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Abstract
The paper investigates mean-square exponential stabilization for a class of nonlinear
switched stochastic systems with interval time-varying delay under asynchronous
switching. Specifically, the delay occurs not only in the state equation, but also in the
switching signal from the controller, which brings the difficulty of controller design to
achieve mean-square exponential stabilization. Based on the Lyapunov stability
theory, a new piecewise multi-Lyapunov–Krasovskii functional dependent on the size
of time delay is constructed. By utilizing the matrix inequality technique and the
average dwell time approach, delay-dependent sufficient conditions are given to
guarantee mean-square exponential stabilization for nonlinear switched stochastic
systems under asynchronous switching. In accordance with the method, we also
design state feedback controllers of the switched stochastic systems under
asynchronous switching through special operations of matrices and Schur
complement. Finally, a numerical example and a practical example of river pollution
control are provided to show the effectiveness of the approach proposed in this
paper.
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1 Introduction
During the last two decades, hybrid systems have become increasingly important in con-
temporary society both in science and technology due mainly to the fact that hybrid sys-
tems have been extensively applied in many fields such as pattern recognition [1], network
control [2], power systems [3], automotive systems [4], communication systems [5], neu-
ral networks [6], and so on. A switched system is one of the special dynamic hybrid sys-
tems that comprise a collection of subsystems equipped with a switching law orchestrating
among these systems. Many of switched system models appear in the fields of industrial
manufacturing, artificial intelligence, biochemical systems, actuator failures [7], and pop-
ulation dynamics [8–10].
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The analysis and synthesis are important issues in the study of switched systems, and
they have attracted extensive attention from domestic and foreign scientific research. So
far, much progress has been made and many remarkable achievements for various types
of switched systems have been studied. For example, behavior analysis [11, 12], property
characterization [13], fault detection [14], and control synthesis [15–17]. These results
show that stability is a crucial and fundamental problem for switched system with time
delay. Essentially, time delay, perturbation, and stochastic term are common phenomena
often encountered in real dynamical systems [18–20]. Moreover, the effect of time de-
lays generally exists in system states and will be a source of control system instability,
oscillation, and performance deterioration. As a result, the study of delay and stochastic
term plays an important role in the stability analysis of switched system. With respect to
those problems, we just mention here some representative work. In [21], a new method
of uncertain matrix was proposed. Based on this approach, an exponential stabilization
condition of nonlinear uncertain systems with time-varying delay was firstly established.
By following this idea, [22] also studied the delay-dependent stability analysis and rele-
vant control problems for nonlinear switched with interval time-varying delay based on
Lyapunov–Krasovskii functional method. Robust guaranteed cost control for a class of un-
certain neutral system with time-varying delays was investigated in [23], delay-dependent
and delay-independent criteria were proposed for the stabilization of considered systems,
state feedback control was considered to stabilize the uncertain neutral system, and upper
bounds on the closed-loop cost function were also given. [24] obtained sufficient condi-
tions with delay-dependent guaranteeing the exponential stability by a common Lyapunov
functional (CLF). Recently analogous results have been found in [25], and [25] constructed
a suitable Lyapunov–Krasovskii functional containing some novel triple integral terms
with sufficient information about the actual sampling pattern. Based on the above discus-
sion, the theory of time-delay systems can be divided into two classes: delay-independent
control and delay-dependent control. To the best of our knowledge, delay-dependent sta-
bilization condition gives less conservative result than the delay-independent one as it
makes full use of information of the system. Specifically, systems with delay are of signif-
icant interest not only for their applicability in practice but also for their interesting the-
oretical properties. This is motivated by the need for systematic approach to investigate
switched systems with delay.

On the other hand, the switching between the controller and the subsystem of switched
systems is synchronous in the ideal case. In fact, the asynchronous phenomenon often
occurs in practical industrial systems. For instance, when the system and the controller
communicate via a communication channel and the current subsystem is switched to the
next one, it is necessary to take some time to identify the active subsystem and then switch
the controller from the current one to the corresponding subsystem, further causing asyn-
chronous switching. With the great development of switched systems, the asynchronous
control problem for switched systems, which is quite practical and energy efficient, has
received increasing attention. In the past few years, it is noted that some valid results have
appeared in studying nonlinear switched systems under asynchronous switching [26–29].
Specifically, [30] investigated the problem of output tracking control for switched systems
with time-varying delay under asynchronous switching. Moreover, based on the dwell
time approach, some sufficient conditions of exponential stabilization for a given switched
system and a tracking error system were proposed in terms of linear matrix inequalities
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(LMIs). Due to the switching instants of the controllers lagging behind those of the subsys-
tems, [31] dealt with the problem of stabilization for a class of switched delay systems with
polytopic type uncertainties under asynchronous switching, and the running time was di-
vided into two parts: matched periods [tk + τd, tk+1), k = 1, 2, . . . and mismatched periods
[tk , tk + τd), k = 1, 2, . . . . In addition, by constructing the parameter-dependent Lyapunov–
Krasovskii functional and the average dwell time approach, the exponential stabilization
problem for a class of nonlinear switched systems with mixed delays under asynchronous
switching was investigated in [32]. In these papers mentioned above, the time delay is sim-
ple and no stochastic items are considered. Searching for delay-dependent mean-square
stability criteria for nonlinear switched stochastic systems with interval time-varying de-
lays is obviously more preferable and challenging.

Furthermore, it is well known that few results have been devoted to the stability of non-
linear switched stochastic systems with interval time-varying delay under asynchronous
switching based on the average dwell time approach. This paper considers interval time-
varying delay. It is natural to look for an alternative view to derive a less conservative con-
dition for exponential stabilization of nonlinear switched stochastic systems under asyn-
chronous switching. Moreover, we can hardly use the existing methods to investigate a
stochastic switched system due to the impact of stochastic factor. This has motivated our
present study on the following questions.

• Is it possible to find a delay-dependent multiple Lyapunov–Krasovskii functional that
studies the matched periods and the mismatched periods of the nonlinear switched
stochastic systems, respectively?

• Based on the average dwell time approach and Jense’s inequality, can we obtain a less
conservative sufficient condition of mean-square exponential stabilization for
nonlinear switched stochastic systems with interval time-varying delay under
asynchronous switching?

• Can we design a mean-square exponentially stable feedback controller for switched
nonlinear systems under asynchronous switching by the matrix deformation
technique and Schur compensation?

The core of this paper is the further development of switched stochastic nonlinear sys-
tems with interval time-varying delay under asynchronous switching. Moreover, we have
proposed a detailed study and solutions on the above issues. Compared with the existing
results on switched systems, the main contributions of this paper can be summarized as
follows. (i) We consider the actual situation. In fact, the system needs to take some time to
identify the active subsystem, and then switch the controller from the current subsystem
to the corresponding subsystem, further causing asynchronous switching. (ii) According
to Lyapunov stability theory, the Lyapunov–Krasovskii functional constructed in this pa-
per is time-delay-dependent and depends on the switching signal of the controller. At the
same time, it is allowed to increase the running time of the active subsystem with mis-
match controller. The established Lyapunov–Krasovskii functional facilitates the analysis
of the proposed problem. (iii) By utilizing the matrix inequality technique and the av-
erage dwell time approach, delay-dependent sufficient conditions are given to guarantee
mean-square exponential stabilization for nonlinear switched stochastic systems under
asynchronous switching. Moreover, state feedback controllers and switching signal of the
switched stochastic systems are designed simultaneously under asynchronous switching
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through special operations of matrices and Schur complement without resorting to addi-
tional constraints on the switching signal.

The remainder of this paper is organized as follows. In Sect. 2, the problem description
and preliminaries and some necessary lemmas are presented. Section 3 is devoted to deriv-
ing the results on exponential stabilization for switching signals by the average dwell time
approach and delay-dependent multi-Lyapunov–Krasovskii functional. Moreover, feed-
back controller of nonlinear switched stochastic systems with interval time-varying delay
under asynchronous switching is designed, which is the main result of this paper. In Sect. 4,
an example is given to illustrate the results. The paper is concluded in Sect. 5.

The notations used in this paper are fairly standard. Rn denotes the n-dimensional Eu-
clidean space. AT denotes the transpose of A. The symbol ∗ is used to denote the cor-
responding transposed block matrix. Diag {· · · } is a block-diagonal matrix. I represents
the identity matrix in the block matrix, and 0 represents a zero matrix with appropriate
dimensions. The notation P > 0 indicates that P is a real symmetric and positive definite
matrix, and λmin (λmax) is the minimum (maximum) eigenvalue of P.

2 Preliminaries
Consider the following switched stochastic nonlinear systems with interval time-varying
delay:

dx(t) =
[
A1σ (t)x(t) + A2σ (t)x

(
t – h(t)

)
+ Bσ (t)u(t)

+ Cσ (t)fσ (t)
(
t, x(t), x

(
t – h(t)

))]
dt + Dσ (t)x(t) dω(t),

x(s) = φ(s), s ∈ [–hM, 0],

(1)

where x(t) ∈ Rn and u(t) ∈ Rm are, respectively, the state vector and the control input
of switched systems. φ(s) ∈ Rn is the initial condition and fσ (t)(·) are nonlinear func-
tions. σ (t) : [0,∞] → M = {1, 2, . . . , n} is the switching signal. Specifically, denote Σ :
{(t0,σ (t0)), . . . , (tk ,σ (tk)), . . . , k = 0, 1, 2, . . .}, where 0 = t0 < t1 < t2 < · · · < tk < · · · , in which
t0 is the initial switching instant, tk denotes the kth switching instant. For σ (tk) = i,
A1i, A2i, Bi, Ci, Di are constant matrices with appropriate dimensions. In this article, we
assume that the delay function h(t) is interval time-varying and satisfies

hm ≤ d(t) ≤ hM, ḣ(t) ≤ h < 1. (2)

ω(t) is a one-dimensional Brownian motion on a probability space (Ω ,F ,P) and it satisfies
the following cases:

E
{

dω(t)
}

= 0, E
{

dω2(t)
}

= dt. (3)

fi(t, x(t), x(t – h(t))) are nonlinear perturbation functions, which satisfy the following con-
dition:

f T
i

(
t, x(t), x

(
t – h(t)

))
fi
(
t, x(t), x

(
t – h(t)

))

≤ xT (t)V T
i Vix(t) + xT(

t – h(t)
)
ΛT

i Λix
(
t – h(t)

)
, (4)
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where Vi and Λi are known constant matrices. Note that the assumption on the nonlinear
perturbations is widely applicable in practice and considered by many researchers. When
the controller synchronizes with the switching subsystem, the state feedback controller is
often designed as

u(t) = Kσ (t)x(t), (5)

where Ki, i ∈ M, denotes the feedback gain matrix.
In practice, since it inevitably takes some time to identify the system modes and apply

the matched controllers, the switching instants of the controllers lag behind those of the
subsystems. At this point, we consider the state feedback given by

u(t) = Kσ (t–τd)x(t), (6)

where τd is a known constant.

Remark 1 In this paper, τd represents the period that the switching instants of the con-
troller lag behind those of the system. Specifically, the running time of switched system is
divided into two parts: matched periods [tk +τd, tk+1), k = 1, 2, . . . , and mismatched periods
[tk , tk + τd), k = 1, 2, . . . . Correspondingly, we suppose that the jth subsystem is activated at
the switching instant tk–1, and the ith subsystem is activated at the switching instant tk ,
then the corresponding switching controllers are activated at the switching tk–1 + τd and
tk + τd , respectively.

The closed loop system of system (1) in the interval [tk , tk+1) can be represented as:

dx(t) =
[
Ā1ijx(t)x(t) + A2ix

(
t – h(t)

)
+ Cifi

(
t, x(t), x

(
t – h(t)

))]
dt

+ Dix(t) dω(t), ∀t ∈ [tk , tk + τd); mismatched periods

dx(t) =
[
Ā1ix(t)x(t) + A2ix

(
t – h(t)

)
+ Cifi

(
t, x(t), x

(
t – h(t)

))]
dt

+ Dix(t) dω(t), ∀t ∈ [tk + τd, tk+1); matched periods,

(7)

where Ā1ij = A1i + BiKj, Ā1i = A1i + BiKi.

Definition 1 ([28]) The equilibrium x∗ = 0 of the closed-loop system (7) is said to be
mean-square exponentially stable under switching signal σ (t) if the solution x(t) of system
satisfies

E
{∥∥x(t)

∥
∥2} ≤ k sup

–hM≤θ≤0
E
{∥∥x(t0 + θ )

∥
∥2}e–α(t–t0), ∀t ≥ t0 (8)

for constants k ≥ 1,α > 0.

Definition 2 ([33]) For any T2 > T1 ≥ 0, let Nσ (T1, T2) denote the switching number of
σ (t) on an interval (T1, T2). If

Nσ (T1, T2) ≥ N0 + (T2 – T1)/τα (9)
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holds for given N0 ≥ 0, τα ≥ 0, then the constant τα is called the average dwell time and N0

is the chatter bound. Without loss of generality, we choose N0 = 0 in this paper.

Lemma 1 (Schur complement) For a given matrix
( S11 S12

∗ S22

)
with S11 = ST

11, S22 = ST
22, then

the following conditions are equivalent:
(1) S < 0,
(2) S11 < 0, S22 – ST

12S–1
11 S12 < 0,

(3) S22 < 0, S11 – S12S–1
22 ST

12 < 0.

Lemma 2 (Jensen’s inequality) For any symmetric and positive definite constant matrix
G ∈ Rl×l , scalars α and β : β < α, vector function x : [β ,α] → Rl such that the integration
concerned are well defined, then

–
∫ α

β

xT (s)Gx(s) ds ≤ –
1

α – β

(∫ α

β

x(s) ds
)T

G
(∫ α

β

x(s) ds
)

.

3 Main results
In this section, based on the Lyapunov stability theory, a new piecewise multi-Lyapunov–
Krasovskii functional dependent on the size of time delay is constructed. Moreover, we
give sufficient conditions for the mean-square exponential stabilization of system (7) by
the average dwell time approach and Jensen’s inequality. In addition, the state feedback
controllers of nonlinear switched systems are designed under asynchronous switching.

Theorem 1 For given positive constants α,β , h, and μ ≥ 1, if there exist symmetric and
positive definite matrices Pi, Q1i, Q2i, Q3i, R1i, R2i such that the following matrix inequalities
hold:

Pi ≤ μPj, Q1i ≤ μQ1j, Q2i ≤ μQ2j,

Q3i ≤ μQ3j, R1i ≤ μR1j, R2i ≤ μR2j, i, j ∈ M, i 	= j, (10)

Ξi =

⎛

⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎝

φi
11 PiA2i 0 0 PiCi 0 0
∗ φi

22 0 0 0 0 0
∗ ∗ φi

33 0 0 0 0
∗ ∗ ∗ φi

44 0 0 0
∗ ∗ ∗ ∗ –I 0 0
∗ ∗ ∗ ∗ ∗ φi

66 0
∗ ∗ ∗ ∗ ∗ ∗ φi

77

⎞

⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎠

< 0, (11)

Ωi =

⎛

⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎝

ϕi
11 PiA2i 0 0 PiCi 0 0
∗ ϕi

22 0 0 0 0 0
∗ ∗ –Q2i 0 0 0 0
∗ ∗ ∗ –Q3i 0 0 0
∗ ∗ ∗ ∗ –I 0 0
∗ ∗ ∗ ∗ ∗ –R1i 0
∗ ∗ ∗ ∗ ∗ ∗ –R2i

⎞

⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎠

< 0, (12)
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where

φi
11 = ĀT

1iPi + PiĀ1i + Q1i + Q2i + Q3i + h2
mR1i + h2

MR2i + αPi + V T
i Vi,

φi
22 = ΛT

i Λi – (1 – h)e–αhM Q1i, φi
33 = –e–αhm Q2i,

φi
44 = –e–αhM Q3i, φi

66 = –e–αhm R1i, φi
77 = –e–αhM R2i.

ϕi
11 = ĀT

1ijPi + PiĀ1ij + Q1i + Q2i + Q3i + h2
mR1i + h2

MR2i – βPi + V T
i Vi,

ϕi
22 = ΛT

i Λi – (1 – h)Q1i.

If the average dwell time of the switching signal σ (t) satisfies

τa > τ ∗
a =

lnμ + (α + β)τd

α
, (13)

then the closed-loop system (7) is mean-square exponentially stabilizable under arbitrary
switching signal for the feedback control (6).

Proof When t ∈ [tk + τd, tk+1), σ (tk) = i ∈ M, switched systems run in matched periods.
The closed-loop system (7) is active within the ith subsystem, and the corresponding ith
switching controller is also activated. We choose the Lyapunov–Krasovskii functional can-
didate as follows:

V1σ (t)(t) = xT (t)Pσ (t)x(t) +
∫ t

t–h(t)
eα(s–t)xT (s)Q1σ (t)x(s) ds

+
∫ t

t–hm

eα(s–t)xT (s)Q2σ (t)x(s) ds

+
∫ t

t–hM

eα(s–t)xT (s)Q3σ (t)x(s) ds

+ hm

∫ 0

–hm

∫ t

t+θ

eα(s–t)xT (s)R1σ (t)x(s) ds dθ

+ hM

∫ 0

–hM

∫ t

t+θ

eα(s–t)xT (s)R2σ (t)x(s) ds dθ . (14)

According to Itô’s differential formula, the stochastic differential is

dV1i(t) = LV1i dt + 2xT (t)PiDix(t) dω(t) (15)

with the infinitesimal operator

LV1i = 2xT (t)Pi
[
Ā1ix(t)x(t) + A2ix

(
t – h(t)

)
+ Cifi

(
t, x(t), x

(
t – h(t)

))]

+ xT (t)Q1ix(t) –
(
1 – ḣ(t)

)
e–αh(t)xT(

t – h(t)
)
Q1ix

(
t – h(t)

)

+ xT (t)DT
i PiDix(t) + xT (t)Q2ix(t) – e–αhm xT (t – hm)Q2ix(t – hm)

+ xT (t)Q3ix(t) – e–αhM xT (t – hM)Q3ix(t – hM) + h2
mxT (t)R1ix(t)

– hm

∫ 0

–hm

eαθ xT (t + θ )R1ix(t + θ ) dθ + h2
MxT (t)R2ix(t)
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– α

∫ t

t–hm

eα(s–t)xT (s)Q2ix(s) ds – α

∫ t

t–hM

eα(s–t)xT (s)Q3ix(s) ds

– α

∫ 0

–hm

∫ t

t+θ

eα(s–t)xT (s)R1ix(s) dθ

– α

∫ 0

–hM

∫ t

t+θ

eα(s–t)xT (s)R2ix(s) dθ

– hM

∫ 0

–hM

eαθ xT (t + θ )R2ix(t + θ ) dθ – α

∫ t

t–h(t)
eα(s–t)xT (s)Q1ix(s) ds

≤ xT (t)
[
PiĀ1i + ĀT

1iPi + Q1i + Q2i + Q3i + h2
mR1i + h2

MR2i + DT
i PiDi

]
x(t)

– α

∫ 0

–hm

∫ t

t+θ

eα(s–t)xT (s)R1ix(s) ds

– α

∫ 0

–hM

∫ t

t+θ

eα(s–t)xT (s)R2ix(s) ds – α

∫ t

t–h(t)
eα(s–t)xT (s)Q1ix(s) ds

– hm

∫ t

t–hm

e–αhm xT (s)R1ix(s) ds

– α

∫ t

t–hm

eα(s–t)xT (s)Q2ix(s) ds

– hM

∫ t

t–hM

e–αhM xT (s)R2ix(s) ds

– α

∫ t

t–hM

eα(s–t)xT (s)Q3ix(s) ds – e–αhm xT (t – hm)Q2ix(t – hm)

+ xT (t)PiA2ix
(
t – h(t)

)
+ xT(

t – h(t)
)
AT

2iPix(t)

+ f T
i

(
t, x(t), x

(
t – h(t)

))
CT

i Pix(t)e–αhM xT (t – hM)Q3ix(t – hM)

– (1 – h)e–αhM xT(
t – h(t)

)
Q1ix

(
t – h(t)

)

+ xT (t)PiCifi
(
t, x(t), x

(
t – h(t)

))
. (16)

Inequality (4) can be written as follows:

xT (t)V T
i Vix(t) + xT(

t – h(t)
)
ΛT

i Λix
(
t – h(t)

)

– f T
i

(
t, x(t), x

(
t – h(t)

))
fi
(
t, x(t), x

(
t – h(t)

)) ≥ 0. (17)

By using Lemma 2, we get

–hm

∫ t

t–hm

e–αhm xT (s)R1ix(s) ds

≤ –e–αhm

(∫ t

t–hm

x(s) ds
)T

R1i

(∫ t

t–hm

x(s) ds
)

,

–hM

∫ t

t–hM

e–αhM xT (s)R2ix(s) ds

≤ –e–αhM

(∫ t

t–hM

x(s) ds
)T

R2i

(∫ t

t–hM

x(s) ds
)

.

(18)
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From (16), (17), and (18) we have

LV1i + αV1i ≤ xT (t)
[
PiĀ1i + ĀT

1iPi + Q1i + Q2i + Q3i

+ αPi + h2
mR1i + h2

MR2i + DT
i PiDi + V T

i Vi
]
x(t)

+ xT (t)PiCifi
(
t, x(t), x

(
t – h(t)

))

+ f T
i

(
t, x(t), x

(
t – h(t)

))
CT

i Pix(t)

– f T
i

(
t, x(t), x

(
t – h(t)

))
fi
(
t, x(t), x

(
t – h(t)

))

+ xT(
t – h(t)

)(
ΛT

i Λi – (1 – h)e–αhM Q1i
)
x
(
t – h(t)

)

+ xT (t)PiA2ix
(
t – h(t)

)
+ xT(

t – h(t)
)
AT

2iPix(t)

– e–αhm

(∫ t

t–hm

x(s) ds
)T

R1i

(∫ t

t–hm

x(s) ds
)

– e–αhm xT (t – hm)Q2ix(t – hm)

– e–αhM

(∫ t

t–hM

x(s) ds
)T

R2i

(∫ t

t–hM

x(s) ds
)

– e–αhM xT (t – hM)Q3ix(t – hM). (19)

Let

ξ (t) =
(

xT (t) xT(
t – h(t)

)
xT (t – hm) xT (t – hM)

f T
i

(
t, x(t), x

(
t – h(t)

)) (∫ t

t–hm

x(s) ds
)T (∫ t

t–hM

x(s) ds
)T)T

.

According to (19), we can obtain

LV1i + αV1i ≤ ξT (t)Ξiξ (t). (20)

We can get

LV1i ≤ –αV1i. (21)

Then, using (9) and (13), we have

d
(
eαtV1i

)
= eαt[αV1i dt + LV1i dt + 2xT (t)PiDix(t) dω(t)

]

≤ eαt[αV1i dt – αV1i dt + 2xT (t)PiDix(t) dω(t)
]

= 2eαtxT (t)PiDix(t) dω(t). (22)

When t ∈ [tk , tk + τd), switched systems run in mismatched periods. The closed-loop sys-
tem (7) is active within the ith subsystem and the corresponding jth switching controller
is also activated. We choose the Lyapunov–Krasovskii functional candidate as follows:

V2σ (t)(t) = xT (t)Pσ (t)x(t) +
∫ t

t–h(t)
eβ(t–s)xT (s)Q1σ (t)x(s) ds
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+
∫ t

t–hm

eβ(t–s)xT (s)Q2σ (t)x(s) ds

+
∫ t

t–hM

eβ(t–s)xT (s)Q3σ (t)x(s) ds

+ hm

∫ 0

–hm

∫ t

t+θ

eβ(t–s)xT (s)R1σ (t)x(s) ds dθ

+ hM

∫ 0

–hM

∫ t

t+θ

eβ(t–s)xT (s)R2σ (t)x(s) ds dθ . (23)

According to Itô’s differential formula, we have

LV2i = 2xT (t)Pi
[
Ā1ijx(t)x(t) + A2ix

(
t – h(t)

)
+ Cifi

(
t, x(t), x

(
t – h(t)

))]

+ xT (t)Q1ix(t) + xT (t)DT
i PiDix(t) – +xT (t)Q2ix(t)

–
(
1 – ḣ(t)

)
eβh(t)xT(

t – h(t)
)
Q1ix

(
t – h(t)

)

– eβhm xT (t – hm)Q2ix(t – hm) + h2
mxT (t)R1ix(t)

+ xT (t)Q3ix(t) – eβhM xT (t – hM)Q3ix(t – hM)

– hm

∫ 0

–hm

e–βθ xT (t + θ )R1ix(t + θ ) dθ + h2
MxT (t)R2ix(t)

– hM

∫ 0

–hM

e–βθ xT (t + θ )R2ix(t + θ ) dθ

+ β

∫ t

t–h(t)
eβ(t–s)xT (s)Q1ix(s) ds

+ β

∫ t

t–hm

eβ(t–s)xT (s)Q2ix(s) ds

+ β

∫ t

t–hM

eβ(t–s)xT (s)Q3ix(s) ds

+ β

∫ 0

–hm

∫ t

t+θ

eβ(t–s)xT (s)R1ix(s) ds dθ

+ β

∫ 0

–hM

∫ t

t+θ

eβ(t–s)xT (s)R2ix(s) ds dθ

≤ xT (t)
[
PiĀ1ij + ĀT

1ijPi + Q1i + Q2i + Q3i + h2
mR1i + h2

MR2i

+ DT
i PiDi

]
x(t) – (1 – h)xT(

t – h(t)
)
Q1ix

(
t – h(t)

)

+ xT (t)PiCifi
(
t, x(t), x

(
t – h(t)

))
+ f T

i
(
t, x(t), x

(
t – h(t)

))
CT

i Pix(t)

– xT (t – hM)Q3ix(t – hM) + β

∫ 0

–hm

∫ t

t+θ

eβ(t–s)xT (s)R1ix(s) ds dθ

+ xT(
t – h(t)

)
AT

2iPix(t) + β

∫ t

t–h(t)
eβ(t–s)xT (s)Q1ix(s) ds

– hm

∫ t

t–hm

xT (s)R1ix(s) ds + β

∫ t

t–hm

eα(t–s)xT (s)Q2ix(s) ds
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– hM

∫ t

t–hM

xT (s)R2ix(s) ds + β

∫ t

t–hM

eβ(t–s)xT (s)Q3ix(s) ds

– xT (t – hm)Q2ix(t – hm) + β

∫ 0

–hM

∫ t

t+θ

eβ(t–s)xT (s)R2ix(s) ds dθ

+ xT (t)PiA2ix
(
t – h(t)

)
. (24)

Following the similar way, we have

LV2i – βV2i ≤ xT (t)
[
PiĀ1ij + ĀT

1ijPi + Q1i + Q2i + Q3i – βPi + h2
mR1i

+ h2
MR2i + DT

i PiDi + V T
i Vi

]
x(t) + xT(

t – h(t)
)
AT

2iPix(t)

+ xT (t)PiCifi
(
t, x(t), x

(
t – h(t)

))
+ xT (t)PiA2ix

(
t – h(t)

)

+ f T
i

(
t, x(t), x

(
t – h(t)

))
CT

i Pix(t)

– f T
i

(
t, x(t), x

(
t – h(t)

))
fi
(
t, x(t), x

(
t – h(t)

))

+ xT(
t – h(t)

)(
ΛT

i Λi – (1 – h)Q1i
)
x
(
t – h(t)

)

– xT (t – hm)Q2ix(t – hm) – xT (t – hM)Q3ix(t – hM)

–
(∫ t

t–hm

x(s) ds
)T

R1i

(∫ t

t–hm

x(s) ds
)

–
(∫ t

t–hM

x(s) ds
)T

R2i

(∫ t

t–hM

x(s) ds
)

. (25)

According to (12), we have

LV2i – βV2i ≤ ξT (t)Ωiξ (t). (26)

Then

LV2i ≤ βV2i, (27)

we can get

d
(
e–βtV2i

)
= e–βt[–βV2i dt + LV2i dt + 2xT (t)PiDix(t) dω(t)

]

≤ e–βt[–βV2i dt + βV2i dt + 2xT (t)PiDix(t) dω(t)
]

= 2e–βtxT (t)PiDix(t) dω(t). (28)

By recalling (2), we have

∫ t

t–h(t)
eα(s–t)xT (s)Q1ix(s) ds +

∫ t

t–hm

eα(s–t)xT (s)Q2ix(s) ds

+
∫ t

t–hM

eα(s–t)xT (s)Q3ix(s) ds +
∫ 0

–hm

∫ t

t+θ

eα(s–t)xT (s)R1ix(s) ds dθ

+
∫ 0

–hM

∫ t

t+θ

eα(s–t)xT (s)R2ix(s) ds dθ
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≤
∫ t

t–h(t)
xT (s)Qix(s) ds +

∫ t

t–hm

xT (s)Q2ix(s) ds

+
∫ t

t–hM

xt(s)Q3ix(s) ds +
∫ 0

–hm

∫ t

t+θ

xT (s)R1ix(s) ds dθ

+
∫ 0

–hM

∫ T

t+θ

xT (s)R2ix(s) ds dθ

≤
∫ t

t–h(t)
eβ(t–s)xT (s)Q1ix(s) ds +

∫ t

t–hm

eβ(t–s)xT (s)Q2ix(s) ds

+
∫ t

t–hM

eβ(t–s)xT (s)Q3ix(s) ds +
∫ 0

–hm

∫ t

t+θ

eβ(t–s)xT (s)R1ix(s) ds dθ

+
∫ 0

–hM

∫ t

t+θ

eβ(t–s)xT (s)R2ix(s) ds dθ . (29)

Therefore,

V1i(t) ≤ V2i(t). (30)

Considering the whole interval [t0, t), the Lyapunov–Krasovskii functional V (t) is ex-
pressed as

V1σ (t)(t) ∀t ∈ [tk + τd, tk+1), k = 0, 1, 2, . . . ;

V2σ (t)(t) ∀t ∈ [tk , tk + τd), k = 0, 1, 2, . . . .
(31)

When t ∈ [tk + τd, tk+1), integrating both sides of (22) from tk + τd to t and taking expec-
tation, we have

E
{

V (t)
}

= E
{

V1i(t)
} ≤ e–α(t–(tk+τd))E

{
V1i

(
(tk + τd)+)}

≤ e–α(t–(tk+τd))E
{

V2i
(
(tk + τd)–)}

≤ e–α(t–(tk+τd))eβτd E
{

V2i
(
(tk)+)}

≤ μe–α(t–(tk+τd))eβτd E
{

V1i
(
(tk)+)}

≤ . . .

≤ μke(k+1)βτd e–α(t–t0–(k+1)τd)E
{

V (t0)
}

≤ e(α+β)τd e{[lnμ+(α+β)τd]/τa–α}(t–t0)E
{

V (t0)
}

. (32)

When t ∈ [tk , tk + τd), integrating both sides of (28) and taking expectation, we obtain

E
{

V (t)
}

= E
{

V2i(t)
} ≤ eβ(t–(tk ))E

{
V2i

(
(tk)+)}

≤ μeβ(t–tk )E
{

V1i
(
(tk)–)}

≤ . . .

≤ μke(k+1)βτd e–α(t–t0–(k+1)τd)E
{

V (t0)
}

≤ e(α+β)τd e{[lnμ+(α+β)τd]/τa–α}(t–t0)E
{

V (t0)
}

. (33)
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Notice from (14) and (23) that

E
{

V (t)
} ≥ aE

{∥∥x(t)
∥∥2}, E

{
V (t0)

} ≤ b sup
–hM≤θ≤0

E
{∥∥x(t0 + θ )

∥∥2}, (34)

where

a = min
i∈M

λmin(Pi),

b = max
i∈M

λmax(Pi) + hM max
i∈M

λmax(Q1i) + hm max
i∈M

λmax(Q2i)

+ hM max
i∈M

λmax(Q3i) +
h3

m
2

max
i∈M

λmax(R1i) +
h3

M
2

max
i∈M

λmax(R2i).

Finally, we can get

E
{∥∥x(t)

∥
∥2} ≤ e(α+β)τd

b
a

sup
–hM≤θ≤0

E
{∥∥x(t0 + θ )

∥
∥2}

× e{α–[lnμ+(α+β)τd]/τa}(t–t0). (35)

By Definition 1, we know that the closed-loop system (7) is mean-square exponentially
stabilizable. This completes the proof. �

Theorem 2 For given positive constants α,β , h, and μ ≥ 1, if there exist symmetric and
positive definite matrices Xi, S1i, S2i, S3i, T1i, T2i and any Yi such that the following matrix
inequalities hold:

Xi ≤ μXj, S1i ≤ μS1j, S2i ≤ μS2j,

S3i ≤ μS3j, T1i ≤ μT1j, T2i ≤ μT2j, i, j ∈ M, i 	= j, (36)
(

Φ i
11 Φ i

12

∗ Φ i
22

)

< 0, (37)

(
Ψ i

11 Φ i
12

∗ Φ i
22

)

< 0, (38)

where

Φ i
11 =

⎛

⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎝

φ̂i
11 φ̂i

12 0 0 Ci 0 0 φ̂i
18 0

∗ φ̂i
22 0 0 0 0 0 0 φ̂i

29

∗ ∗ φ̂i
33 0 0 0 0 0 0

∗ ∗ ∗ φ̂i
44 0 0 0 0 0

∗ ∗ ∗ ∗ –I 0 0 0 0
∗ ∗ ∗ ∗ ∗ φ̂i

66 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ φ̂i

77 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ –I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –I

⎞

⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎠

,

Φ i
12 =

(
XiDT

i Xi Xi Xi hmXi hMXi

08×1 08×1 08×1 08×1 08×1 08×1

)

,
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Φ i
22 = diag{–Xi, –S1i, –S2i, –S3i, –T1i, –T2i},

Ψ i
11 =

⎛

⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎝

ϕ̂i
11 φ̂i

12 0 0 Ci 0 0 ϕ̂i
18 0

∗ ϕ̂i
22 0 0 0 0 0 0 ϕ̂i

29

∗ ∗ ϕ̂i
33 0 0 0 0 0 0

∗ ∗ ∗ ϕ̂i
44 0 0 0 0 0

∗ ∗ ∗ ∗ –I 0 0 0 0
∗ ∗ ∗ ∗ ∗ ϕ̂i

66 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ϕ̂i

77 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ –I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –I

⎞

⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎠

φ̂i
11 = A1iXi + BiKiXi + (A1iXi + BiKiXi)T + αXi,

φ̂i
22 = (1 – h)e–αhM (S1i – 2Xi), φ̂i

12 = A2iXi, φ̂i
18 = XiV T

i ,

φ̂i
29 = XiΛ

T
i , φ̂i

33 = e–αhm (S2i – 2Xi), φ̂i
44 = e–αhM (S3i – 2Xi),

φ̂i
66 = e–αhm (R1i – 2Xi), φ̂i

77 = e–αhM (R2i – 2Xi),

ϕ̂i
11 = A1iXi + BiKjXi + (A1iXi + BiKjXi)T – βXi,

ϕ̂i
22 = (1 – h)(S1i – 2Xi), ϕ̂i

33 = S2i – 2Xi, ϕ̂i
44 = S3i – 2Xi,

φ̂i
66 = T1i – 2Xi, φ̂i

77 = T2i – 2Xi,

then system (1) is mean-square exponentially stabilizable for arbitrary switching signal
with the average dwell time satisfying (13). In addition, the feedback controller can be de-
signed by the following formula:

Ki = YiX–1
i , i ∈ M. (39)

Proof According to Si > 0, Ti > 0, we have

(Spi – Xi)T Spi
–1(Spi – Xi) ≥ 0 (p = 1, 2, 3),

(Tqi – Xi)T Tqi
–1(Tqi – Xi) ≥ 0 (q = 1, 2).

Then the following inequality can be obtained:

Spi – 2Xi ≥ –XiSpi
–1Xi, Tqi – 2Xi ≥ –XiTqi

–1Xi. (40)

Substituting (40) into (37) and multiplying both sides of (37) by diag{X–1
i , X–1

i , X–1
i , X–1

i , I,
X–1

i , X–1
i , I, I, I, I, I, I, I, I}, we can get the following inequality:

(
Φ̄ i

11 Φ̄ i
12

∗ Φ i
22

)

< 0, (41)
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where

Φ̄ i
11 =

⎛

⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎝

φ̃i
11 φ̃i

12 0 0 X–1
i Ci 0 0 V T

i 0
∗ φ̃i

22 0 0 0 0 0 0 ΛT
i

∗ ∗ φ̃i
33 0 0 0 0 0 0

∗ ∗ ∗ φ̃i
44 0 0 0 0 0

∗ ∗ ∗ ∗ –I 0 0 0 0
∗ ∗ ∗ ∗ ∗ φ̃i

66 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ φ̃i

77 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ –I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –I

⎞

⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎠

Φ̄ i
12 =

(
DT

i I I I hm hM

08×1 08×1 08×1 08×1 08×1 08×1

)

,

φ̃i
11 = X–1

i A1i + X–1
i BiYiX–1

i +
(
X–1

i A1i + X–1
i BiYiX–1

i
)T + αX–1

i ,

φ̃i
12 = X–1

i A2i, φ̃i
22 = –(1 – h)e–αhM S–1

1i , φ̃i
33 = –e–αhm S–1

2i ,

φ̂i
29 = XiΛ

T
i , φ̂i

33 = e–αhm (S2i – 2Xi), φ̂i
44 = e–αhM (S3i – 2Xi),

φ̃i
44 = –e–αhM S–1

3i , φ̄i
66 = –e–αhm R–1

1i , φ̃i
77 = –e–αhM R–1

2i .

Then set

Yi = KiXi, Xi
–1 = Pi, S1i

–1 = Q1i, S2i
–1 = Q2i,

S3i
–1 = Q3i, T1i

–1 = R1i, T2i
–1 = R2i.

(42)

Using Schur complement in (41), it can be concluded that (12) holds. By the same method,
(38) implies (13). Correspondingly, controller gains are given by (39). The proof is com-
pleted. �

Remark 2 It is noticed that the Lyapunov–Krasovskii functional is delay-dependent in this
paper. On the one hand, the important information of hm and hM is taken into full con-
sideration, which may overcome the conservatism of quadratic mean-square exponential
stability conditions for nonlinear switched stochastic systems with interval time-varying
delay under asynchronous switching. On the other hand, the delay-dependent Lyapunov–
Krasovskii functional is allowed to rise at both switching instants. However, the delay-
dependent Lyapunov–Krasovskii functional is decreasing on the entire interval and the
mean-square exponential stabilization for nonlinear switched stochastic systems is also
guaranteed.

Remark 3 [34] investigated the stabilization problem for a class of positive switched non-
linear systems under asynchronous switching. The author mainly focused on the study of
positive switched systems in [34]. [35] addressed the problem of robust control for un-
certain switched nonlinear systems with time delay under asynchronous switching. How-
ever, stochastic disturbance was not considered in [34] and [35]. The problem of robust
reliable control for a class of uncertain stochastic switched nonlinear systems under asyn-
chronous switching was investigated in [36], but the interval time-varying delay was not
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considered in [36] under asynchronous switching. In this paper, we consider stochastic
disturbance and interval time-varying delay. Compared with [34–36], it is obvious that we
have considered more external factors, and our switched systems model is more in line
with engineering practice from the application level.

Remark 4 [18] obtained sufficient conditions with delay-dependent guaranteeing the ex-
ponential stability by a common Lyapunov functional (CLF). In fact, we deeply realize
that common Lyapunov functional (CLF) may not satisfy all subsystems and become con-
servative for switched systems. The multi-Lyapunov–Krasovskii functional (MLKF) and
delay-dependent method are better choices. They provide a powerful framework for ana-
lyzing the stability of switched nonlinear systems with interval time-varying delay.

Remark 5 We now summarize the controller design procedures as follows.
Step 1: The desired convergence rates α and β are given. Choose a positive and

appropriate parameter μ.
Step 2: Define the variables Xi, S1i, S2i, S3i, T1i, T2i, Yi, i ∈ {1, 2} to be solved.
Step 3: Describe the block form to give a linear matrix inequalities (LMIs).

• Xi > 0, S1i > 0, S2i > 0, S3i > 0, T1i > 0, T2i > 0;
• (36), (37), and (38) are established

Step 4: Complete LMIs model description.
Step 5: Solve LMIs problems.
Step 6: Solve (42).

Then the obtained feedback controller will make the desired performance indices be sat-
isfied.

4 Numerical example
In this section, a numerical example is presented to confirm the effectiveness of the pro-
posed approach.

Example 1 Consider system (1) composed of two subsystems with the following param-
eters:

A11 =

[
–0.85 0.1

0 –0.9

]

, A21 =

[
–0.75 0

0.1 –0.8

]

, B1 =

[
0.4
0.5

]

,

A12 =

[
–0.75 0

0.2 –0.9

]

, A22 =

[
–0.7 0.15

0 –0.85

]

, B2 =

[
0.6
0.5

]

,

D1 =

[
–0.3 0
0.1 –0.4

]

, D2 =

[
–0.3 0

0 –0.2

]

, C1 =

[
0.3 0
0 0.4

]

,

V1 =

[
–0.65 0
0.05 –0.7

]

, V2 =

[
–0.4 0.1

0 –0.6

]

, C2 =

[
0.4 0
0 0.3

]

,

Λ1 =

[
–0.8 0.1

0 –0.7

]

, Λ2 =

[
–0.5 0.1

0 –0.4

]

.
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Table 1 Calculated upper delay bound hM

α 0.55 0.6 0.65 0.7 0.75

hM (β = 0.7) 0.677 0.733 0.827 0.889 0.935
hM (β = 0.75) 0.746 0.762 0.841 0.865 1.016
hM (β = 0.8) 0.804 0.852 0.906 1.119 1.352

Let α = 0.45,β = 0.65,μ = 1.25, hm = 0.1, hM = 0.6, h = 0.5, h(t) = 0.5 sin(t) + 0.1, τd = 0.2.
According to (13), we get the average dwell time

τa > τ ∗
a =

lnμ + (α + β)τd

α
= 0.9848.

Choose

f1
(
t, x(t), x

(
t – h(t)

))
=

(
0.2e–4t

0.1 sin(x2(t))

)

,

f2
(
t, x(t), x

(
t – d(t)

))
=

(
0.1 sin(x1(t – h(t)))

0.1e–3t

)

.

By solving (36), (37), and (38), we can get

X1 =

[
0.5817 –0.2809

–0.2809 0.5537

]

, X2 =

[
0.5539 0.2561
0.2561 0.5298

]

,

S11 =

[
1.4886 –0.3040

–0.3040 1.0582

]

, S12 =

[
1.6720 0.0467
0.0467 1.3186

]

,

S21 =

[
1.7736 –0.0015

–0.0015 1.3371

]

, S22 =

[
1.4761 0.1202
0.1202 1.2674

]

,

S31 =

[
1.2352 –0.0103

–0.0103 0.9825

]

, S32 =

[
1.1326 –0.0831

–0.0831 1.1141

]

,

T11 =

[
1.2828 –0.1263

–0.1263 1.1729

]

, T12 =

[
1.2508 0.0585
0.0585 1.1796

]

,

T21 =

[
1.7573 0.0240
0.0240 1.3964

]

, T22 =

[
1.5633 0.1690
0.1690 1.3723

]

,

Y1 =
[
0.8214 0.4447

]
, Y2 =

[
0.6154 0.7919

]
.

Then the controller gains constructed by (39) are

K1 =
[

2.3840 2.0128
]

, K2 =
[

0.5408 1.2334
]

.

By Theorem 2, the maximum value of interval time-varying delay hM for the switched
systems (1) is provided in Table 1 for different values of α and β .

In order to show the effectiveness of the proposed method, the responses of state tra-
jectories of the open-loop and closed-loop systems and switching signals (system signals
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Figure 1 Responses of state trajectories of an
open-loop system

Figure 2 Responses of state trajectories of a
closed-loop system

Figure 3 The switching law

and controller signals) are given in Figs. 1, 2, and 3, respectively. It is clear that the open-
loop system with initial state x(0) = (–2, 2)T is not stable form in Fig. 1. The closed-loop
system with initial state x(0) = (–2, 2)T is mean-square exponentially stabilizable under
the designed asynchronous switching and controllers form in Fig. 2 and 3. Therefore, the
effectiveness of the designed asynchronous switching and controllers is fully illustrated.

Example 2 The problem of water pollution is an important issue facing every country, and
its development is of great significance to social development. In this section, an example
of applying this system to water pollution control systems will be demonstrated.

To facilitate the creation of models for water pollution control systems, we record p(t)
and q(t) as the concentrations per unit volume of biochemical oxygen demand and dis-
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solved oxygen, respectively. Simultaneously, let p∗ and q∗ indicate the desired steady val-
ues of p(t) and q(t) in a reach of a polluted river, respectively. Moreover, we take p∗ and
q∗ as corresponding to some measure of water quality standards, given by the following
definition:

x1(t) = p(t) – p∗, x2(t) = q(t) – q∗, x(t) =
[
xT

1 (t)xT
2 (t)

]T .

As a result, the dynamic equation for x(t) can be expressed as

dx(t) =
[
Ax(t) + Āx

(
t – h(t)

)
+ Bu(t)

]
dt + x(t) dω(t), (43)

where

A =

[
–m1 – ε1 – ε2 0

–m3 –m2 – ε1 – ε2

]

, Ā =

[
ε2 0
0 ε2

]

, B =

[
ε1

1

]

, (44)

mi(i = 1, 2, 3), ε1 and ε2 are known constants, and ω(t) is a one-dimensional Brownian mo-
tion that satisfies condition (3). Moreover, u(t) = [uT

1 (t)uT
2 (t)]T is the control variable of

river pollution system. We can learn the engineering significance of these parameters from
[1]. This paper assumes that system actuators have good performance or failure, and ac-
cording to the actual situation, we know that at least one actuator can ensure the normal
operation of the river pollution system. In addition, for simulation of our purposes, we do
not consider the nonlinear perturbation term, and the nonlinear perturbation term is not
also considered in [26]. As a consequence, the river pollution system (43) can be modeled
as a switched system consisting of two subsystems:

dx(t) =
[
A11x(t) + A21x

(
t – h(t)

)
+ B1u(t)

]
dt + x(t) dω(t), no failures occur

dx(t) =
[
A12x(t) + A22x

(
t – h(t)

)
+ B2u(t)

]
dt + x(t) dω(t), failures occur.

(45)

Next, we choose m1 = 1.1, m2 = 0.6, m3 = 1.3, ε1 = 0.5, ε2 = 0.4 and get that

A =

[
–2 0

–1.3 –1.5

]

, Ā =

[
0.4 0
0 0.4

]

, B =

[
0.5
1

]

.

Let α = 0.5,β = 0.6,μ = 1.15, hm = 0.15, hM = 0.65, h = 0.3, h(t) = 0.3 sin(t) + 0.2, τd = 0.1.
By (36), (37), and (38), we have

X1 =

[
0.3725 0.1019
0.1019 0.6832

]

, X2 =

[
0.4827 0.1024
0.1024 0.6728

]

,

S11 =

[
1.2871 0.2028
0.2028 0.9811

]

, S12 =

[
1.1728 0.1422
0.1422 1.1107

]

,

S21 =

[
1.2821 0.0102
0.0102 1.1371

]

, S22 =

[
1.0963 0.3294
0.3294 1.1623

]

,

S31 =

[
1.4372 0.2031
0.2031 1.0921

]

, S32 =

[
1.2355 0.2832
0.2832 1.2362

]

,
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Figure 4 State response of subsystem 1

Figure 5 State response of subsystem 2

T11 =

[
1.0812 0.2733
0.2733 1.0128

]

, T12 =

[
1.3562 0.0738
0.0738 1.3792

]

,

T21 =

[
1.3783 0.0367
0.0367 1.0917

]

, T22 =

[
1.4923 0.2623
0.2623 1.8392

]

,

Y1 =
[
0.9972 0.5377

]
, Y2 =

[
0.8362 0.5849

]
.

Then the controller gains constructed by (39) are

K1 =
[

2.5665 0.4042
]

, K2 =
[

1.5996 0.6259
]

.

Figure 4 describes state response of subsystem 1 with the initial condition x(0) = (1, –0.5)T .
Figure 5 describes state response of subsystem 2 with the initial condition x(0) = (0.2, 0.5)T .
Through the designed switching signal and our approach, we can get that system (43)
with the initial condition x(0) = (2, –2)T is mean-square exponentially stabilizable for any
switching signal under the feedback control form Fig. 6. As a consequence, this verifies
the effectiveness of our results in the control of river pollution process.

5 Conclusions
The switching signal of the switched controller involves delay, which results in the asyn-
chronous switching between the candidate controllers and subsystems. In the paper, we
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Figure 6 State response of system (43)

have investigated the problem of asynchronous switching for nonlinear switched stochas-
tic systems with interval time-varying delay based on time-dependent switching signal
for the matched and mismatched sections, respectively. By constructing a new multi-
Lyapunov–Krasovskii functional, which is related to the size of the time delay, using the
matrix inequality technique and the average dwell time approach, the mean-square expo-
nential stabilization criteria for nonlinear switched stochastic systems with interval time-
varying delay are obtained under asynchronous switching. Then, the proposed approach
is extended to design state feedback controller for switched stochastic systems by special
operations of matrices. Finally, the numerical example illustrates the effectiveness of the
theoretical results. Compared with the existing results, the new condition is less conserva-
tive. In order to better study the asynchronous switching issue, our future work will focus
on extending the proposed method to a delay-dependent robust dissipative problem for a
class of nonlinear switched systems with mixed delays and the stabilization of stochastic
switched nonlinear systems with Markov jumps.
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