(ω, c)-Periodic solutions for time varying impulsive differential equations

Jin Rong Wang ${ }^{1,2^{*}}{ }^{\oplus}$, Lulu Ren ${ }^{1}$ and Yong Zhou ${ }^{3,4}$

"Correspondence:
wjr9668@126.com
${ }^{1}$ Department of Mathematics, Guizhou University, Guiyang, China
${ }^{2}$ School of Mathematical Sciences, Qufu Normal University, Qufu, China Full list of author information is available at the end of the article

Abstract

In this paper, we study a class of (ω, c)-periodic time varying impulsive differential equations and establish the existence and uniqueness results for (ω, c)-periodic solutions of homogeneous problem as well as nonhomogeneous problem.

Keywords: (ω, c)-periodic solutions; Impulsive differential equation; Existence and uniqueness

1 Introduction

It is well known that the concept of (ω, c)-periodic functions is the same of "affine-periodic functions" or "periodic of second kind", which were introduced by Floquet [1] and have been studied in the past decades. Recently, Alvarez et al. [2] introduced a new concept of (ω, c)-periodic function by considering Mathieu's equation $z^{\prime \prime}+[\alpha-2 \beta \cos (2 t)] z=0$, and its solution satisfies $z(t+\omega)=c z(t), c \in \mathbb{C}$. Clearly, (ω, c)-periodic functions become the standard ω-periodic functions when $c=1$ and ω-antiperiodic functions when $c=-1$. For these particular cases, we refer readers to [3-6].
Meanwhile, Alvarez et al. [7] transferred the same idea to study (N, λ)-periodic discrete functions and established the existence and uniqueness of (N, λ)-periodic solutions to a class of Volterra difference equations with infinite delay. Next, Agaoglou et al. [8] applied the concept of (ω, c)-periodic to semilinear evolution equations in complex Banach spaces and studied its existence and uniqueness of (ω, c)-periodic solutions. Li et al. [9] transferred the similar idea to consider (ω, c)-periodic solutions impulsive differential systems.

Although, Floquet [1] studied a homogenous linear periodic system $x^{\prime}(t)=A(t) x(t)$ with $A(t+\omega)=A(t), t \in \mathbb{R}$, there are quite few analogous results to Floquet's theory for $(\omega, c)-$ periodic systems with impulse. Motivated by [1, 2, 8, 9], we consider the following time varying impulsive differential equation:

$$
\left\{\begin{array}{l}
x^{\prime}(t)=a(t) x(t)+f(t, x(t)), \quad t \neq t_{i}, i \in \mathbb{N}=\{1,2, \ldots\}, \tag{1}\\
\left.\Delta x\right|_{t=t_{i}}=x\left(t_{i}^{+}\right)-x\left(t_{i}^{-}\right)=b_{i} x\left(t_{i}^{-}\right)+c_{i}
\end{array}\right.
$$

where $a \in C(\mathbb{R}, \mathbb{R}), f \in C(\mathbb{R} \times \mathbb{R}, \mathbb{R}), b_{i}, c_{i} \in \mathbb{R}$, and $t_{i}<t_{i+1}, i \in \mathbb{N}$. The symbols $x\left(t_{i}^{+}\right)$and $x\left(t_{i}^{-}\right)$represent the right and left limits of $x(t)$ at $t=t_{i}$.

The main purpose of this paper is to derive existence and uniqueness results for (ω, c) periodic solutions of nonhomogeneous linear problem as well as homogeneous linear problem.

2 Preliminaries

We introduce a Banach space $\operatorname{PC}(\mathbb{R}, \mathbb{R})=\left\{x: \mathbb{R} \rightarrow \mathbb{R}: x \in C\left(\left(t_{i}, t_{i+1}\right], \mathbb{R}\right)\right.$, and $x\left(t_{i}^{-}\right)=$ $x\left(t_{i}\right), x\left(t_{i}^{+}\right)$exists $\left.\forall i \in \mathbb{N}\right\}$ endowed with the norm $\|x\|=\sup _{t \in \mathbb{R}}|x(t)|$.

Lemma 2.1 (See [10, p.9]) Suppose that $f \in C(\mathbb{R}, \mathbb{R})$. A solution $x \in \operatorname{PC}(\mathbb{R}, \mathbb{R})$ of the following nonhomogeneous linear impulsive equation

$$
\left\{\begin{array}{l}
x^{\prime}(t)=a(t) x(t)+f(t), \quad t \neq t_{i}, i \in \mathbb{N}, \tag{2}\\
\left.\Delta x\right|_{t=t_{i}}=b_{i} x\left(t_{i}^{-}\right)+c_{i}, \\
x\left(t_{0}\right)=x_{t_{0}}
\end{array}\right.
$$

is given by

$$
\begin{equation*}
x(t)=W\left(t, t_{0}\right) x\left(t_{0}\right)+\int_{t_{0}}^{t} W(t, s) f(s) d s+\sum_{t_{0}<t_{i}<t} W\left(t, t_{i}\right) c_{i}, \quad t \geq t_{0} \tag{3}
\end{equation*}
$$

where (see [10, p.8])

$$
W\left(t, t_{0}\right)=e^{\int_{t_{0}}^{t} a(s) d s} \prod_{t_{0}<t_{i}<t}\left(1+b_{i}\right), \quad t \geq t_{0} .
$$

Lemma 2.2 For any $t, t_{0} \in \mathbb{R}, \tau \in \mathbb{R} \backslash\left\{t_{i}\right\}_{i \in \mathbb{N}}$, and $t \geq \tau \geq t_{0}$, we have

$$
\begin{equation*}
W\left(t, t_{0}\right)=W(t, \tau) W\left(\tau, t_{0}\right) . \tag{4}
\end{equation*}
$$

Proof Since $\tau \notin\left\{t_{i}\right\}_{i \in \mathbb{N}}$, we derive

$$
\begin{aligned}
W\left(t, t_{0}\right) & =e^{\int_{t_{0}}^{t} a(s) d s} \prod_{t_{0}<t_{i}<t}\left(1+b_{i}\right) \\
& =\left(e^{\int_{t_{0}}^{\tau} a(s) d s} \prod_{t_{0}<t_{i}<\tau}\left(1+b_{i}\right)\right) e^{\int_{\tau}^{t} a(s) d s} \prod_{\tau \leq t_{i}<t}\left(1+b_{i}\right) \\
& =\left(e^{\int_{t_{0}}^{\tau} a(s) d s} \prod_{t_{0}<t_{i}<\tau}\left(1+b_{i}\right)\right) e^{\int_{\tau}^{t} a(s) d s} \prod_{\tau<t_{i}<t}\left(1+b_{i}\right)=W(t, \tau) W\left(\tau, t_{0}\right) .
\end{aligned}
$$

Definition 2.3 (See [2]) Let $c \in \mathbb{R} \backslash\{0\}$ and $\omega>0$. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is said to be (ω, c)-periodic if $f(t+\omega)=c f(t)$ for all $t \in \mathbb{R}$.

Lemma 2.4 (See [8, Lemma 2.2]) Set $\Psi_{\omega, c}:=\{x: x \in \operatorname{PC}(\mathbb{R}, \mathbb{R})$ and $c x(\cdot)=x(\cdot+\omega)\}$. Let $x \in \Psi_{\omega, c}$, that is, x is a piecewise continuous and (ω, c)-periodic function. Then $x \in \Psi_{\omega, c}$ is equivalent to

$$
\begin{equation*}
x(\omega)=c x(0) . \tag{5}
\end{equation*}
$$

Lemma 2.5 Assume that the following conditions hold:
$\left(A_{1}\right) a(\cdot)$ is ω-periodic, i.e., $a(t+\omega)=a(t), \forall t \in \mathbb{R}$.
$\left(A_{2}\right)$ Set $t_{0}=0$ and $t_{i}<t_{i+1}, i \in \mathbb{N}$. There exists $N \in \mathbb{N}$ such that $t_{i+N}=t_{i}+\omega, b_{i+N}=b_{i}$, and $c_{i+N}=c_{i}, \forall i \in \mathbb{N}$.
Then the following homogeneous linear impulsive equation

$$
\left\{\begin{array}{l}
x^{\prime}(t)=a(t) x(t), \quad t \neq t_{i}, i \in \mathbb{N} \tag{6}\\
\left.\Delta x\right|_{t=t_{i}}=b_{i} x\left(t_{i}^{-}\right) \\
x(0)=x_{0}
\end{array}\right.
$$

has a solution $x \in \Psi_{\omega, c}$ if and only if $x_{0}(c-W(\omega, 0))=0$.

Proof The solution $x \in P C(\mathbb{R}, \mathbb{R})$ of (6) is given by

$$
x(t)=x_{0} W(t, 0)=x_{0} e^{\int_{t_{0}}^{t} a(s) d s} \prod_{0<t_{i}<t}\left(1+b_{i}\right), \quad t \geq 0 .
$$

If there exists $t_{i} \in(0, t)$ such that $1+b_{i}=0$, obviously, $x(t+\omega)=c x(t)=0$, and the result holds.

If $1+b_{i} \neq 0, \forall t_{i} \in(0, t)$ and $t \in[0, \infty) \backslash\left\{t_{i}\right\}_{i \in \mathbb{N}}$, we derive

$$
\begin{aligned}
x(t+\omega)=c x(t) & \Longleftrightarrow x_{0} e^{\int_{0}^{t+\omega} a(s) d s} \prod_{0<t_{i}<t+\omega}\left(1+b_{i}\right)=c x_{0} e^{f_{0}^{t} a(s) d s} \prod_{0<t_{i}<t}\left(1+b_{i}\right) \\
& \Longleftrightarrow x_{0} e^{\int_{t}^{t+\omega} a(s) d s} \prod_{t<t_{i}<t+\omega}\left(1+b_{i}\right)=c x_{0} \\
& \Longleftrightarrow x_{0}\left(c-e^{\int_{t}^{t+\omega} a(s) d s} \prod_{t<t_{i}<t+\omega}\left(1+b_{i}\right)\right)=0 \\
& \Longleftrightarrow x_{0}\left(c-e^{\int_{0}^{\omega} a(s) d s} \prod_{0<t_{i}<\omega}\left(1+b_{i}\right)\right)=0 \\
& \Longleftrightarrow x_{0}(c-W(\omega, 0))=0 .
\end{aligned}
$$

In addition, since $x\left(t_{i}\right)=x\left(t_{i}^{-}\right)$, we obtain $x\left(t_{i}+\omega\right)=c x\left(t_{i}\right)$.

3 Main results

We consider the (ω, c)-periodic solutions of the following nonhomogeneous linear problem:

$$
\left\{\begin{array}{l}
x^{\prime}(t)=a(t) x(t)+f(t), \quad t \neq t_{i}, i \in \mathbb{N} \tag{7}\\
\left.\Delta x\right|_{t=t_{i}}=b_{i} x\left(t_{i}^{-}\right)+c_{i} \\
x(0)=x_{0}
\end{array}\right.
$$

where $f \in C(\mathbb{R}, \mathbb{R})$ and f is (ω, c)-periodic. We give the following assumption:
$\left(A_{3}\right) c \neq W(\omega, 0)$.

Lemma 3.1 Assume that $\left(A_{1}\right),\left(A_{2}\right)$, and $\left(A_{3}\right)$ hold. Then the solution $x \in \Upsilon:=\operatorname{PC}([0, \omega], \mathbb{R})$ of (7) satisfying (5) is given by

$$
\begin{equation*}
x(t)=\int_{0}^{\omega} F(t, s) f(s) d s+\sum_{i=1}^{N} F\left(t, t_{i}\right) c_{i} \tag{8}
\end{equation*}
$$

where

$$
F(t, s)=\left\{\begin{array}{l}
c(c-W(\omega, 0))^{-1} W(t, s), \quad 0 \leq s<t \tag{9}\\
W(t, 0)(c-W(\omega, 0))^{-1} W(\omega, s), \quad t \leq s<\omega
\end{array}\right.
$$

Proof The solution $x \in \Upsilon$ of (7) is given by

$$
\begin{equation*}
x(t)=W(t, 0) x_{0}+\int_{0}^{t} W(t, s) f(s) d s+\sum_{0<t_{i}<t} W\left(t, t_{i}\right) c_{i} \tag{10}
\end{equation*}
$$

Thus $x(\omega)=W(\omega, 0) x_{0}+\int_{0}^{\omega} W(\omega, s) f(s) d s+\sum_{0<t_{i}<\omega} W\left(\omega, t_{i}\right) c_{i}=c x_{0}$, which is equivalent to $x_{0}=(c-W(\omega, 0))^{-1}\left(\int_{0}^{\omega} W(\omega, s) f(s) d s+\sum_{0<t_{i}<\omega} W\left(\omega, t_{i}\right) c_{i}\right)$ due to $c \neq W(\omega, 0)$.

Then we have

$$
\begin{aligned}
x(t)= & W(t, 0)(c-W(\omega, 0))^{-1}\left(\int_{0}^{\omega} W(\omega, s) f(s) d s+\sum_{0<t_{i}<\omega} W\left(\omega, t_{i}\right) c_{i}\right) \\
& +\int_{0}^{t} W(t, s) f(s) d s+\sum_{0<t_{i}<t} W\left(t, t_{i}\right) c_{i}:=I_{1}+I_{2},
\end{aligned}
$$

where

$$
\begin{aligned}
& I_{1}:=W(t, 0)(c-W(\omega, 0))^{-1} \int_{0}^{\omega} W(\omega, s) f(s) d s+\int_{0}^{t} W(t, s) f(s) d s \\
& I_{2}:=W(t, 0)(c-W(\omega, 0))^{-1} \sum_{0<t_{i}<\omega} W\left(\omega, t_{i}\right) c_{i}+\sum_{0<t_{i}<t} W\left(t, t_{i}\right) c_{i} .
\end{aligned}
$$

If $t \in[0, \omega] \backslash\left\{t_{1}, \ldots, t_{N}\right\}$, by (4) and condition $\left(A_{3}\right)$, we derive

$$
\begin{aligned}
I_{1}= & W(t, 0)(c-W(\omega, 0))^{-1} \int_{0}^{t} W(\omega, t) W(t, s) f(s) d s+\int_{0}^{t} W(t, s) f(s) d s \\
& +W(t, 0)(c-W(\omega, 0))^{-1} \int_{t}^{\omega} W(\omega, s) f(s) d s \\
= & \left(W(\omega, 0)(c-W(\omega, 0))^{-1}+1\right) \int_{0}^{t} W(t, s) f(s) d s \\
& +\int_{t}^{\omega} W(t, 0)(c-W(\omega, 0))^{-1} W(\omega, s) f(s) d s \\
= & c \int_{0}^{t}(c-W(\omega, 0))^{-1} W(t, s) f(s) d s+\int_{t}^{\omega} W(t, 0)(c-W(\omega, 0))^{-1} W(\omega, s) f(s) d s \\
= & \int_{0}^{\omega} F(t, s) f(s) d s
\end{aligned}
$$

and

$$
\begin{aligned}
I_{2}= & W(t, 0)(c-W(\omega, 0))^{-1} \sum_{0<t_{i}<t} W(\omega, t) W\left(t, t_{i}\right) c_{i}+\sum_{0<t_{i}<t} W\left(t, t_{i}\right) c_{i} \\
& +W(t, 0)(c-W(\omega, 0))^{-1} \sum_{t<t_{i}<\omega} W\left(\omega, t_{i}\right) c_{i} \\
= & \left.\left(W(\omega, 0)(c-W(\omega, 0))^{-1}+1\right)\right) \sum_{0<t_{i}<t} W\left(t, t_{i}\right) c_{i} \\
& +W(t, 0)(c-W(\omega, 0))^{-1} \sum_{t<t_{i}<\omega} W\left(\omega, t_{i}\right) c_{i} \\
= & c \sum_{0<t_{i}<t}(c-W(\omega, 0))^{-1} W\left(t, t_{i}\right) c_{i}+\sum_{t<t_{i}<\omega} W(t, 0)(c-W(\omega, 0))^{-1} W\left(\omega, t_{i}\right) c_{i} \\
= & \sum_{0<t_{i}<\omega} F\left(t, t_{i}\right) c_{i} \\
= & \sum_{i=1}^{N} F\left(t, t_{i}\right) c_{i} .
\end{aligned}
$$

Thus we get (8). Since $x\left(t_{i}\right)=x\left(t_{i}^{-}\right)$, we can also get the same result for $t \in\left\{t_{1}, \ldots, t_{N}\right\}$.
Lemma 3.2 Let $\tilde{a}:=\max _{t \in[0, \omega]}\{a(t)\}$ and $\tilde{b}:=\max _{1 \leq i \leq N}\left\{\left|1+b_{i}\right|\right\}$. Then, for any $t \in[0, \omega]$, we have

$$
\int_{0}^{\omega}|F(t, s)| d s \leq P_{\tilde{a}}:= \begin{cases}\left|(c-W(\omega, 0))^{-1}\right| e^{\tilde{a} \omega} \omega \tilde{b}^{N}(|c|+1), & \tilde{a}>0 \\ \left|(c-W(\omega, 0))^{-1}\right| \omega \tilde{b}^{N}(|c|+1), & \tilde{a} \leq 0\end{cases}
$$

Proof Using (9), we derive

$$
\begin{aligned}
\int_{0}^{\omega}|F(t, s)| d s \leq & \left|(c-W(\omega, 0))^{-1}\right|\left(\int_{0}^{t}|c W(t, s)| d s+\int_{t}^{\omega}|W(t, 0) W(\omega, s)| d s\right) \\
\leq & \left|(c-W(\omega, 0))^{-1}\right|\left(|c| \int_{0}^{t} e^{\int_{s}^{t} a(\tau) d \tau} \prod_{s<t_{i}<t}\left|1+b_{i}\right| d s\right. \\
& \left.+\int_{t}^{\omega} e^{\left(\int_{0}^{t}+\int_{s}^{\omega}\right) a(\tau) d \tau} \prod_{0<t_{i}<t \cup s<t_{i}<\omega}\left|1+b_{i}\right| d s\right) .
\end{aligned}
$$

If $\tilde{a}>0$, we get

$$
\int_{0}^{\omega}|F(t, s)| d s \leq\left|(c-W(\omega, 0))^{-1}\right| e^{\tilde{\omega} \omega} \omega \tilde{b}^{N}(|c|+1)
$$

If $\tilde{a} \leq 0$, we get

$$
\int_{0}^{\omega}|F(t, s)| d s \leq\left|(c-W(\omega, 0))^{-1}\right| \omega \tilde{b}^{N}(|c|+1)
$$

The proof is finished.

Lemma 3.3 For any $t \in[0, \omega]$, we have

$$
\sum_{i=1}^{N}\left|F\left(t, t_{i}\right) c_{i}\right| \leq Q_{\tilde{a}}:= \begin{cases}\left|(c-W(\omega, 0))^{-1}\right|(|c|+1) e^{\tilde{a} \omega} \tilde{b}^{N} \sum_{i=1}^{N}\left|c_{i}\right| & \tilde{a}>0 \\ \left|(c-W(\omega, 0))^{-1}\right|(|c|+1) \tilde{b}^{N} \sum_{i=1}^{N}\left|c_{i}\right| & \tilde{a} \leq 0 .\end{cases}
$$

Proof By (9), we have

$$
\begin{aligned}
\sum_{i=1}^{N}\left|F\left(t, t_{i}\right) c_{i}\right| \leq & \left|(c-W(\omega, 0))^{-1}\right|\left(\sum_{0<t_{i}<t}\left|c W\left(t, t_{i}\right) c_{i}\right|+\sum_{t \leq t_{i}<\omega}\left|W(t, 0) W\left(\omega, t_{i}\right) c_{i}\right|\right) \\
\leq & \left|(c-W(\omega, 0))^{-1}\right|\left(\sum_{0<t_{i}<t}\left|c_{i}\right||c| e^{\int_{t_{i}}^{t} a(\tau) d \tau} \prod_{t_{i}<t_{k}<t}\left|1+b_{k}\right|\right. \\
& \left.+\sum_{t \leq t_{i}<\omega}\left|c_{i}\right| e^{\left(\int_{0}^{t}+\int_{t_{i}}^{\omega}\right) a(\tau) d \tau} \prod_{0<t_{k}<t U t_{i}<t_{k}<\omega}\left|1+b_{k}\right|\right) .
\end{aligned}
$$

If $\tilde{a}>0$, we obtain

$$
\sum_{i=1}^{N}\left|F\left(t, t_{i}\right) c_{i}\right| \leq\left|(c-W(\omega, 0))^{-1}\right|(|c|+1) e^{\tilde{\omega} \omega} \tilde{b}^{N} \sum_{i=1}^{N}\left|c_{i}\right| .
$$

If $\tilde{a} \leq 0$, we obtain

$$
\sum_{i=1}^{N}\left|F\left(t, t_{i}\right) c_{i}\right| \leq\left|(c-W(\omega, 0))^{-1}\right|(|c|+1) \tilde{b}^{N} \sum_{i=1}^{N}\left|c_{i}\right| .
$$

The proof is complete.

Now we are ready to study the existence of semilinear impulsive problems. We make the following hypotheses:
$\left(A_{4}\right)$ For any $t \in \mathbb{R}$ and $x \in \mathbb{R}$, it holds $f(t+\omega, c x)=c f(t, x)$.
$\left(A_{5}\right)$ There exists $L>0$ such that $|f(t, x)-f(t, y)| \leq L|x-y|$ for any $t \in \mathbb{R}$ and $x, y \in \mathbb{R}$.
$\left(A_{6}\right)$ There exist constants $K, J>0$ such that $|f(t, x)| \leq K|x|+J$ for any $t \in \mathbb{R}$ and $x \in \mathbb{R}$.

Theorem 3.4 Suppose that $\left(A_{1}\right),\left(A_{2}\right),\left(A_{3}\right),\left(A_{4}\right)$, and $\left(A_{5}\right)$ hold. If $0<L P_{\tilde{a}}<1$, then (1) has a unique (ω, c)-periodic solution $x \in \Psi_{\omega, c}$. Moreover, it holds $\|x\| \leq \frac{f_{0} P_{\tilde{a}}+Q_{\tilde{a}}}{1-L P_{\tilde{a}}}$, where $f_{0}=$ $\max _{t \in[0, \omega]}|f(t, 0)|$.

Proof For any $x \in \Psi_{\omega, c}$, i.e., $\left.x(\cdot+\omega)=c x\right)$, we have $f(t+\omega, x(t+\omega))=f(t, c x(t)), t \in \mathbb{R}$. Further, by assumption $\left(A_{4}\right), f(t+\omega, x(t+\omega))=f(t, c x(t))=c f(t, x), t \in \mathbb{R}$. Thus, $f(\cdot, x(\cdot)) \in$ $\Psi_{\omega, c}$. For more characterization of the (ω, c)-periodic functions, see [2, Sect. 2].

Let $\mathbb{G}: \Upsilon \rightarrow \Upsilon$ be the operator given by

$$
\begin{equation*}
(\mathbb{G} x)(t)=\int_{0}^{\omega} F(t, s) f(s, x(s)) d s+\sum_{i=1}^{N} F\left(t, t_{i}\right) c_{i} . \tag{11}
\end{equation*}
$$

By Lemma 2.4 and Lemma 3.1, the existence of (ω, c) -periodic solutions of (1) is equivalent to the existence of the fixed point of (11).

It is easy to show that $\mathbb{G}(\Upsilon) \subseteq \Upsilon$. For any $x, y \in \Upsilon$, we derive

$$
\begin{aligned}
|(\mathbb{G} x)(t)-(\mathbb{G} y)(t)| & \leq L \int_{0}^{\omega}|F(t, s)||x(s)-y(s)| d s \\
& \leq L\|x-y\| \int_{0}^{\omega}|F(t, s)| d s \leq L P_{\tilde{a}}\|x-y\|
\end{aligned}
$$

which implies $\|\mathbb{G} x-\mathbb{G} y\| \leq L P_{\tilde{a}}\|x-y\|$. Noticing $0<L P_{\tilde{a}}<1, \mathbb{G}$ is a contraction mapping. Thus, \mathbb{G} defined in (11) has a unique fixed point satisfying $x(\omega)=c x(0)$ due to Lemma 3.1. Further, by Lemma 2.4, one has $x \in \Psi_{\omega, c}$. From the above, there exists a unique (ω, c) periodic solution $x \in \Psi_{\omega, c}$ of (1).

Moreover, we have

$$
\begin{aligned}
|x(t)| & \leq L \int_{0}^{\omega}|F(t, s)||x(s)| d s+\int_{0}^{\omega}|F(t, s)||f(s, 0)| d s+\sum_{i=1}^{N}\left|F\left(t, t_{i}\right) c_{i}\right| \\
& \leq L P_{\tilde{a}}\|x\|+f_{0} P_{\tilde{a}}+Q_{\tilde{a}},
\end{aligned}
$$

which implies

$$
\|x\| \leq \frac{f_{0} P_{\tilde{a}}+Q_{\tilde{a}}}{1-L P_{\tilde{a}}} .
$$

The proof is finished.

Theorem 3.5 Suppose that $\left(A_{1}\right),\left(A_{2}\right),\left(A_{3}\right),\left(A_{4}\right)$, and $\left(A_{6}\right)$ hold. If $K P_{\tilde{a}}<1$, then (1) has at least one (ω, c)-periodic solution $x \in \Psi_{\omega, c}$.

Proof Let $\mathbb{B}_{r}=\{x \in \Upsilon:\|x\| \leq r\}$, where $r \geq \frac{J P_{\vec{a}}+Q_{\tilde{a}}}{1-K P_{\vec{a}}}$. We consider \mathbb{G} defined in (11) on \mathbb{B}_{r}. For all $x \in \mathbb{B}_{r}$ and $t \in[0, \omega]$, using Lemmas 3.2 and 3.3, we derive

$$
|(\mathbb{G} x)(t)| \leq K\|x\| \int_{0}^{\omega}|F(t, s)| d s+J \int_{0}^{\omega}|F(t, s)| d s+Q_{\tilde{a}} \leq K P_{\tilde{a}}\|x\|+J P_{\tilde{a}}+Q_{\tilde{a}} \leq r,
$$

which implies $\|\mathbb{G} x\| \leq r$. Thus $\mathbb{G}\left(B_{r}\right) \subset B_{r}$. In addition, it is easy to see that \mathbb{G} is continuous and $\mathbb{G}\left(\mathbb{B}_{r}\right)$ is pre-compact. By Schauder's fixed point theorem, we obtain that (1) has at least one (ω, c)-periodic solution $x \in \Psi_{\omega, c}$.

4 Examples

Example 4.1 We consider the following semilinear impulsive equation:

$$
\left\{\begin{array}{l}
x^{\prime}(t)=(\cos 2 t) x(t)+\rho \sin t \cos x(t), \quad t \neq t_{i}, i=1,2, \ldots \tag{12}\\
\left.\Delta x\right|_{t=t_{i}}=\frac{1}{2} \sin \frac{(2 i-1) \pi}{2} x\left(t_{i}^{-}\right)+\cos i \pi
\end{array}\right.
$$

where $\rho \in \mathbb{R}, t_{i}=\frac{(3 i-1) \pi}{6}, \omega=\pi, c=-1, a(t)=\cos 2 t, f(t, x)=\rho \sin t \cos x, b_{i}=\frac{1}{2} \sin \frac{(2 i-1) \pi}{2}$, and $c_{i}=\cos i \pi$. Clearly, $t_{i+2}=t_{i}+\pi, b_{i+2}=b_{i}, c_{i+2}=c_{i}$ for all $i \in \mathbb{N}$, then we obtain $N=2$, $\left(A_{1}\right)$ and $\left(A_{2}\right)$ hold. Since $W(\omega, 0)=\frac{3}{4} \neq-1=c$, we get $\left(A_{3}\right)$ holds. Note that $f(\cdot+\omega, c x)=$ $f(\cdot+\pi,-x)=-\rho \sin \cdot \cos x=-f(\cdot, x)=c f(\cdot, x)$, we get $\left(A_{4}\right)$ holds. $|f(t, x)-f(t, y)| \leq|\rho||x-y|$,
then we get $L=|\rho|$ and $\left(A_{5}\right)$ holds. In addition, $\tilde{a}=1, \tilde{b}=\frac{3}{2}, P_{\tilde{a}}=\frac{18 \pi e^{\pi}}{7} \doteq 186.939334$, and $Q_{\tilde{a}}=\frac{36 e^{\pi}}{7} \doteq 119.009276$.

Letting $0<|\rho|<\frac{7}{18 \pi e^{\pi}} \doteq 0.005349$, we get $0<L P_{\tilde{a}}<1$, then all the assumptions of Theorem 3.4 hold. So if $0<|\rho|<\frac{7}{18 \pi e^{\pi}}$, problem (12) has a unique π-antiperiodic solution $x \in \operatorname{PC}([0, \infty)), \mathbb{R})$.

Since $|f(t, x)| \leq|\rho|$, we get $K=0, J=|\rho|,\left(A_{6}\right)$ holds, and $K P_{\tilde{a}}=0<1$. Then all the assumptions of Theorem 3.5 hold for any $\rho \in \mathbb{R}$. So (12) has at least one π-antiperiodic solution for any $\rho \in \mathbb{R}$.

Example 4.2 We consider the following semilinear impulsive equation:

$$
\left\{\begin{array}{l}
x^{\prime}(t)=(\sin 2 \pi t) x(t)+\rho x(t) \cos \left(2^{-t} x(t)\right), \quad t \neq t_{i}, i=1,2, \ldots, \tag{13}\\
\left.\Delta x\right|_{t=t_{i}}=x\left(t_{i}^{-}\right)+1
\end{array}\right.
$$

where $\rho \in \mathbb{R}, t_{i}=\frac{3 i-1}{6}, \omega=1, c=2, a(t)=\sin 2 \pi t, f(t, x)=\rho x \cos \left(2^{-t} x\right), b_{i}=1$ and $c_{i}=1$. Clearly, $t_{i+2}=t_{i}+1, b_{i+2}=b_{i}, c_{i+2}=c_{i}$ for all $i \in \mathbb{N}$, then we obtain $N=2,\left(A_{1}\right)$ and $\left(A_{2}\right)$ hold. Since $W(\omega, 0)=4 \neq 2=c$, we get $\left(A_{3}\right)$ holds. Note that $f(\cdot+\omega, c x)=f(\cdot+1,2 x)=2 \rho x$. $\cos \left(2^{-t} x\right)=2 f(\cdot, x)=c f(\cdot, x)$, we get $\left(A_{4}\right)$ holds. Now $f(\cdot, x)$ does not satisfy the Lipschitz condition. Since $|f(t, x)| \leq|\rho||x|$, we get $K=|\rho|, J=0$, and $\left(A_{6}\right)$ holds. Moreover, $\tilde{a}=1$, $\tilde{b}=2$, and $P_{\tilde{a}}=6 e$.

Set $|\rho|<\frac{1}{6 e} \doteq 0.061313$. Then $K P_{\tilde{a}}<1$. Now all the assumptions of Theorem 3.5 hold. Thus,(13) has at least one (1,2)-periodic solution $x \in P C([0, \infty)), \mathbb{R})$ if $|\rho|<\frac{1}{6 e}$.

5 Conclusion

Existence and uniqueness of (ω, c)-periodic solutions for homogeneous problem and nonhomogeneous as well as semilinear time varying impulsive differential equations are established. In a forthcoming work, we shall extend the study to (ω, c)-periodic solutions for nonlinear impulsive evolution systems in infinite dimensional spaces as follows:

$$
\left\{\begin{array}{l}
\dot{y}=C(t) y+h(t, y), \quad t \neq \tau_{i}, i \in \mathbb{N} \\
\left.\Delta y\right|_{t=\tau_{i}}=y\left(\tau_{i}^{+}\right)-y\left(\tau_{i}^{-}\right)=D y\left(\tau_{i}^{-}\right)+d_{i}
\end{array}\right.
$$

where the linear operator $\{C(t): t \geq 0\}$ generates a strongly continuous evolutionary process $\{U(t, s), t \geq s \geq 0\}$ on a Banach space $X . D$ is a bounded linear operator and $d_{i} \in X$. Motivated by [11-15], we shall also consider (ω, c)-periodic delay differential equations with non-instantaneous impulses.

Acknowledgements

The authors are grateful to the referees for their careful reading of the manuscript and their valuable comments.

Funding

This work is partially supported by the National Natural Science Foundation of China (11671339)

Competing interests

The authors declare that they have no competing interests.

Author details

'Department of Mathematics, Guizhou University, Guiyang, China. ${ }^{2}$ School of Mathematical Sciences, Qufu Normal University, Qufu, China. ${ }^{3}$ Department of Mathematics, Xiangtan University, Xiangtan, China. ${ }^{4}$ Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Received: 3 February 2019 Accepted: 11 June 2019 Published online: 01 July 2019

References

1. Floquet, G.: Sur les équations différentielles linéaires à coefficients périodiques. Ann. Sci. Éc. Norm. Supér. 12, 47-88 (1883)
2. Alvarez, E., Gómez, A., Pinto, M.: (ω, , c)-periodic functions and mild solutions to abstract fractional integro-differential equations. Electron. J. Qual. Theory Differ. Equ. 16, 1 (2018)
3. Akhmet, M.U., Kivilcim, A.: Periodic motions generated from nonautonomous grazing dynamics. Commun. Nonlinear Sci. Numer. Simul. 49, 48-62 (2017)
4. Al-Islam, N.S., Alsulami, S.M., Diagana, T.: Existence of weighted pseudo anti-periodic solutions to some non-autonomous differential equations. Appl. Math. Comput. 218, 1-8 (2012)
5. Bainov, D.D., Simeonov, P.S.: Impulsive Differential Equations: Periodic Solutions and Applications. Wiley, New York (1993)
6. Cooke, C.H., Kroll, J.: The existence of periodic solutions to certain impulsive differential equations. Comput. Math Appl. 44, 667-676 (2002)
7. Alvarez, E., Díaz, S., Lizama, C.: On the existence and uniqueness of $(\boldsymbol{N}, \boldsymbol{\lambda})$-periodic solutions to a class of Volterra difference equations. Adv. Differ. Equ. 2019, 105 (2019)
8. Agaoglou, M., Fečkan, M., Panagiotidou, A.P.: Existence and uniqueness of (ω, c)-periodic solutions of semilinear evolution equations. Int. J. Dyn. Syst. Differ. Equ. (2018)
9. Li, M., Wang, J., Fečkan, M.: (ω, c)-periodic solutions for impulsive differential systems. Commun. Math. Anal. 21, 35-46 (2018)
10. Bainov, D.D., Simeonov, P.S.: Impulsive Differential Equations: Asymptotic Properties of the Solutions. World Scientific, Singapore (1995)
11. You, Z., Wang, J., O'Regan, D., Zhou, Y.: Relative controllability of delay differential systems with impulses and linear parts defined by permutable matrices. Math. Methods Appl. Sci. 42, 954-968 (2019)
12. Wang, J.: Stability of noninstantaneous impulsive evolution equations. Appl. Math. Lett. 73, 157-162 (2017)
13. Wang, J., Ibrahim, A.G., O'Regan, D., Zhou, Y.: Controllability for noninstantaneous impulsive semilinear functional differential inclusions without compactness. Indag. Math. 29, 1362-1392 (2018)
14. Yang, D., Wang, J., O'Regan, D.: On the orbital Hausdorff dependence of differential equations with non-instantaneous impulses. C. R. Acad. Sci. Paris, Ser. I 356, 150-171 (2018)
15. Tian, Y., Wang, J., Zhou, Y.: Almost periodic solutions of non-instantaneous impulsive differential equations. Quaest. Math. (2018). https://doi.org/10.2989/16073606.2018.1499562

Submit your manuscript to a SpringerOpen ${ }^{\bullet}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

