + 1 ≤ s ≤ T – 1.
(2.1)

The following lemma is as in [40] (for completeness, we present its proof ).

Lemma 2.5 Let ν ∈ (2, 3], α ∈ (0, 1), and hi(t) : [ν – 1, T + ν – 2]Nν–1 → R (i = 1, 2). Then
the fractional difference system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

– �ν
ν–3 x(t) = h1(t + ν – 1), t ∈ [0, T – 1]N0 ,

– �ν
ν–3 y(t) = h2(t + ν – 1), t ∈ [0, T – 1]N0 ,

x(ν – 3) = [�α
ν–3x(t)]|t=ν–α–2 = 0, y(ν – 3) = [�α

ν–3y(t)]|t=ν–α–2 = 0,

x(T + ν – 1) = ay(ξ + ν), y(T + ν – 1) = bx(η + ν),

(2.2)

has the unique solution, which takes the form

(
x(t)
y(t)

)

=

(∑T–1
s=0 H1(t, s)h1(s + ν – 1) +

∑T–1
s=0 K1(t, s)h2(s + ν – 1)

∑T–1
s=0 H2(t, s)h2(s + ν – 1) +

∑T–1
s=0 K2(t, s)h1(s + ν – 1)

)

, (2.3)

where

H1(t, s) = G(t, s) +
ab(ξ + ν)ν–1tν–1

L
G(η + ν, s),

K1(t, s) =
a(T + ν – 1)ν–1tν–1

L
G(ξ + ν, s),

(2.4)

H2(t, s) = G(t, s) +
ab(η + ν)ν–1tν–1

L
G(ξ + ν, s),

K2(t, s) =
b(T + ν – 1)ν–1tν–1

L
G(η + ν, s).

(2.5)

Proof From Lemma 2.3 we have

x(t) = –
1

Γ (ν)

t–ν∑

s=0

(t – s – 1)ν–1h1(s + ν – 1) + C1tν–1 + C2tν–2 + C3tν–3,

(Ci ∈ R, i = 1, 2, 3) (2.6)

and

y(t) = –
1

Γ (ν)

t–ν∑

s=0

(t – s – 1)ν–1h2(s + ν – 1) + C1tν–1 + C2tν–2 + C3tν–3,

(Ci ∈ R, i = 1, 2, 3). (2.7)
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Substituting x(ν – 3) = y(ν – 3) = 0 into (2.6), (2.7), we obtain C3 = C3 = 0. Because of

�α
ν–3x(t) = C1 �α

ν–3 tν–1 + C2 �α
ν–3 tν–2 – �–(ν–α)

ν–3 h1(t + ν – 1)

= C1
Γ (ν)tν–α–1

Γ (ν – α)
+ C2

Γ (ν – 1)tν–α–2

Γ (ν – α – 1)

–
1

Γ (ν – α)

t–ν+α∑

s=0

(t – s – 1)ν–α–1h1(s + ν – 1),

and using the boundary condition [�α
ν–3x(t)]|t=ν–α–2 = 0 to obtain C2 = 0. Similarly, we

have C2 = 0. By virtue of the conditions x(T + ν – 1) = ay(ξ + ν), y(T + ν – 1) = bx(η + ν),
we respectively obtain

–
1

Γ (ν)

T–1∑

s=0

(T + ν – s – 2)ν–1h1(s + ν – 1) + C1(T + ν – 1)ν–1

= –
a

Γ (ν)

ξ∑

s=0

(ξ + ν – s – 1)ν–1h2(s + ν – 1) + aC1(ξ + ν)ν–1,

and

–
1

Γ (ν)

T–1∑

s=0

(T + ν – s – 2)ν–1h2(s + ν – 1) + C1(T + ν – 1)ν–1

= –
b

Γ (ν)

η∑

s=0

(η + ν – s – 1)ν–1h1(s + ν – 1) + bC1(η + ν)ν–1.

Note that
∣
∣
∣
∣
∣

(T + ν – 1)ν–1 –a(ξ + ν)ν–1

–b(η + ν)ν–1 (T + ν – 1)ν–1

∣
∣
∣
∣
∣

=
(
(T + ν – 1)ν–1)2 – ab(ξ + ν)ν–1(η + ν)ν–1

=
(

Γ (T + ν)
T !

)2

–
abΓ (ξ + ν + 1)Γ (η + ν + 1)

(ξ + 1)!(η + 1)!

= L > 0,

so we have

C1 =
1

LΓ (ν)

[

(T + ν – 1)ν–1

[T–1∑

s=0

(T + ν – s – 2)ν–1h1(s + ν – 1)

– a
ξ∑

s=0

(ξ + ν – s – 1)ν–1h2(s + ν – 1)

]

+ a(ξ + ν)ν–1

[T–1∑

s=0

(T + ν – s – 2)ν–1h2(s + ν – 1)

– b
η∑

s=0

(η + ν – s – 1)ν–1h1(s + ν – 1)

]]

,
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C1 =
1

LΓ (ν)

[

(T + ν – 1)ν–1

[

–b
η∑

s=0

(η + ν – s – 1)ν–1h1(s + ν – 1)

+
T–1∑

s=0

(T + ν – s – 2)ν–1h2(s + ν – 1)

]

+ b(η + ν)ν–1

[

–a
ξ∑

s=0

(ξ + ν – s – 1)ν–1h2(s + ν – 1)

+
T–1∑

s=0

(T + ν – s – 2)ν–1h1(s + ν – 1)

]]

.

As a result, we have

x(t) = –
1

Γ (ν)

t–ν∑

s=0

(t – s – 1)ν–1h1(s + ν – 1)

+
tν–1

LΓ (ν)

[

(T + ν – 1)ν–1

[T–1∑

s=0

(T + ν – s – 2)ν–1h1(s + ν – 1)

– a
ξ∑

s=0

(ξ + ν – s – 1)ν–1h2(s + ν – 1)

]

+ a(ξ + ν)ν–1

[T–1∑

s=0

(T + ν – s – 2)ν–1h2(s + ν – 1)

– b
η∑

s=0

(η + ν – s – 1)ν–1h1(s + ν – 1)

]]

= –
1

Γ (ν)

t–ν∑

s=0

(t – s – 1)ν–1h1(s + ν – 1)

+
tν–1(T + υ – 1)ν–1

LΓ (ν)

T–1∑

s=0

(T + ν – s – 2)ν–1h1(s + ν – 1)

–
tν–1

Γ (ν)(T + ν – 1)ν–1

T–1∑

s=0

(T + ν – s – 2)ν–1h1(s + ν – 1)

+
tν–1

Γ (ν)(T + ν – 1)ν–1

T–1∑

s=0

(T + ν – s – 2)ν–1h1(s + ν – 1)

–
ab(ξ + ν)ν–1tν–1

LΓ (ν)

η∑

s=0

(η + ν – s – 1)ν–1h1(s + ν – 1)

–
a(T + ν – 1)ν–1tν–1

LΓ (ν)

ξ∑

s=0

(ξ + ν – s – 1)ν–1h2(s + ν – 1)

+
a(ξ + ν)ν–1tν–1

LΓ (ν)

T–1∑

s=0

(T + ν – s – 2)ν–1h2(s + ν – 1)

=
T–1∑

s=0

G(t, s)h1(s + ν – 1)
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+
abtν–1(ξ + ν)ν–1(η + ν)ν–1

LΓ (ν)(T + ν – 1)ν–1

T–1∑

s=0

(T + ν – s – 2)ν–1h1(s + ν – 1)

–
ab(ξ + ν)ν–1tν–1

LΓ (ν)

η∑

s=0

(η + ν – s – 1)ν–1h1(s + ν – 1)

–
a(T + ν – 1)ν–1tν–1

LΓ (ν)

ξ∑

s=0

(ξ + ν – s – 1)ν–1h2(s + ν – 1)

+
a(ξ + ν)ν–1tν–1

LΓ (ν)

T–1∑

s=0

(T + ν – s – 2)ν–1h2(s + ν – 1)

=
T–1∑

s=0

G(t, s)h1(s + ν – 1)

+
abtν–1(ξ + ν)ν–1

L

T–1∑

s=0

G(η + ν, s)h1(s + ν – 1)

+
a(T + ν – 1)ν–1tν–1

L

T–1∑

s=0

G(ξ + ν, s)h2(s + ν – 1)

=
T–1∑

s=0

[

G(t, s) +
abtν–1(ξ + ν)ν–1

L
G(η + ν, s)

]

h1(s + ν – 1)

+
T–1∑

s=0

a(T + ν – 1)ν–1tν–1

L
G(ξ + ν, s)]h2(s + ν – 1).

Similarly, we can obtain

y(t) = –
1

Γ (ν)

t–ν∑

s=0

(t – s – 1)ν–1h2(s + ν – 1)

+
tν–1

LΓ (ν)

[

(T + ν – 1)ν–1

[

–b
η∑

s=0

(η + ν – s – 1)ν–1h1(s + ν – 1)

+
T–1∑

s=0

(T + ν – s – 2)ν–1h2(s + ν – 1)

]

+ b(η + ν)ν–1

[

–a
ξ∑

s=0

(ξ + ν – s – 1)ν–1h2(s + ν – 1)

+
T–1∑

s=0

(T + ν – s – 2)ν–1h1(s + ν – 1)

]]

= –
1

Γ (ν)

t–ν∑

s=0

(t – s – 1)ν–1h2(s + ν – 1)

+
tν–1(T + ν – 1)ν–1

LΓ (ν)

T–1∑

s=0

(T + ν – s – 2)ν–1h2(s + ν – 1)
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–
tν–1

Γ (ν)(T + ν – 1)ν–1

T–1∑

s=0

(T + ν – s – 2)ν–1h2(s + ν – 1)

+
tν–1

Γ (ν)(T + ν – 1)ν–1

T–1∑

s=0

(T + ν – s – 2)ν–1h2(s + ν – 1)

–
ab(η + ν)ν–1tν–1

LΓ (ν)

ξ∑

s=0

(ξ + ν – s – 1)ν–1h2(s + ν – 1)

–
b(T + ν – 1)ν–1tν–1

LΓ (ν)

η∑

s=0

(η + ν – s – 1)ν–1h1(s + ν – 1)

+
b(η + ν)ν–1tν–1

LΓ (ν)

T–1∑

s=0

(T + ν – s – 2)ν–1h1(s + ν – 1)

=
T–1∑

s=0

G(t, s)h2(s + ν – 1)

+
abtν–1(ξ + ν)ν–1(η + ν)ν–1

LΓ (ν)(T + ν – 1)ν–1

T–1∑

s=0

(T + ν – s – 2)ν–1h2(s + ν – 1)

–
ab(η + ν)ν–1tν–1

LΓ (ν)

ξ∑

s=0

(ξ + ν – s – 1)ν–1h2(s + ν – 1)

–
b(T + ν – 1)ν–1tν–1

LΓ (ν)

η∑

s=0

(η + ν – s – 1)ν–1h1(s + ν – 1)

+
b(η + ν)ν–1tν–1(T + ν – 1)ν–1

LΓ (ν)

T–1∑

s=0

(T + ν – s – 2)v–1

(T + ν – 1)
h1(s + ν – 1)

=
T–1∑

s=0

G(t, s)h2(s + ν – 1)

+
abtν–1(η + ν)ν–1

L

T–1∑

s=0

G(ξ + ν, s)h2(s + ν – 1)

+
b(T + ν – 1)ν–1tν–1

L

T–1∑

s=0

G(η + ν, s)h1(s + ν – 1)

=
T–1∑

s=0

[

G(t, s) +
abtν–1(η + ν)ν–1

L
G(ξ + ν, s)

]

h2(s + ν – 1)

+
T–1∑

s=0

b(T + ν – 1)ν–1tν–1

L
G(η + ν, s)]h1(s + ν – 1).

This completes the proof. �

Lemma 2.6 (see [40, Theorems 2.2, 2.3 and Remark 2.4]) Let L1 = ν–1
T(T+ν–1)ν–1(T+ν–2) and

ρ(s) = (T + ν – s – 2)ν–1 for s ∈ [0, T – 1]N0 . Then we have
(i) G(t, s) > 0, for (t, s) ∈ [ν – 1, T + ν – 2]Nν–1 × [0, T – 1]N0 ;
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(ii) for all (t, s) ∈ [ν – 1, T + ν – 2]Nν–1 × [0, T – 1]N0 , there holds

abL1(ξ + ν)ν–1(η + ν)ν–1tν–1ρ(s)
LΓ (ν)

≤ H1(t, s) ≤ [L + ab(ξ + ν)ν–1(T + ν – 2)ν–1]ρ(s)
LΓ (ν)

,

aL1(ξ + ν)ν–1(η + ν)ν–1tν–1ρ(s)
LΓ (ν)

≤ K1(t, s) ≤ a(T + ν – 1)ν–1(T + ν – 2)ν–1ρ(s)
LΓ (ν)

;

(iii) for all (t, s) ∈ [ν – 1, T + ν – 2]Nν–1 × [0, T – 1]N0 , there holds

abL1(ξ + ν)ν–1(η + ν)ν–1tν–1ρ(s)
LΓ (ν)

≤ H2(t, s) ≤ [L + ab(η + ν)ν–1(T + ν – 2)ν–1]ρ(s)
LΓ (ν)

,

bL1(ξ + ν)ν–1(η + ν)ν–1tν–1ρ(s)
LΓ (ν)

≤ K2(t, s) ≤ b(T + ν – 1)ν–1(T + ν – 2)ν–1ρ(s)
LΓ (ν)

.

Lemma 2.7 Let ρ∗(t) = (T + 2ν – t – 3)ν–1 for t ∈ [ν – 1, T + ν – 2]Nν–1 . Then, for all s ∈
[0, T – 1]N0 , we have the following inequalities:

hμ1ρ(s) ≤
T+ν–2∑

t=ν–1

H1(t, s)ρ∗(t) ≤ hμ2ρ(s), (2.8)

and

kμ1ρ(s) ≤
T+ν–2∑

t=ν–1

K1(t, s)ρ∗(t) ≤ kμ2ρ(s), (2.9)

and

hμ3ρ(s) ≤
T+ν–2∑

t=ν–1

H2(t, s)ρ∗(t) ≤ hμ4ρ(s), (2.10)

and

kμ3ρ(s) ≤
T+ν–2∑

t=ν–1

K2(t, s)ρ∗(t) ≤ kμ4ρ(s), (2.11)
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where

⎛

⎜
⎜
⎜
⎝

hμ1 hμ2

kμ1 kμ2

hμ3 hμ4

kμ3 kμ4

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

∑T–1
t=0

abL1(ξ+ν)ν–1(η+ν)ν–1(t+ν–1)ν–1ρ(t)
LΓ (ν)

∑T–1
t=0

[L+ab(ξ+ν)ν–1(T+ν–2)ν–1]ρ(t)
LΓ (ν)

∑T–1
t=0

aL1(ξ+ν)ν–1(η+ν)ν–1(t+ν–1)ν–1ρ(t)
LΓ (ν)

∑T–1
t=0

a(T+ν–1)ν–1(T+ν–2)ν–1ρ(t)
LΓ (ν)

∑T–1
t=0

abL1(ξ+ν)ν–1(η+ν)ν–1(t+ν–1)ν–1ρ(t)
LΓ (ν)

∑T–1
t=0

[L+ab(η+ν)ν–1(T+ν–2)ν–1]ρ(t)
LΓ (ν)

∑T–1
t=0

bL1(ξ+ν)ν–1(η+ν)ν–1(t+ν–1)ν–1ρ(t)
LΓ (ν)

∑T–1
t=0

b(T+ν–1)ν–1(T+ν–2)ν–1ρ(t)
LΓ (ν)

⎞

⎟
⎟
⎟
⎟
⎠

.

Proof We only prove (2.8). Indeed, for all s ∈ [0, T – 1]N0 , from Lemma 2.6(ii) we have

T+ν–2∑

t=ν–1

H1(t, s)ρ∗(t) =
T–1∑

t=0

H1(t – ν + 1, s)ρ∗(t + ν – 1)

≤
T–1∑

t=0

[L + ab(ξ + ν)ν–1(T + ν – 2)ν–1]ρ(s)
LΓ (ν)

ρ∗(t + ν – 1)

≤
T–1∑

t=0

[L + ab(ξ + ν)ν–1(T + ν – 2)ν–1]ρ(s)
LΓ (ν)

ρ(t) = hμ2ρ(s).

On the other hand, we obtain

T+ν–2∑

t=ν–1

H1(t, s)ρ∗(t) =
T–1∑

t=0

H1(t – ν + 1, s)ρ∗(t + ν – 1)

≥
T–1∑

t=0

abL1(ξ + ν)ν–1(η + ν)ν–1(t + ν – 1)ν–1ρ(s)
LΓ (ν)

ρ∗(t + ν – 1)

≥
T–1∑

t=0

abL1(ξ + ν)ν–1(η + ν)ν–1(t + ν – 1)ν–1ρ(s)
LΓ (ν)

ρ(t)

= hμ1ρ(s).

This completes the proof. �

Let E be the collection of all maps from [ν – 3, T + ν – 2]Nν–3 to R with the norm ‖z‖ =
maxt∈[ν–3,T+ν–2]Nν–3

|z(t)|. Then (E,‖ · ‖) is a Banach space, and P = {z ∈ E : z(t) ≥ 0, t ∈
[ν –3, T +ν –2]Nν–3} is a cone on E. From Lemma 2.5, we know that the fractional difference
system (1.1) can be expressed in the following form:

(
x(t)
y(t)

)

=
(∑T–1

s=0 H1(t, s)f1(s + ν – 1, x(s + ν – 1), y(s + ν – 1)) +
∑T–1

s=0 K1(t, s)f2(s + ν – 1, x(s + ν – 1), y(s + ν – 1))
∑T–1

s=0 H2(t, s)f2(s + ν – 1, x(s + ν – 1), y(s + ν – 1)) +
∑T–1

s=0 K2(t, s)f1(s + ν – 1, x(s + ν – 1), y(s + ν – 1))

)

:=
(

A1(x, y)(t)
A2(x, y)(t)

)
, ∀t ∈ [ν – 3, T + ν – 2]Nν–3 . (2.12)
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Then we define an operator A : P × P → P × P as follows:

A(x, y)(t) = (A1, A2)(x, y)(t), ∀t ∈ [ν – 3, T + ν – 2]Nν–3 .

Then positive solutions for the fractional difference system (1.1) exist if and only if positive
fixed points for A exist, i.e., if there exists (x, y) ∈ P such that A(x, y) = (x, y), and A1(x, y)(t) =
x(t), A2(x, y)(t) = y(t), from (2.12) we have (x, y)(t) is a positive solution for (1.1), for t ∈
[ν – 3, T +ν – 2]Nν–3 . Now, we turn to study the existence of fixed points for the operator A.
In what follows, we provide two lemmas involving the fixed point index; for more details,
we refer to the book [56].

Lemma 2.8 Let E be a real Banach space and P be a cone on E. Suppose that Ω ⊂ E is a
bounded open set and that A : Ω ∩ P → P is a continuous compact operator. If there exists
ω0 ∈ P\{0} such that

ω – Aω �= λω0, ∀λ ≥ 0,ω ∈ ∂Ω ∩ P,

then i(A,Ω ∩ P, P) = 0, where i denotes the fixed point index on P.

Lemma 2.9 Let E be a real Banach space and P be a cone on E. Suppose that Ω ⊂ E is a
bounded open set with 0 ∈ Ω and that A : Ω ∩ P → P is a continuous compact operator. If

ω – λAω �= 0, ∀λ ∈ [0, 1],ω ∈ ∂Ω ∩ P,

then i(A,Ω ∩ P, P) = 1.

3 Main results
In this section, we first provide some assumptions for our nonlinearities fi, i = 1, 2. Here,
we make an explanation: in P × P, if

( x1
x2

) ≥ (or ≤)
( y1

y2

)
, we mean that x1(t) ≥ (or ≤)y(t),

x2(t) ≥ (or ≤)y2(t) for t ∈ [ν – 1, T + ν – 2]Nν–1 .
(H1) There exist a1, b1, c1, d1 ≥ 0 and l1, l2 > 0 such that

(
f1(t, x, y)
f2(t, x, y)

)

≥
(

a1x + b1y – l1

c1x + d1y – l2

)

,

∀(t, x, y) ∈ [ν – 1, T + ν – 2]Nν–1 × R+ × R+,

and

hμ1 a1 + kμ1 c1 < 1, hμ3 d1 + kμ3 b1 < 1,

det

(
hμ1 b1 + kμ1 d1 hμ1 a1 + kμ1 c1 – 1

hμ3 d1 + kμ3 b1 – 1 hμ3 c1 + kμ3 a1

)

:= κ1 > 0.

(H2) There exist a2, b2, c2, d2 ≥ 0 and r1 > 0 such that
(

f1(t, x, y)
f2(t, x, y)

)

≤
(

a2x + b2y
c2x + d2y

)

,

∀(t, x, y) ∈ [ν – 1, T + ν – 2]Nν–1 × [0, r1] × [0, r1],
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and

hμ2 a2 + kμ2 c2 < 1, hμ4 d2 + kμ4 b2 < 1,

det

(
1 – hμ2 a2 – kμ2 c2 –hμ2 b2 – kμ2 d2

–hμ4 c2 – kμ4 a2 1 – hμ4 d2 – kμ4 b2

)

:= κ2 > 0.

(H3) There exist a3, b3, c3, d3 ≥ 0 and r2 > 0 such that

(
f1(t, x, y)
f2(t, x, y)

)

≥
(

a3x + b3y
c3x + d3y

)

,

∀(t, x, y) ∈ [ν – 1, T + ν – 2]Nν–1 × [0, r2] × [0, r2],

and

hμ1 a3 + kμ1 c3 < 1, hμ3 d3 + kμ3 b3 < 1,

det

(
hμ1 b3 + kμ1 d3 hμ1 a3 + kμ1 c3 – 1

hμ3 d3 + kμ3 b3 – 1 hμ3 c3 + kμ3 a3

)

:= κ3 > 0.

(H4) There exist a4, b4, c4, d4 ≥ 0 and l3, l4 > 0 such that

(
f1(t, x, y)
f2(t, x, y)

)

≤
(

a4x + b4y + l3

c4x + d4y + l4

)

,

∀(t, x, y) ∈ [ν – 1, T + ν – 2]Nν–1 × R+ × R+,

and

hμ2 a4 + kμ2 c4 < 1, hμ4 d4 + kμ4 b4 < 1,

det

(
1 – hμ2 a4 – kμ2 c4 –hμ2 b4 – kμ2 d4

–hμ4 c4 – kμ4 a4 1 – hμ4 d4 – kμ4 b4

)

:= κ4 > 0.

Theorem 3.1 Suppose that (H1)–(H2) hold. Then the fractional difference system (1.1)
has at least one positive solution.

Proof Define a set

S1 =
{

(x, y) ∈ P × P : (x, y) = A(x, y) + λ(ϕ0,ϕ0) for some λ ≥ 0
}

,

where ϕ0 ∈ P is a fixed element. Then we will claim that S1 is a bounded set in P × P.
In fact, if (x, y) ∈ S1, we have x(t) = A1(x, y)(t) + λϕ0(t), y(t) = A2(x, y)(t) + λϕ0(t) for t ∈
[ν – 1, T + ν – 2]Nν–1 . Together with (H1), we obtain

(
x(t)
y(t)

)

≥
(

A1(x, y)(t)
A2(x, y)(t)

)

≥
⎛

⎝

∑T–1
s=0 H1(t, s)(a1x(s + ν – 1) + b1y(s + ν – 1) – l1) +

∑T–1
s=0 K1(t, s)(c1x(s + ν – 1) + d1y(s + ν – 1) – l2)

∑T–1
s=0 H2(t, s)(c1x(s + ν – 1) + d1y(s + ν – 1) – l2) +

∑T–1
s=0 K2(t, s)(a1x(s + ν – 1) + b1y(s + ν – 1) – l1)

⎞

⎠



Cheng et al. Advances in Difference Equations        (2019) 2019:249 Page 13 of 22

for t ∈ [ν – 1, T + ν – 2]Nν–1 . Multiplying both sides of the above inequality by ρ∗(t) and
summing from ν – 1 to T + ν – 2, together with (2.8)–(2.11), we obtain

(∑T+ν–2
t=ν–1 x(t)ρ∗(t)

∑T+ν–2
t=ν–1 y(t)ρ∗(t)

)

≥
(∑T+ν–2

t=ν–1 ρ∗(t)[
∑T–1

s=0 H1(t, s)(a1x(s + ν – 1) + b1y(s + ν – 1) – l1) +
∑T–1

s=0 K1(t, s)(c1x(s + ν – 1) + d1y(s + ν – 1) – l2)]
∑T+ν–2

t=ν–1 ρ∗(t)[
∑T–1

s=0 H2(t, s)(c1x(s + ν – 1) + d1y(s + ν – 1) – l2) +
∑T–1

s=0 K2(t, s)(a1x(s + ν – 1) + b1y(s + ν – 1) – l1)]

)

≥
(

hμ1
∑T–1

s=0 ρ(s)(a1x(s + ν – 1) + b1y(s + ν – 1)) + kμ1
∑T–1

s=0 ρ(s)(c1x(s + ν – 1) + d1y(s + ν – 1)) – (hμ2 l1 + kμ2 l2)
∑T–1

s=0 ρ(s)
hμ3

∑T–1
s=0 ρ(s)(c1x(s + ν – 1) + d1y(s + ν – 1)) + kμ3

∑T–1
s=0 ρ(s)(a1x(s + ν – 1) + b1y(s + ν – 1)) – (kμ4 l1 + hμ4 l2)

∑T–1
s=0 ρ(s)

)

=

(∑T–1
s=0 ρ∗(s + ν – 1)[hμ1 (a1x(s + ν – 1) + b1y(s + ν – 1)) + kμ1 (c1x(s + ν – 1) + d1y(s + ν – 1))] – (hμ2 l1 + kμ2 l2)

∑T–1
s=0 ρ(s)

∑T–1
s=0 ρ∗(s + ν – 1)[hμ3 (c1x(s + ν – 1) + d1y(s + ν – 1)) + kμ3 (a1x(s + ν – 1) + b1y(s + ν – 1))] – (kμ4 l1 + hμ4 l2)

∑T–1
s=0 ρ(s)

)

=

(
hμ1

∑T+ν–2
t=ν–1 ρ∗(t)(a1x(t) + b1y(t)) + kμ1

∑T+ν–2
t=ν–1 ρ∗(t)(c1x(t) + d1y(t)) – (hμ2 l1 + kμ2 l2)

∑T–1
s=0 ρ(s)

hμ3
∑T+ν–2

t=ν–1 ρ∗(t)(c1x(t) + d1y(t)) + kμ3
∑T+ν–2

t=ν–1 ρ∗(t)(a1x(t) + b1y(t)) – (kμ4 l1 + hμ4 l2)
∑T–1

s=0 ρ(s)

)

.

This implies that

(
hμ1 b1 + kμ1 d1 hμ1 a1 + kμ1 c1 – 1

hμ3 d1 + kμ3 b1 – 1 hμ3 c1 + kμ3 a1

)(∑T+ν–2
t=ν–1 y(t)ρ∗(t)

∑T+ν–2
t=ν–1 x(t)ρ∗(t)

)

≤
(

(hμ2 l1 + kμ2 l2)
∑T–1

s=0 ρ(s)
(kμ4 l1 + hμ4 l2)

∑T–1
s=0 ρ(s)

)

.

Solving this matrix inequality, we have

(∑T+ν–2
t=ν–1 y(t)ρ∗(t)

∑T+ν–2
t=ν–1 x(t)ρ∗(t)

)

≤ κ–1
1

(
hμ3 c1 + kμ3 a1 1 – hμ1 a1 – kμ1 c1

1 – hμ3 d1 – kμ3 b1 hμ1 b1 + kμ1 d1

)(
(hμ2 l1 + kμ2 l2)

∑T–1
s=0 ρ(s)

(kμ4 l1 + hμ4 l2)
∑T–1

s=0 ρ(s)

)

.

Therefore, we have

T+ν–2∑

t=ν–1

y(t)ρ∗(t)

≤ κ–1
1

[
(hμ3 c1 + kμ3 a1)(hμ2 l1 + kμ2 l2) + (1 – hμ1 a1 – kμ1 c1)(kμ4 l1 + hμ4 l2)

] T–1∑

s=0

ρ(s),

T+ν–2∑

t=ν–1

x(t)ρ∗(t)

≤ κ–1
1

[
(1 – hμ3 d1 – kμ3 b1)(hμ2 l1 + kμ2 l2) + (hμ1 b1 + kμ1 d1)(kμ4 l1 + hμ4 l2)

]
T–1∑

s=0

ρ(s).

On the other hand, there exist t1, t2 ∈ [ν – 1, T + ν – 2]Nν–1 such that

x(t1)ρ∗(t1) = ‖x‖ρ∗(t1) ≤
T+ν–2∑

t=ν–1

x(t)ρ∗(t),

y(t2)ρ∗(t2) = ‖y‖ρ∗(t2) ≤
T+ν–2∑

t=ν–1

y(t)ρ∗(t).

(3.1)
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Consequently, we have

‖x‖ ≤ 1
κ1ρ∗(t1)

[
(1 – hμ3 d1 – kμ3 b1)(hμ2 l1 + kμ2 l2)

+ (hμ1 b1 + kμ1 d1)(kμ4 l1 + hμ4 l2)
]

T–1∑

s=0

ρ(s),

‖y‖ ≤ 1
κ1ρ∗(t2)

[
(hμ3 c1 + kμ3 a1)(hμ2 l1 + kμ2 l2)

+ (1 – hμ1 a1 – kμ1 c1)(kμ4 l1 + hμ4 l2)
]

T–1∑

s=0

ρ(s).

This proves that S1 is bounded in P × P. Then we can choose a positive number R1 > r1,
R1 > 1

κ1ρ∗(t1) [(1 – hμ3 d1 – kμ3 b1)(hμ2 l1 + kμ2 l2) + (hμ1 b1 + kμ1 d1)(kμ4 l1 + hμ4 l2)]
∑T–1

s=0 ρ(s),
and R1 > 1

κ1ρ∗(t2) [(hμ3 c1 + kμ3 a1)(hμ2 l1 + kμ2 l2) + (1 – hμ1 a1 – kμ1 c1)(kμ4 l1 + hμ4 l2)]
∑T–1

s=0 ρ(s)
such that

(x, y) �= A(x, y) + λ(ϕ0,ϕ0), for (x, y) ∈ ∂BR1 ∩ (P × P),λ ≥ 0. (3.2)

As a result, Lemma 2.8 implies

i
(
A, BR1 ∩ (P × P), P × P

)
= 0. (3.3)

In what follows, we prove that

(x, y) �= λA(x, y), for (x, y) ∈ ∂Br1 ∩ (P × P),λ ∈ [0, 1], (3.4)

where r1 is defined by (H2). Argument by contrary, there exist (x, y) ∈ ∂Br1 ∩ (P × P),
λ0 ∈ [0, 1] such that (x, y) = λ0A(x, y), and thus from (H2) we obtain

(
x(t)
y(t)

)

≤
(

A1(x, y)(t)
A2(x, y)(t)

)

≤
(∑T–1

s=0 H1(t, s)(a2x(s + ν – 1) + b2y(s + ν – 1)) +
∑T–1

s=0 K1(t, s)(c2x(s + ν – 1) + d2y(s + ν – 1))
∑T–1

s=0 H2(t, s)(c2x(s + ν – 1) + d2y(s + ν – 1)) +
∑T–1

s=0 K2(t, s)(a2x(s + ν – 1) + b2y(s + ν – 1))

)

.

Multiplying both sides of the above inequality by ρ∗(t) and summing from ν –1 to T +ν –2,
together with (2.8)–(2.11), we obtain

(∑T+ν–2
t=ν–1 x(t)ρ∗(t)

∑T+ν–2
t=ν–1 y(t)ρ∗(t)

)

≤
(∑T+ν–2

t=ν–1 ρ∗(t)
∑T–1

s=0 H1(t, s)(a2x(s + ν – 1) + b2y(s + ν – 1)) +
∑T+ν–2

t=ν–1 ρ∗(t)
∑T–1

s=0 K1(t, s)(c2x(s + ν – 1) + d2y(s + ν – 1))
∑T+ν–2

t=ν–1 ρ∗(t)
∑T–1

s=0 H2(t, s)(c2x(s + ν – 1) + d2y(s + ν – 1)) +
∑T+ν–2

t=ν–1 ρ∗(t)
∑T–1

s=0 K2(t, s)(a2x(s + ν – 1) + b2y(s + ν – 1))

)

≤
(

hμ2
∑T–1

s=0 ρ(s)(a2x(s + ν – 1) + b2y(s + ν – 1)) + kμ2
∑T–1

s=0 ρ(s)(c2x(s + ν – 1) + d2y(s + ν – 1))
hμ4

∑T–1
s=0 ρ(s)(c2x(s + ν – 1) + d2y(s + ν – 1)) + kμ4

∑T–1
s=0 ρ(s)(a2x(s + ν – 1) + b2y(s + ν – 1))

)

=

(
hμ2

∑T–1
s=0 ρ∗(s + ν – 1)(a2x(s + ν – 1) + b2y(s + ν – 1)) + kμ2

∑T–1
s=0 ρ∗(s + ν – 1)(c2x(s + ν – 1) + d2y(s + ν – 1))

hμ4
∑T–1

s=0 ρ∗(s + ν – 1)(c2x(s + ν – 1) + d2y(s + ν – 1)) + kμ4
∑T–1

s=0 ρ∗(s + ν – 1)(a2x(s + ν – 1) + b2y(s + ν – 1))

)

=

(
hμ2

∑T+ν–2
t=ν–1 ρ∗(t)(a2x(t) + b2y(t)) + kμ2

∑T+ν–2
t=ν–1 ρ∗(t)(c2x(t) + d2y(t))

hμ4
∑T+ν–2

t=ν–1 ρ∗(t)(c2x(t) + d2y(t)) + kμ4
∑T+ν–2

t=ν–1 ρ∗(t)(a2x(t) + b2y(t))

)

.
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Solving this matrix inequality, we have

(
1 – hμ2 a2 – kμ2 c2 –hμ2 b2 – kμ2 d2

–hμ4 c2 – kμ4 a2 1 – hμ4 d2 – kμ4 b2

)(∑T+ν–2
t=ν–1 x(t)ρ∗(t)

∑T+ν–2
t=ν–1 y(t)ρ∗(t)

)

≤
(

0
0

)

.

Consequently, we have

(∑T+ν–2
t=ν–1 x(t)ρ∗(t)

∑T+ν–2
t=ν–1 y(t)ρ∗(t)

)

≤ κ–1
2

(
1 – hμ4 d2 – kμ4 b2 hμ2 b2 + kμ2 d2

hμ4 c2 + kμ4 a2 1 – hμ2 a2 – kμ2 c2

)(
0
0

)

=

(
0
0

)

.

Note that ρ∗(t) �≡ 0 for t ∈ [ν – 1, T + ν – 2]Nν–1 , whence x(t) = y(t) ≡ 0 for t ∈ [ν – 1, T +
ν – 2]Nν–1 , and this contradicts (x, y) ∈ ∂Br1 ∩ (P × P) with r1 > 0. As a result, (3.4) holds,
and from Lemma 2.9 we have

i
(
A, Br1 ∩ (P × P), P × P

)
= 1. (3.5)

Up to now, (3.3) and (3.5) enabled us to obtain i(A, (BR1\Br1 ) ∩ (P × P), P × P) = –1 �= 0.
Hence the operator A has at least one fixed point on (BR1\Br1 ) ∩ (P × P), and therefore
(1.1) has at least one positive solution. This completes the proof. �

Theorem 3.2 Suppose that (H3)–(H4) hold. Then the fractional difference system (1.1)
has at least one positive solution.

Proof We first prove that

(x, y) �= A(x, y) + λ(ϕ1,ϕ1), for (x, y) ∈ ∂Br2 ∩ (P × P),λ ≥ 0, (3.6)

where ϕ1 ∈ P is a given element, and r2 is defined by (H3). Suppose the contrary. Then
there exist (x, y) ∈ ∂Br2 ∩ (P × P) and λ0 ≥ 0 such that

(x, y) = A(x, y) + λ0(ϕ1,ϕ1).

Associated with condition (H3), this means that

(
x(t)
y(t)

)

≥
(

A1(x, y)(t)
A2(x, y)(t)

)

≥
(∑T–1

s=0 H1(t, s)(a3x(s + ν – 1) + b3y(s + ν – 1)) +
∑T–1

s=0 K1(t, s)(c3x(s + ν – 1) + d3y(s + ν – 1))
∑T–1

s=0 H2(t, s)(c3x(s + ν – 1) + d3y(s + ν – 1)) +
∑T–1

s=0 K2(t, s)(a3x(s + ν – 1) + b3y(s + ν – 1))

)

.
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Multiplying both sides of the above inequality by ρ∗(t) and summing from ν –1 to T +ν –2,
together with (2.8)–(2.11), we obtain

(∑T+ν–2
t=ν–1 x(t)ρ∗(t)

∑T+ν–2
t=ν–1 y(t)ρ∗(t)

)

≥
(∑T+ν–2

t=ν–1 ρ∗(t)[
∑T–1

s=0 H1(t, s)(a3x(s + ν – 1) + b3y(s + ν – 1)) +
∑T–1

s=0 K1(t, s)(c3x(s + ν – 1) + d3y(s + ν – 1))]
∑T+ν–2

t=ν–1 ρ∗(t)[
∑T–1

s=0 H2(t, s)(c3x(s + ν – 1) + d3y(s + ν – 1)) +
∑T–1

s=0 K2(t, s)(a3x(s + ν – 1) + b3y(s + ν – 1))]

)

≥
(

hμ1
∑T–1

s=0 ρ(s)(a3x(s + ν – 1) + b3y(s + ν – 1)) + kμ1
∑T–1

s=0 ρ(s)(c3x(s + ν – 1) + d3y(s + ν – 1))
hμ3

∑T–1
s=0 ρ(s)(c3x(s + ν – 1) + d3y(s + ν – 1)) + kμ3

∑T–1
s=0 ρ(s)(a3x(s + ν – 1) + b3y(s + ν – 1))

)

=

(
hμ1

∑T–1
s=0 ρ∗(s + ν – 1)(a3x(s + ν – 1) + b3y(s + ν – 1)) + kμ1

∑T–1
s=0 ρ∗(s + ν – 1)(c3x(s + ν – 1) + d3y(s + ν – 1))

hμ3
∑T–1

s=0 ρ∗(s + ν – 1)(c3x(s + ν – 1) + d3y(s + ν – 1)) + kμ3
∑T–1

s=0 ρ∗(s + ν – 1)(a3x(s + ν – 1) + b3y(s + ν – 1))

)

=

(
hμ1

∑T+ν–2
t=ν–1 ρ∗(t)(a3x(t) + b3y(t)) + kμ1

∑T+ν–2
t=ν–1 ρ∗(t)(c3x(t) + d3y(t))

hμ3
∑T+ν–2

t=ν–1 ρ∗(t)(c3x(t) + d3y(t)) + kμ3
∑T+ν–2

t=ν–1 ρ∗(t)(a3x(t) + b3y(t))

)

.

This leads us to obtain

(
hμ1 b3 + kμ1 d3 hμ1 a3 + kμ1 c3 – 1

hμ3 d3 + kμ3 b3 – 1 hμ3 c3 + kμ3 a3

)(∑T+ν–2
t=ν–1 y(t)ρ∗(t)

∑T+ν–2
t=ν–1 x(t)ρ∗(t)

)

≤
(

0
0

)

.

Solving this matrix inequality, we have

(∑T+ν–2
t=ν–1 y(t)ρ∗(t)

∑T+ν–2
t=ν–1 x(t)ρ∗(t)

)

≤ κ–1
3

(
hμ3 c3 + kμ3 a3 1 – hμ1 a3 – kμ1 c3

1 – hμ3 d3 – kμ3 b3 hμ1 b3 + kμ1 d3

)(
0
0

)

.

Hence, we find

(∑T+ν–2
t=ν–1 y(t)ρ∗(t)

∑T+ν–2
t=ν–1 x(t)ρ∗(t)

)

=

(
0
0

)

.

Note that ρ∗(t) �≡ 0 for t ∈ [ν – 1, T + ν – 2]Nν–1 , whence x(t) = y(t) ≡ 0 for t ∈ [ν – 1, T +
ν – 2]Nν–1 , and this contradicts (x, y) ∈ ∂Br2 ∩ (P × P) with r2 > 0. Consequently, (3.6) is
satisfied, and Lemma 2.8 implies that

i
(
A, Br2 ∩ (P × P), P × P

)
= 0. (3.7)

On the other hand, we claim that the set

S2 =
{

(x, y) ∈ P × P : (x, y) = λA(x, y) for some λ ∈ [0, 1]
}

is bounded in P × P. If there exists (x, y) ∈ S2, then from (H4) we have

(
x(t)
y(t)

)

≤
(

A1(x, y)(t)
A2(x, y)(t)

)

≤
(∑T–1

s=0 H1(t, s)(a4x(s + ν – 1) + b4y(s + ν – 1) + l3) +
∑T–1

s=0 K1(t, s)(c4x(s + ν – 1) + d4y(s + ν – 1) + l4)
∑T–1

s=0 H2(t, s)(c4x(s + ν – 1) + d4y(s + ν – 1) + l4) +
∑T–1

s=0 K2(t, s)(a4x(s + ν – 1) + b4y(s + ν – 1) + l3)

)
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for t ∈ [ν – 1, T + ν – 2]Nν–1 . Multiplying both sides of the above inequality by ρ∗(t) and

summing from ν – 1 to T + ν – 2, together with (2.8)–(2.11), we obtain

(∑T+ν–2
t=ν–1 x(t)ρ∗(t)

∑T+ν–2
t=ν–1 y(t)ρ∗(t)

)

≤
(∑T+ν–2

t=ν–1 ρ∗(t)[
∑T–1

s=0 H1(t, s)(a4x(s + ν – 1) + b4y(s + ν – 1) + l3) +
∑T–1

s=0 K1(t, s)(c4x(s + ν – 1) + d4y(s + ν – 1) + l4)]
∑T+ν–2

t=ν–1 ρ∗(t)[
∑T–1

s=0 H2(t, s)(c4x(s + ν – 1) + d4y(s + ν – 1) + l4) +
∑T–1

s=0 K2(t, s)(a4x(s + ν – 1) + b4y(s + ν – 1) + l3)]

)

≤
(

hμ2
∑T–1

s=0 ρ(s)(a4x(s + ν – 1) + b4y(s + ν – 1)) + kμ2
∑T–1

s=0 ρ(s)(c4x(s + ν – 1) + d4y(s + ν – 1)) + (hμ2 l3 + kμ2 l4)
∑T–1

s=0 ρ(s)
hμ4

∑T–1
s=0 ρ(s)(c4x(s + ν – 1) + d4y(s + ν – 1)) + kμ4

∑T–1
s=0 ρ(s)(a4x(s + ν – 1) + b4y(s + ν – 1)) + (kμ4 l3 + hμ4 l4)

∑T–1
s=0 ρ(s)

)

=

(∑T–1
s=0 ρ∗(s + ν – 1)[hμ2 (a4x(s + ν – 1) + b4y(s + ν – 1)) + kμ2 (c4x(s + ν – 1) + d4y(s + ν – 1))] + (hμ2 l3 + kμ2 l4)

∑T–1
s=0 ρ(s)

∑T–1
s=0 ρ∗(s + ν – 1)[hμ4 (c4x(s + ν – 1) + d4y(s + ν – 1)) + kμ4 (a4x(s + ν – 1) + b4y(s + ν – 1))] + (kμ4 l3 + hμ4 l4)

∑T–1
s=0 ρ(s)

)

=

(
hμ2

∑T+ν–2
t=ν–1 ρ∗(t)(a4x(t) + b4y(t)) + kμ2

∑T+ν–2
t=ν–1 ρ∗(t)(c4x(t) + d4y(t)) + (hμ2 l3 + kμ2 l4)

∑T–1
s=0 ρ(s)

hμ4
∑T+ν–2

t=ν–1 ρ∗(t)(c4x(t) + d4y(t)) + kμ4
∑T+ν–2

t=ν–1 ρ∗(t)(a4x(t) + b4y(t)) + (kμ4 l3 + hμ4 l4)
∑T–1

s=0 ρ(s)

)

.

Solving this matrix inequality, we have

(
1 – hμ2 a4 – kμ2 c4 –hμ2 b4 – kμ2 d4

–hμ4 c4 – kμ4 a4 1 – hμ4 d4 – kμ4 b4

)(∑T+ν–2
t=ν–1 x(t)ρ∗(t)

∑T+ν–2
t=ν–1 y(t)ρ∗(t)

)

≤
(

(hμ2 l3 + kμ2 l4)
∑T–1

s=0 ρ(s)
(kμ4 l3 + hμ4 l4)

∑T–1
s=0 ρ(s)

)

.

This indicates that

(∑T+ν–2
t=ν–1 x(t)ρ∗(t)

∑T+ν–2
t=ν–1 y(t)ρ∗(t)

)

≤ κ–1
4

(
1 – hμ4 d4 – kμ4 b4 hμ2 b4 + kμ2 d4

hμ4 c4 + kμ4 a4 1 – hμ2 a4 – kμ2 c4

)(
(hμ2 l3 + kμ2 l4)

∑T–1
s=0 ρ(s)

(kμ4 l3 + hμ4 l4)
∑T–1

s=0 ρ(s)

)

.

Consequently, we have

T+ν–2∑

t=ν–1

x(t)ρ∗(t) ≤ κ–1
4

[
(1 – hμ4 d4 – kμ4 b4)(hμ2 l3 + kμ2 l4)

+ (hμ2 b4 + kμ2 d4)(kμ4 l3 + hμ4 l4)
]

T–1∑

s=0

ρ(s),

T+ν–2∑

t=ν–1

y(t)ρ∗(t) ≤ κ–1
4

[
(hμ4 c4 + kμ4 a4)(hμ2 l3 + kμ2 l4)

+ (1 – hμ2 a4 – kμ2 c4)(kμ4 l3 + hμ4 l4)
] T–1∑

s=0

ρ(s).
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Similarly, using (3.1) we have

‖x‖ ≤ 1
κ4ρ∗(t1)

[
(1 – hμ4 d4 – kμ4 b4)(hμ2 l3 + kμ2 l4)

+ (hμ2 b4 + kμ2 d4)(kμ4 l3 + hμ4 l4)
] T–1∑

s=0

ρ(s),

‖y‖ ≤ 1
κ4ρ∗(t2)

[
(hμ4 c4 + kμ4 a4)(hμ2 l3 + kμ2 l4)

+ (1 – hμ2 a4 – kμ2 c4)(kμ4 l3 + hμ4 l4)
]

T–1∑

s=0

ρ(s).

Then we can choose a positive number R2 > r2, R2 > 1
κ4ρ∗(t1) [(1 – hμ4 d4 – kμ4 b4)(hμ2 l3 +

kμ2 l4) + (hμ2 b4 + kμ2 d4)(kμ4 l3 + hμ4 l4)]
∑T–1

s=0 ρ(s), and R2 > 1
κ4ρ∗(t2) [(hμ4 c4 + kμ4 a4)(hμ2 l3 +

kμ2 l4) + (1 – hμ2 a4 – kμ2 c4)(kμ4 l3 + hμ4 l4)]
∑T–1

s=0 ρ(s) such that

(x, y) �= λA(x, y), for (x, y) ∈ ∂BR2 ∩ (P × P),λ ∈ [0, 1]. (3.8)

As a result, Lemma 2.9 implies

i
(
A, BR2 ∩ (P × P), P × P

)
= 1. (3.9)

Now, (3.7) and (3.9) enable us to obtain i(A, (BR2\Br2 ) ∩ (P × P), P × P) = 1 �= 0. Hence
the operator A has at least one fixed point on (BR2\Br2 ) ∩ (P × P), and therefore (1.1) has
at least one positive solution. This completes the proof. �

Example 3.3 Consider equation (1.1) with ν = 5
2 , T = 4, α = 1

3 , ξ = 1, η = 2, a = 2
3 ,

b = 4
3 . Then we need to calculate the following values: L = ( Γ (T+ν)

T ! )2 – abΓ (ξ+ν+1)Γ (η+ν+1)
(ξ+1)!(η+1)! =

( Γ ( 13
2 )

24 )2 –
8
9 Γ ( 9

2 )Γ ( 11
2 )

12 ≈ 98.9 > 0, L1 = ν–1
T(T+ν–1)ν–1(T+ν–2) ≈ 0.007, Γ (ν) ≈ 1.33, (ξ + ν)ν–1 ≈

5.82, (η + ν)ν–1 = (T + ν – 2)ν–1 ≈ 8.72, (T + ν – 1)ν–1 ≈ 12,
∑3

t=0 ρ(t) =
∑3

t=0(T + ν – t –
2)ν–1 ≈ 19.19,

∑3
t=0 (t + ν – 1)ν–1ρ(t) =

∑3
t=0 (t + ν – 1)ν–1(T + ν – t – 2)ν–1 ≈ 61.84. Then

we have

⎛

⎜
⎜
⎜
⎝

hμ1 hμ2

kμ1 kμ2

hμ3 hμ4

kμ3 kμ4

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

∑T–1
t=0

abL1(ξ+ν)ν–1(η+ν)ν–1(t+ν–1)ν–1ρ(t)
LΓ (ν)

∑T–1
t=0

[L+ab(ξ+ν)ν–1(T+ν–2)ν–1]ρ(t)
LΓ (ν)

∑T–1
t=0

aL1(ξ+ν)ν–1(η+ν)ν–1(t+ν–1)ν–1ρ(t)
LΓ (ν)

∑T–1
t=0

a(T+ν–1)ν–1(T+ν–2)ν–1ρ(t)
LΓ (ν)

∑T–1
t=0

abL1(ξ+ν)ν–1(η+ν)ν–1(t+ν–1)ν–1ρ(t)
LΓ (ν)

∑T–1
t=0

[L+ab(η+ν)ν–1(T+ν–2)ν–1]ρ(t)
LΓ (ν)

∑T–1
t=0

bL1(ξ+ν)ν–1(η+ν)ν–1(t+ν–1)ν–1ρ(t)
LΓ (ν)

∑T–1
t=0

b(T+ν–1)ν–1(T+ν–2)ν–1ρ(t)
LΓ (ν)

⎞

⎟
⎟
⎟
⎟
⎠

≈

⎛

⎜
⎜
⎜
⎝

0.15 21
0.11 10.35
0.15 24.23
0.23 20.7

⎞

⎟
⎟
⎟
⎠

.
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Let a1 = a3 = 3, b1 = b3 = 2, c1 = c3 = 4.5, d1 = d3 = 3, a2 = a4 = 1
500 , b2 = b4 = 1

420 , c2 = c4 =
1

210 , d2 = d4 = 1
500 and f1(t, x, y) = (3x + 2y)γ1 , f2(t, x, y) = (4.5x + 3y)γ2 , for (t, x, y) ∈ [ν – 1, T +

ν – 2]Nν–1 × R+ × R+. Then we can calculate:

hμ1 a1 + kμ1 c1 = hμ1 a3 + kμ1 c3 = 0.15 × 3 + 0.11 × 4.5 < 1,

hμ3 d1 + kμ3 b1 = hμ3 d3 + kμ3 b3 = 0.15 × 3 + 0.23 × 2 < 1,

and

κ1 = κ3 =

∣
∣
∣
∣
∣

hμ1 b1 + kμ1 d1 hμ1 a1 + kμ1 c1 – 1
hμ3 d1 + kμ3 b1 – 1 hμ3 c1 + kμ3 a1

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

0.63 –0.055
–0.09 1.365

∣
∣
∣
∣
∣

= 0.86 > 0.

Moreover,

hμ2 a2 + kμ2 c2 = hμ2 a4 + kμ2 c4 = 21 × 1
500

+ 10.35 × 1
210

< 1,

hμ4 d2 + kμ4 b2 = hμ4 d4 + kμ4 b4 = 24.23 × 1
500

+ 20.7 × 1
420

< 1,

and

κ2 = κ4 =

∣
∣
∣
∣
∣

1 – hμ2 a2 – kμ2 c2 –hμ2 b2 – kμ2 d2

–hμ4 c2 – kμ4 a2 1 – hμ4 d2 – kμ4 b2

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

0.91 –0.071
–0.16 0.90

∣
∣
∣
∣
∣

= 0.81 > 0.

Case 1. When γi > 1, i = 1, 2. Then we have

lim inf
a1x+b1y→+∞

f1(t, x, y)
a1x + b1y

= lim inf
a1x+b1y→+∞

(3x + 2y)γ1

3x + 2y
= +∞,

uniformly on t ∈ [ν – 1, T + ν – 2]Nν–1 ,

and

lim inf
c1x+d1y→+∞

f2(t, x, y)
c1x + d1y

= lim inf
c1x+d1y→+∞

(4.5x + 3y)γ2

4.5x + 3y
= +∞,

uniformly on t ∈ [ν – 1, T + ν – 2]Nν–1 .

On the other hand, we also have

lim sup
a2x+b2y→0+

f1(t, x, y)
a2x + b2y

= lim sup
a2x+b2y→0+

(3x + 2y)γ1

x
500 + y

420
= 0,

uniformly on t ∈ [ν – 1, T + ν – 2]Nν–1 ,

and

lim sup
c2x+d2y→0+

f2(t, x, y)
c2x + d2y

= lim sup
c2x+d2y→0+

(4.5x + 3y)γ2

x
210 + y

500
= 0,

uniformly on t ∈ [ν – 1, T + ν – 2]Nν–1 .

As a result, (H1)–(H2) hold.



Cheng et al. Advances in Difference Equations        (2019) 2019:249 Page 20 of 22

Case 2. When γi ∈ (0, 1), i = 1, 2. Then we have

lim inf
a3x+b3y→0+

f1(t, x, y)
a3x + b3y

= lim inf
a3x+b3y→0+

(3x + 2y)γ1

3x + 2y
= +∞,

uniformly on t ∈ [ν – 1, T + ν – 2]Nν–1 ,

and

lim inf
c3x+d3y→0+

f2(t, x, y)
c3x + d3y

= lim inf
c3x+d3y→0+

(4.5x + 3y)γ2

4.5x + 3y
= +∞,

uniformly on t ∈ [ν – 1, T + ν – 2]Nν–1 .

On the other hand, we also have

lim sup
a4x+b4y→+∞

f1(t, x, y)
a4x + b4y

= lim sup
a4x+b4y→+∞

(3x + 2y)γ1

x
500 + y

420
= 0,

uniformly on t ∈ [ν – 1, T + ν – 2]Nν–1 ,

and

lim sup
c4x+d4y→+∞

f2(t, x, y)
c4x + d4y

= lim sup
c4x+d4y→+∞

(4.5x + 3y)γ2

x
210 + y

500
= 0,

uniformly on t ∈ [ν – 1, T + ν – 2]Nν–1 .

As a result, (H3)–(H4) hold.
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