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Abstract
In this paper, we study a class of (ω, c)-periodic time varying impulsive differential
equations and establish the existence and uniqueness results for (ω, c)-periodic
solutions of homogeneous problem as well as nonhomogeneous problem.
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1 Introduction
It is well known that the concept of (ω, c)-periodic functions is the same of “affine-periodic
functions” or “periodic of second kind”, which were introduced by Floquet [1] and have
been studied in the past decades. Recently, Alvarez et al. [2] introduced a new concept of
(ω, c)-periodic function by considering Mathieu’s equation z′′ + [α – 2β cos(2t)]z = 0, and
its solution satisfies z(t + ω) = cz(t), c ∈ C. Clearly, (ω, c)-periodic functions become the
standard ω-periodic functions when c = 1 and ω-antiperiodic functions when c = –1. For
these particular cases, we refer readers to [3–6].

Meanwhile, Alvarez et al. [7] transferred the same idea to study (N ,λ)-periodic discrete
functions and established the existence and uniqueness of (N ,λ)-periodic solutions to a
class of Volterra difference equations with infinite delay. Next, Agaoglou et al. [8] applied
the concept of (ω, c)-periodic to semilinear evolution equations in complex Banach spaces
and studied its existence and uniqueness of (ω, c)-periodic solutions. Li et al. [9] trans-
ferred the similar idea to consider (ω, c)-periodic solutions impulsive differential systems.

Although, Floquet [1] studied a homogenous linear periodic system x′(t) = A(t)x(t) with
A(t + ω) = A(t), t ∈ R, there are quite few analogous results to Floquet’s theory for (ω, c)-
periodic systems with impulse. Motivated by [1, 2, 8, 9], we consider the following time
varying impulsive differential equation:

⎧
⎨

⎩

x′(t) = a(t)x(t) + f (t, x(t)), t �= ti, i ∈N = {1, 2, . . .},
�x|t=ti = x(t+

i ) – x(t–
i ) = bix(t–

i ) + ci,
(1)

where a ∈ C(R,R), f ∈ C(R × R,R), bi, ci ∈ R, and ti < ti+1, i ∈ N. The symbols x(t+
i ) and

x(t–
i ) represent the right and left limits of x(t) at t = ti.
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The main purpose of this paper is to derive existence and uniqueness results for (ω, c)-
periodic solutions of nonhomogeneous linear problem as well as homogeneous linear
problem.

2 Preliminaries
We introduce a Banach space PC(R,R) = {x : R → R : x ∈ C((ti, ti+1],R), and x(t–

i ) =
x(ti), x(t+

i ) exists ∀i ∈N} endowed with the norm ‖x‖ = supt∈R |x(t)|.

Lemma 2.1 (See [10, p.9]) Suppose that f ∈ C(R,R). A solution x ∈ PC(R,R) of the follow-
ing nonhomogeneous linear impulsive equation

⎧
⎪⎪⎨

⎪⎪⎩

x′(t) = a(t)x(t) + f (t), t �= ti, i ∈N,

�x|t=ti = bix(t–
i ) + ci,

x(t0) = xt0 ,

(2)

is given by

x(t) = W (t, t0)x(t0) +
∫ t

t0

W (t, s)f (s) ds +
∑

t0<ti<t
W (t, ti)ci, t ≥ t0, (3)

where (see [10, p.8])

W (t, t0) = e
∫ t

t0
a(s) ds ∏

t0<ti<t
(1 + bi), t ≥ t0.

Lemma 2.2 For any t, t0 ∈ R, τ ∈ R \ {ti}i∈N, and t ≥ τ ≥ t0, we have

W (t, t0) = W (t, τ )W (τ , t0). (4)

Proof Since τ /∈ {ti}i∈N, we derive

W (t, t0) = e
∫ t

t0
a(s) ds ∏

t0<ti<t
(1 + bi)

=
(

e
∫ τ

t0
a(s) ds ∏

t0<ti<τ

(1 + bi)
)

e
∫ t
τ a(s) ds

∏

τ≤ti<t
(1 + bi)

=
(

e
∫ τ

t0
a(s) ds ∏

t0<ti<τ

(1 + bi)
)

e
∫ t
τ a(s) ds

∏

τ<ti<t
(1 + bi) = W (t, τ )W (τ , t0).

�

Definition 2.3 (See [2]) Let c ∈ R \ {0} and ω > 0. A function f : R → R is said to be
(ω, c)-periodic if f (t + ω) = cf (t) for all t ∈R.

Lemma 2.4 (See [8, Lemma 2.2]) Set Ψω,c := {x : x ∈ PC(R,R) and cx(·) = x(· + ω)}. Let
x ∈ Ψω,c, that is, x is a piecewise continuous and (ω, c)-periodic function. Then x ∈ Ψω,c is
equivalent to

x(ω) = cx(0). (5)
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Lemma 2.5 Assume that the following conditions hold:
(A1) a(·) is ω-periodic, i.e., a(t + ω) = a(t), ∀t ∈ R.
(A2) Set t0 = 0 and ti < ti+1, i ∈ N. There exists N ∈ N such that ti+N = ti + ω, bi+N = bi,

and ci+N = ci, ∀i ∈ N.
Then the following homogeneous linear impulsive equation

⎧
⎪⎪⎨

⎪⎪⎩

x′(t) = a(t)x(t), t �= ti, i ∈N,

�x|t=ti = bix(t–
i ),

x(0) = x0,

(6)

has a solution x ∈ Ψω,c if and only if x0(c – W (ω, 0)) = 0.

Proof The solution x ∈ PC(R,R) of (6) is given by

x(t) = x0W (t, 0) = x0e
∫ t

t0
a(s) ds ∏

0<ti<t

(1 + bi), t ≥ 0.

If there exists ti ∈ (0, t) such that 1 + bi = 0, obviously, x(t + ω) = cx(t) = 0, and the result
holds.

If 1 + bi �= 0, ∀ti ∈ (0, t) and t ∈ [0,∞) \ {ti}i∈N, we derive

x(t + ω) = cx(t) ⇐⇒ x0e
∫ t+ω

0 a(s) ds
∏

0<ti<t+ω

(1 + bi) = cx0e
∫ t

0 a(s) ds
∏

0<ti<t

(1 + bi)

⇐⇒ x0e
∫ t+ω

t a(s) ds
∏

t<ti<t+ω

(1 + bi) = cx0

⇐⇒ x0

(

c – e
∫ t+ω

t a(s) ds
∏

t<ti<t+ω

(1 + bi)
)

= 0

⇐⇒ x0

(

c – e
∫ ω

0 a(s) ds
∏

0<ti<ω

(1 + bi)
)

= 0

⇐⇒ x0
(
c – W (ω, 0)

)
= 0.

In addition, since x(ti) = x(t–
i ), we obtain x(ti + ω) = cx(ti). �

3 Main results
We consider the (ω, c)-periodic solutions of the following nonhomogeneous linear prob-
lem:

⎧
⎪⎪⎨

⎪⎪⎩

x′(t) = a(t)x(t) + f (t), t �= ti, i ∈N,

�x|t=ti = bix(t–
i ) + ci,

x(0) = x0,

(7)

where f ∈ C(R,R) and f is (ω, c)-periodic. We give the following assumption:
(A3) c �= W (ω, 0).



Wang et al. Advances in Difference Equations        (2019) 2019:259 Page 4 of 9

Lemma 3.1 Assume that (A1), (A2), and (A3) hold. Then the solution x ∈ Υ := PC([0,ω],R)
of (7) satisfying (5) is given by

x(t) =
∫ ω

0
F(t, s)f (s) ds +

N∑

i=1

F(t, ti)ci, (8)

where

F(t, s) =

⎧
⎨

⎩

c(c – W (ω, 0))–1W (t, s), 0 ≤ s < t,

W (t, 0)(c – W (ω, 0))–1W (ω, s), t ≤ s < ω.
(9)

Proof The solution x ∈ Υ of (7) is given by

x(t) = W (t, 0)x0 +
∫ t

0
W (t, s)f (s) ds +

∑

0<ti<t

W (t, ti)ci. (10)

Thus x(ω) = W (ω, 0)x0 +
∫ ω

0 W (ω, s)f (s) ds +
∑

0<ti<ω W (ω, ti)ci = cx0, which is equivalent
to x0 = (c – W (ω, 0))–1(

∫ ω

0 W (ω, s)f (s) ds +
∑

0<ti<ω W (ω, ti)ci) due to c �= W (ω, 0).
Then we have

x(t) = W (t, 0)
(
c – W (ω, 0)

)–1
(∫ ω

0
W (ω, s)f (s) ds +

∑

0<ti<ω

W (ω, ti)ci

)

+
∫ t

0
W (t, s)f (s) ds +

∑

0<ti<t

W (t, ti)ci := I1 + I2,

where

I1 := W (t, 0)
(
c – W (ω, 0)

)–1
∫ ω

0
W (ω, s)f (s) ds +

∫ t

0
W (t, s)f (s) ds,

I2 := W (t, 0)
(
c – W (ω, 0)

)–1 ∑

0<ti<ω

W (ω, ti)ci +
∑

0<ti<t

W (t, ti)ci.

If t ∈ [0,ω] \ {t1, . . . , tN }, by (4) and condition (A3), we derive

I1 = W (t, 0)
(
c – W (ω, 0)

)–1
∫ t

0
W (ω, t)W (t, s)f (s) ds +

∫ t

0
W (t, s)f (s) ds

+ W (t, 0)
(
c – W (ω, 0)

)–1
∫ ω

t
W (ω, s)f (s) ds

=
(
W (ω, 0)

(
c – W (ω, 0)

)–1 + 1
)
∫ t

0
W (t, s)f (s) ds

+
∫ ω

t
W (t, 0)

(
c – W (ω, 0)

)–1W (ω, s)f (s) ds

= c
∫ t

0

(
c – W (ω, 0)

)–1W (t, s)f (s) ds +
∫ ω

t
W (t, 0)

(
c – W (ω, 0)

)–1W (ω, s)f (s) ds

=
∫ ω

0
F(t, s)f (s) ds,
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and

I2 = W (t, 0)
(
c – W (ω, 0)

)–1 ∑

0<ti<t

W (ω, t)W (t, ti)ci +
∑

0<ti<t

W (t, ti)ci

+ W (t, 0)
(
c – W (ω, 0)

)–1 ∑

t<ti<ω

W (ω, ti)ci

=
(
W (ω, 0)

(
c – W (ω, 0)

)–1 + 1
)
)

∑

0<ti<t

W (t, ti)ci

+ W (t, 0)
(
c – W (ω, 0)

)–1 ∑

t<ti<ω

W (ω, ti)ci

= c
∑

0<ti<t

(
c – W (ω, 0)

)–1W (t, ti)ci +
∑

t<ti<ω

W (t, 0)
(
c – W (ω, 0)

)–1W (ω, ti)ci

=
∑

0<ti<ω

F(t, ti)ci

=
N∑

i=1

F(t, ti)ci.

Thus we get (8). Since x(ti) = x(t–
i ), we can also get the same result for t ∈ {t1, . . . , tN }. �

Lemma 3.2 Let ã := maxt∈[0,ω]{a(t)} and b̃ := max1≤i≤N {|1 + bi|}. Then, for any t ∈ [0,ω],
we have

∫ ω

0

∣
∣F(t, s)

∣
∣ds ≤ Pã :=

⎧
⎨

⎩

|(c – W (ω, 0))–1|eãωωb̃N (|c| + 1), ã > 0,

|(c – W (ω, 0))–1|ωb̃N (|c| + 1), ã ≤ 0.

Proof Using (9), we derive

∫ ω

0

∣
∣F(t, s)

∣
∣ds ≤ ∣

∣
(
c – W (ω, 0)

)–1∣∣
(∫ t

0

∣
∣cW (t, s)

∣
∣ds +

∫ ω

t

∣
∣W (t, 0)W (ω, s)

∣
∣ds

)

≤ ∣
∣
(
c – W (ω, 0)

)–1∣∣
(

|c|
∫ t

0
e
∫ t

s a(τ ) dτ
∏

s<ti<t
|1 + bi|ds

+
∫ ω

t
e(

∫ t
0 +

∫ ω
s )a(τ ) dτ

∏

0<ti<t∪s<ti<ω

|1 + bi|ds
)

.

If ã > 0, we get

∫ ω

0

∣
∣F(t, s)

∣
∣ds ≤ ∣

∣
(
c – W (ω, 0)

)–1∣∣eãωωb̃N(|c| + 1
)
.

If ã ≤ 0, we get

∫ ω

0

∣
∣F(t, s)

∣
∣ds ≤ ∣

∣
(
c – W (ω, 0)

)–1∣∣ωb̃N(|c| + 1
)
.

The proof is finished. �
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Lemma 3.3 For any t ∈ [0,ω], we have

N∑

i=1

∣
∣F(t, ti)ci

∣
∣ ≤ Qã :=

⎧
⎨

⎩

|(c – W (ω, 0))–1|(|c| + 1)eãωb̃N ∑N
i=1 |ci| ã > 0,

|(c – W (ω, 0))–1|(|c| + 1)b̃N ∑N
i=1 |ci| ã ≤ 0.

Proof By (9), we have

N∑

i=1

∣
∣F(t, ti)ci

∣
∣ ≤ ∣

∣
(
c – W (ω, 0)

)–1∣∣
( ∑

0<ti<t

∣
∣cW (t, ti)ci

∣
∣ +

∑

t≤ti<ω

∣
∣W (t, 0)W (ω, ti)ci

∣
∣

)

≤ ∣
∣
(
c – W (ω, 0)

)–1∣∣
( ∑

0<ti<t

|ci||c|e
∫ t

ti
a(τ ) dτ

∏

ti<tk <t
|1 + bk|

+
∑

t≤ti<ω

|ci|e(
∫ t

0 +
∫ ω

ti
)a(τ ) dτ

∏

0<tk<t∪ti<tk <ω

|1 + bk|
)

.

If ã > 0, we obtain

N∑

i=1

∣
∣F(t, ti)ci

∣
∣ ≤ ∣

∣
(
c – W (ω, 0)

)–1∣∣
(|c| + 1

)
eãωb̃N

N∑

i=1

|ci|.

If ã ≤ 0, we obtain

N∑

i=1

∣
∣F(t, ti)ci

∣
∣ ≤ ∣

∣
(
c – W (ω, 0)

)–1∣∣
(|c| + 1

)
b̃N

N∑

i=1

|ci|.

The proof is complete. �

Now we are ready to study the existence of semilinear impulsive problems. We make the
following hypotheses:

(A4) For any t ∈R and x ∈R, it holds f (t + ω, cx) = cf (t, x).
(A5) There exists L > 0 such that |f (t, x) – f (t, y)| ≤ L|x – y| for any t ∈R and x, y ∈R.
(A6) There exist constants K , J > 0 such that |f (t, x)| ≤ K |x| + J for any t ∈R and x ∈R.

Theorem 3.4 Suppose that (A1), (A2), (A3), (A4), and (A5) hold. If 0 < LPã < 1, then (1)
has a unique (ω, c)-periodic solution x ∈ Ψω,c. Moreover, it holds ‖x‖ ≤ f0Pã+Qã

1–LPã
, where f0 =

maxt∈[0,ω] |f (t, 0)|.

Proof For any x ∈ Ψω,c, i.e., x(· + ω) = cx), we have f (t + ω, x(t + ω)) = f (t, cx(t)), t ∈ R.
Further, by assumption (A4), f (t + ω, x(t + ω)) = f (t, cx(t)) = cf (t, x), t ∈R. Thus, f (·, x(·)) ∈
Ψω,c. For more characterization of the (ω, c)-periodic functions, see [2, Sect. 2].

Let G : Υ → Υ be the operator given by

(Gx)(t) =
∫ ω

0
F(t, s)f

(
s, x(s)

)
ds +

N∑

i=1

F(t, ti)ci. (11)

By Lemma 2.4 and Lemma 3.1, the existence of (ω, c)-periodic solutions of (1) is equiv-
alent to the existence of the fixed point of (11).
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It is easy to show that G(Υ ) ⊆ Υ . For any x, y ∈ Υ , we derive

∣
∣(Gx)(t) – (Gy)(t)

∣
∣ ≤ L

∫ ω

0

∣
∣F(t, s)

∣
∣
∣
∣x(s) – y(s)

∣
∣ds

≤ L‖x – y‖
∫ ω

0

∣
∣F(t, s)

∣
∣ds ≤ LPã‖x – y‖,

which implies ‖Gx –Gy‖ ≤ LPã‖x – y‖. Noticing 0 < LPã < 1, G is a contraction mapping.
Thus, G defined in (11) has a unique fixed point satisfying x(ω) = cx(0) due to Lemma 3.1.
Further, by Lemma 2.4, one has x ∈ Ψω,c. From the above, there exists a unique (ω, c)-
periodic solution x ∈ Ψω,c of (1).

Moreover, we have

∣
∣x(t)

∣
∣ ≤ L

∫ ω

0

∣
∣F(t, s)

∣
∣
∣
∣x(s)

∣
∣ds +

∫ ω

0

∣
∣F(t, s)

∣
∣
∣
∣f (s, 0)

∣
∣ds +

N∑

i=1

∣
∣F(t, ti)ci

∣
∣

≤ LPã‖x‖ + f0Pã + Qã,

which implies

‖x‖ ≤ f0Pã + Qã

1 – LPã
.

The proof is finished. �

Theorem 3.5 Suppose that (A1), (A2), (A3), (A4), and (A6) hold. If KPã < 1, then (1) has at
least one (ω, c)-periodic solution x ∈ Ψω,c.

Proof Let Br = {x ∈ Υ : ‖x‖ ≤ r}, where r ≥ JPã+Qã
1–KPã

. We consider G defined in (11) on Br .
For all x ∈ Br and t ∈ [0,ω], using Lemmas 3.2 and 3.3, we derive

∣
∣(Gx)(t)

∣
∣ ≤ K‖x‖

∫ ω

0

∣
∣F(t, s)

∣
∣ds + J

∫ ω

0

∣
∣F(t, s)

∣
∣ds + Qã ≤ KPã‖x‖ + JPã + Qã ≤ r,

which implies ‖Gx‖ ≤ r. Thus G(Br) ⊂ Br . In addition, it is easy to see that G is continuous
and G(Br) is pre-compact. By Schauder’s fixed point theorem, we obtain that (1) has at
least one (ω, c)-periodic solution x ∈ Ψω,c. �

4 Examples
Example 4.1 We consider the following semilinear impulsive equation:

⎧
⎨

⎩

x′(t) = (cos 2t)x(t) + ρ sin t cos x(t), t �= ti, i = 1, 2, . . . ,

�x|t=ti = 1
2 sin (2i–1)π

2 x(t–
i ) + cos iπ ,

(12)

where ρ ∈ R, ti = (3i–1)π
6 , ω = π , c = –1, a(t) = cos 2t, f (t, x) = ρ sin t cos x, bi = 1

2 sin (2i–1)π
2 ,

and ci = cos iπ . Clearly, ti+2 = ti + π , bi+2 = bi, ci+2 = ci for all i ∈ N, then we obtain N = 2,
(A1) and (A2) hold. Since W (ω, 0) = 3

4 �= –1 = c, we get (A3) holds. Note that f (· + ω, cx) =
f (·+π , –x) = –ρ sin · cos x = –f (·, x) = cf (·, x), we get (A4) holds. |f (t, x) – f (t, y)| ≤ |ρ||x – y|,
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then we get L = |ρ| and (A5) holds. In addition, ã = 1, b̃ = 3
2 , Pã = 18πeπ

7
.= 186.939334, and

Qã = 36eπ

7
.= 119.009276.

Letting 0 < |ρ| < 7
18πeπ

.= 0.005349, we get 0 < LPã < 1, then all the assumptions of The-
orem 3.4 hold. So if 0 < |ρ| < 7

18πeπ , problem (12) has a unique π-antiperiodic solution
x ∈ PC([0,∞)),R).

Since |f (t, x)| ≤ |ρ|, we get K = 0, J = |ρ|, (A6) holds, and KPã = 0 < 1. Then all the as-
sumptions of Theorem 3.5 hold for any ρ ∈ R. So (12) has at least one π-antiperiodic
solution for any ρ ∈R.

Example 4.2 We consider the following semilinear impulsive equation:

⎧
⎨

⎩

x′(t) = (sin 2π t)x(t) + ρx(t) cos(2–tx(t)), t �= ti, i = 1, 2, . . . ,

�x|t=ti = x(t–
i ) + 1,

(13)

where ρ ∈ R, ti = 3i–1
6 , ω = 1, c = 2, a(t) = sin 2π t, f (t, x) = ρx cos(2–tx), bi = 1 and ci = 1.

Clearly, ti+2 = ti + 1, bi+2 = bi, ci+2 = ci for all i ∈ N, then we obtain N = 2, (A1) and (A2)
hold. Since W (ω, 0) = 4 �= 2 = c, we get (A3) holds. Note that f (·+ω, cx) = f (·+ 1, 2x) = 2ρx ·
cos(2–tx) = 2f (·, x) = cf (·, x), we get (A4) holds. Now f (·, x) does not satisfy the Lipschitz
condition. Since |f (t, x)| ≤ |ρ||x|, we get K = |ρ|, J = 0, and (A6) holds. Moreover, ã = 1,
b̃ = 2, and Pã = 6e.

Set |ρ| < 1
6e

.= 0.061313. Then KPã < 1. Now all the assumptions of Theorem 3.5 hold.
Thus,(13) has at least one (1, 2)-periodic solution x ∈ PC([0,∞)),R) if |ρ| < 1

6e .

5 Conclusion
Existence and uniqueness of (ω, c)-periodic solutions for homogeneous problem and non-
homogeneous as well as semilinear time varying impulsive differential equations are es-
tablished. In a forthcoming work, we shall extend the study to (ω, c)-periodic solutions for
nonlinear impulsive evolution systems in infinite dimensional spaces as follows:

⎧
⎨

⎩

ẏ = C(t)y + h(t, y), t �= τi, i ∈ N,

�y |t=τi = y(τ+
i ) – y(τ–

i ) = Dy(τ–
i ) + di,

where the linear operator {C(t) : t ≥ 0} generates a strongly continuous evolutionary pro-
cess {U(t, s), t ≥ s ≥ 0} on a Banach space X. D is a bounded linear operator and di ∈ X.
Motivated by [11–15], we shall also consider (ω, c)-periodic delay differential equations
with non-instantaneous impulses.
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