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Abstract
We prove the existence and uniqueness of a weighted pseudo asymptotically mild
solution to the following class of abstract semilinear difference equations:

u(n + 1) = A
n∑

k=–∞
a(n – k)u(k + 1) +

n∑

k=–∞
b(n – k)f (k,u(k)), n ∈ Z,

where A is the generator of a resolvent sequence {S(n)}n∈N0 of bounded and linear
operators defined in a Banach space X , the sequences a,b are complex-valued, and
f ∈ l1(Z× X ,X).
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1 Introduction
Nowadays, continuous-time models for systems arising in science, engineering business,
and social sciences have been widely studied by many researchers. However, it is some-
times necessary to discretize the continuous models for practical purposes. In some cases,
the natural models can be discrete; in addition, the results of the discrete time models are
more accurate and convenient than continuous models to describe phenomena such as
infectious diseases, traffic dynamics, radioactivity, among others. Discrete models should
preserve as much as possible the qualitative properties of the corresponding continuous
time models [2, 7, 8, 12, 23, 24].

A systematic study of difference equations may be traced to papers by different authors
[11, 15, 17, 26, 30, 32, 33]. In [33] Xia established some sufficient criteria for the exis-
tence and uniqueness of the discrete weighted pseudo almost automorphic solutions to
the Volterra difference equations of convolution type as well as to nonautonomous semi-
linear difference equations. Elaydi obtained some of the fundamental results on the sta-
bility and asymptotic behavior of linear Volterra difference equations using the method of
Z-transform for equations of convolution type in [17].
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The problem of the existence and uniqueness of solutions for differential-difference
equations, that is, continuous in space and discrete in time, has been the subject of in-
creasing interest in the last years. They are frequently analyzed in an abstract setting of Ba-
nach space. For instance, the study of maximal regularity for discrete time abstract Cauchy
problems in Banach spaces has been addressed in [4, 9, 10, 21, 22, 27]. Blunck established
sufficient conditions for maximal regularity of an operator T on Lp in [10]. Kemmochi [21,
22] considered a discrete Cauchy problem in a Banach space X, and showed that continu-
ous maximal regularity implies discrete maximal regularity for general θ -methods in the
case of UMD spaces. In [27] Lizama and Murillo presented a method based on operator-
valued Fourier multipliers to characterize the existence and uniqueness of lp-solutions for
some discrete time fractional models.

Recently, in [1, 5, 34] the authors considered the nonlinear difference equations

�αu(n) = Au(n + 1) + f (n), n ∈ Z, (1.1)

for 0 < α ≤ 1, where A is the generator of a resolvent sequence contained in the space
of all bounded linear operators defined in a Banach space. Here �α denotes fractional
difference in the Weyl-like sense (see Definition 3.16), and f satisfies Lipschitz conditions
of global and local type. The authors studied existence, uniqueness of discrete weighted
pseudo S-asymptotically ω-periodic mild solutions and asymptotic behavior for nonlinear
fractional difference equations.

The most interesting feature of the works cited above is that the authors studied the
fractional modeling of partial differential equations that can be modeled in discrete time
as well as in continuous space. It is worthwhile to observe that if α = τ = θ = 1, then the
discrete Cauchy problem in X,

⎧
⎨

⎩

u(n+1)–u(n)
τ

= Au(n + θ ) + f (n + θ ), n ∈N,

u(0) = 0,
(1.2)

where τ > 0 is the time step, θ ∈ [0, 1] is a fixed parameter, u = u(n) is an unknown X-
valued sequence, and f = f (n) is a given one, which was studied in [21] can be represented
abstractly by (1.1).

Our motivation in this paper arises from the observation that equations of type (1.1)
are subsumed under the general framework of nonlinear fractional difference equations
of the type

u(n + 1) = A
n∑

k=–∞
a(n – k)u(k + 1) +

n∑

k=–∞
b(n – k)f

(
k, u(k)

)
, n ∈ Z, (1.3)

where a(n), b(n) are appropriately chosen sequences. Equation (1.2) corresponds to the
special case where a(n) = b(n) = kα(n), with

kα(n) =
Γ (n + α)

Γ (α)Γ (n + 1)
, n ∈ N0.

These coefficients appear in the definition of the discrete fractional Laplacian which has
been the subject of many studies in recent years (see, e.g., [26] and the references therein).
Example 3.14 will provide more details on this class of equations.



Keyantuo et al. Advances in Difference Equations        (2019) 2019:251 Page 3 of 29

Linear and nonlinear systems of differential-difference equations of Volterra type are
often used to model biological populations, see [13, 16, 29]. The theory of linear Volterra
difference equations of both convolution and nonconvolution types has been studied by
Elaydi, Gronek, and Schmeidel in [17, 20]; the second author proved the existence of
bounded solutions via Darbo’s fixed point theorem using a measure of noncompactness
in the space of bounded sequences.

However, the vast majority of research works related to the class of nonlinear discrete
time evolution equations (1.3) are focused either in finite dimensional cases or are re-
stricted to the case of a bounded operator A. Moreover, the problem of existence and
uniqueness of weighted pseudo asymptotically mild solutions to (1.3) appears not to have
been considered in the literature.

In this paper we have successfully solved this problem by means of an operator theoretic
approach. In this way, one of our main contributions in this paper is that we propose a new
definition of discrete resolvent family {S(n)}n∈N0 ⊂ B(X) generated by the operator A in
order to represent the solution of (1.3). This new concept improves [1, 34, Definition 3.1]
and [5, Definition 2.11] in the special case of (1.1).

The paper is organized as follows: Sect. 2 is devoted to some notations and to recalling
preliminary results. In Sect. 3, we consider two complex-valued sequences a, b, and under
certain conditions on f : Z → X and the resolvent family generated by the operator A, we
show that

u(n + 1) =
n∑

k=–∞
S(n – k)f (k)

is a strong solution of the linear version of (1.3). More precisely, it is a solution of the non-
homogeneous equation in which f does not depend on u. The operator-valued sequence
{S(n)}n∈N0 is the discrete resolvent family associated with the system (see Definition 3.2).

Another relevant result of our work is that we give necessary conditions in terms of
generators of C0-semigroups in order to prove the existence and summability of a discrete
resolvent family (Theorem 3.9). It should be noted that we give an explicit form of the
family involving the well-known Poisson distribution in the spirit of the work [26]. This
is necessary in order to establish reasonable conditions for a new result on the existence
of strong solutions for our problem, see Theorem 3.13. Additionally, we will prove that in
case a(n) = b(n), n ∈ Z+, then the sequence of operators S(n) have the following interesting
representation:

S(n)x =

[ n–1∑

j=0

φj(n)
(
AR(A)

)j
]

R2(A)x, n ≥ 2,

S(0)x = a(0)R(A)x, S(1)x = a(1)R2(A)x, where R(A) := (1 – a(0)A)–1, φ0(n) = a(n),φ1(n) =∑n–1
k=1 a(n – k)a(k), and the sequence (φj(·)) is defined recursively by

φj(n) =
n–1∑

k=j

a(n – k)φj–1(k), j ≥ 2, n ∈ Z+.

In Sect. 4, we present results related to the asymptotic behavior and weighted pseudo S-
asymptotic ω-periodic mild solutions to (1.3). We use as the main tools various fixed point
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theorems, namely the Banach fixed point theorem, Matkowski’s fixed point theorem, and
the Leray–Schauder alternative theorem in combination with the useful Lemma 2.1 from
[34] about compactness in the vector-valued sequence space, in which we seek solutions.
In the main result of Sect. 4, we suppose that A is the generator of a summable discrete re-
solvent family {S(n)}n∈N0 ⊂ B(X), f satisfies a θ -Lipschitz condition, and using the Leray–
Schauder alternative theorem, we show that there exist a sequence (h(n))n∈Z and a mild
solution u of (1.3) such that u(n) = o(h(n)), where the positive sequence h : Z → R

+ sat-
isfies appropriate convergence properties. The precise description of this result is in the
context of Theorem 4.6. Finally, in the last section, we include a constructive example to
illustrate the relevance and feasibility of the given hypotheses.

2 Preliminaries
Let (X,‖ · ‖) be a Banach space. We denote the linear space consisting of all vector-valued
sequences f : Z+ → X by s(Z+, X), where Z+ = N∪ {0}. Note that we also use the notation
N0 for the same purpose. We also use Z+ \{0} or Z+ \{0} for the natural numbers at several
places. Let a : Z+ → C be given. If

∑∞
k=0 |a(k)| < ∞, then we say that a is a summable

sequence. We introduce some notation on the vector-valued spaces used in the sequel.
(i) Given two Banach spaces X and Y , we denote by B(X, Y ) the Banach space of all

bounded linear operators from X to Y . The space B(X, Y ) will be endowed with
the operator topology or the strong operator topology depending on the context.
In case X = Y , we write simply B(X).

(ii) The Sobolev space W l,p(R+) of all functions f ∈ Lp(R+) whose derivatives in the
sense of distributions up to order l belong to Lp(R+).

(iii) l∞(Z, X) := {f : Z → X : ‖f ‖∞ := supn∈Z ‖f (n)‖ < ∞}.
(iv) lp

ρ(Z, X) := {f : Z→ X : ‖f ‖lpρ :=
∑∞

n=–∞ ‖f (n)‖pρ(n) < ∞}, where ρ : Z→ (0,∞) is
a positive sequence.

(v) C0(Z, X) := {f ∈ l∞(Z, X) : limn→∞ ‖f (n)‖ = 0}.
(vi) Cω(Z, X) := {f ∈ l∞(Z, X) : f is ω-periodic}, where ω ∈ Z+ \ {0} is fixed.

(vii) UC(Z× X, X) is the set of all functions f : Z× X → X satisfying that, for all ε > 0,
there exists δ > 0 such that ‖f (k, x) – f (k, y)‖ ≤ ε for all k ∈ Z and for all x, y ∈ X
with ‖x – y‖ < δ.

(viii) UC(Z× X, X) is the set of all functions f : Z× X → X satisfying that, for all ε > 0,
there exists δ > 0 such that ‖f (k, x) – f (k, y)‖ ≤ Lf (k)ε for all k ∈ Z and x, y ∈ X
with ‖x – y‖ ≤ δ, where Lf ∈ lp(Z).

Let h : Z →R
+ be a sequence such that h(n) ≥ 1 for all n ∈ Z, and h(n) → ∞ as |n| → ∞.

Define

C0
h(Z, X) =

{
ξ : Z → X : lim|n|→∞

‖ξ (n)‖
h(n)

= 0
}

,

endowed with the norm ‖ξ‖h = supn∈Z
‖ξ (n)‖

h(n) .
It is clear that C0

h(Z, X) is a Banach space isometrically isomorphic with the space
C0(Z, X) consisting of all sequences ξ : Z→ X that vanish at ±∞.

We recall a compactness criterion, the Leray–Schauder alternative theorem, and
Matkowski’s fixed point theorem which will be useful later to prove the existence and
uniqueness of solution to (1.3).
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Lemma 2.1 ([34, Lemma 2.1]) Let h : Z → R
+ be a function such that h(n) ≥ 1 for all

n ∈ Z and h(n) → ∞ as |n| → ∞. Let S be a subset of C0
h(Z, X). Suppose that the following

conditions are satisfied:
(a) The set H(S) = { u(n)

h(n) : u ∈ S} is relatively compact in X for all n ∈ Z.
(b) S is weighted equiconvergent at ±∞, that is, for every ε > 0, there is T > 0 such that

‖u(n)‖ < εh(n) for each |n| ≥ T for all u ∈ S.
Then S is relatively compact in C0

h(Z, X).

Theorem 2.2 ([28, Matkowski’s fixed point theorem]) Let (X, d) be a complete metric
space, and let F : X → X be a map such that d(Fx,Fy) ≤ φ(d(x, y)) for all x, y ∈ X, where
φ : [0,∞) → [0,∞) is a nondecreasing function such that limn→∞ φn(t) = 0 for all t > 0,
where φn is the nth iterate of φ. Then F has a unique fixed point z ∈ X.

Theorem 2.3 ([19, Leray–Schauder alternative theorem]) Let Ω be a closed convex subset
of the Banach space X such that 0 ∈ Ω . Let F : Ω → Ω be a completely continuous map.
Then the set {x ∈ Ω : x = λF (x), 0 < λ < 1} is unbounded or the map F has a fixed point in
Ω .

Let U be the collection of positive sequences ρ : Z → (0,∞). For ρ ∈ U and for n ∈ Z+,
we use the notation

ν(n,ρ) =
n∑

k=–n

ρ(k),

U∞ :=
{
ρ ∈ U : lim|n|→∞ν(n,ρ) = ∞

}
,

Ub =
{
ρ ∈ U : 0 < inf

k∈Z
ρ(k) ≤ sup

k∈Z
ρ(k) < ∞

}
⊂ U∞.

Hence, ν(n,ρ) are the symmetric partial sums, U∞ consists of those positive sequences ρ

over Z for which the sequence (ν(n,ρ))n∈N is unbounded, while Ub consists of the positive
sequences ρ such that, for some fixed τ > 0, ρ(n) ≥ τ for all n ∈ Z.

Let ρ1,ρ2 ∈ U∞ be given. The sequence ρ1 is said to be equivalent to ρ2 (i.e., ρ1 ∼ ρ2) if
ρ1/ρ2 ∈ Ub. It can be proved that U∞ =

⋃
ρ∈U∞{� ∈ U∞ : ρ ∼ �}. For ρ ∈ U∞ and m ∈ Z,

we define ρm(n) = ρ(m + n) for n ∈ Z and UT = {ρ ∈ U∞ : ρ ∼ ρm for each m ∈ Z}.
A sequence f : Z → X is called almost automorphic if, for every integer sequence {k′

n},
there exists a subsequence {kn} such that

f (k) := lim
n→∞ f (k + kn)

is well defined for each k ∈ Z and limn→∞ f (k – kn) = f (k). The set of such sequences is
denoted by AAd(Z, X). It is well known that the set AAd(Z, X) endowed with the norm
‖f ‖∞ := supk∈Z ‖f (k)‖ is a Banach space (see [6]). A function f : Z×X → X is called almost
automorphic if f (k, x) is almost automorphic in k ∈ Z for any x ∈ X. We denote the space
of all such functions by AAd(Z× X, X).

For ρ1,ρ2 ∈ U∞ [33], we define the space

PAA0S(Z, X,ρ1,ρ2) :=

{
f ∈ l∞(Z, X) : lim

n→∞
1

ν(n,ρ1)

n∑

k=–n

∥∥f (k)
∥∥ρ2(k) = 0

}
.
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Let ρ1,ρ2 ∈ U∞ be given. A sequence f : Z → X is called discrete weighted pseudo
almost automorphic if it can be represented as f = g + ϕ, where g ∈ AAd(Z, X) and
ϕ ∈ PAA0S(Z, X,ρ1,ρ2). The space of such functions is denoted by WPAAd(Z, X). The
space WPAAd(Z, X) endowed with the norm ‖f ‖∞ := supk∈Z ‖f (k)‖ is a Banach space (see
[33, Lemma 10]). A function f : Z × X → X is called discrete weighted almost automor-
phic in k ∈ Z for each x ∈ X if it can be expressed as f = g +ϕ, where g ∈ AAd(Z×X, X) and
ϕ ∈ PAA0S(Z× X, X,ρ1,ρ2). The space of such functions is denoted by WPAAd(Z× X, X).
In what follows, we denote by V∞ the set of all functions ρ1,ρ2 ∈ U∞ satisfying the fol-
lowing: there exists an unbounded set Ω ⊂ Z such that, for all m ∈ Z,

lim
|k|→∞,k∈Ω

sup
ρ2(k + m)

ρ1(k)
< ∞ and lim

n→∞

∑
k∈([–n,n]\Ω)+m ρ2(k)

ν(n,ρ1)
= 0.

A function f : Z× X → X is said to be locally Lipschitz-continuous with respect to the
second variable if, for each positive number r, for all k ∈ Z, and for all x, y ∈ X with ‖x‖ ≤ r
and ‖y‖ ≤ r, we have ‖f (k, x)– f (k, y)‖ ≤ L(r)‖x–y‖, where L : R+ →R+ is a nondecreasing
function.

A sequence f ∈ l∞(Z, X) is called discrete asymptotically ω-periodic if there exist g ∈
Cω(Z, X), ϕ ∈ C0(Z, X) such that f = g + ϕ. The collection of all such sequences is denoted
by APω(Z, X). A sequence f ∈ l∞(Z, X) is called discrete S-asymptotically ω-periodic if
there exists ω ∈ Z

+ \ {0} such that limn→∞(f (n + ω) – f (n)) = 0. The collection of all such
sequences is denoted by SAPω(Z, X) (see [33, Definition 5]).

Let ρ ∈ U∞ be given. A sequence f ∈ l∞(Z, X) is called discrete S-asymptotically ω-
periodic if there exists ω ∈ Z

+ \ {0} such that limn→∞ 1
2n

∑n
k=–n ‖f (k + ω) – f (k)‖ = 0. The

collection of such sequences is denoted by PSAPω(Z, X) (see [33, Definition 6]).
Let ρ1,ρ2 ∈ U∞. A sequence f ∈ l∞(Z, X) is called discrete weighted pseudo S-

asymptotically ω-periodic if there exists ω ∈ Z
+ \ {0} such that

lim
n→∞

1
ν(n,ρ1)

n∑

k=–n

ρ2(k)
∥∥f (k + ω) – f (k)

∥∥ = 0.

Denote by WPSAPω(Z, X) the set of such sequences (see [34, Definition 2.5]). Next, we
will recall some properties of WPSAPω(Z, X,ρ1,ρ2) proved in [34].

Lemma 2.4 ([34, Lemma 2.2]) Let ρ1,ρ2 ∈ V∞ be given, then
(a) For each l ∈ Z, one has

lim sup
n→∞

ν(n + l,ρ2)
ν(n,ρ1)

< ∞.

(b) WPSAPω(Z, X,ρ1,ρ2), where ω ∈ Z+ \ {0}, is translation invariant, that is,
f (· + l) ∈ WPSAPω(Z, X,ρ1,ρ2) for each l ∈ Z, if f ∈ WPSAPω(Z, X,ρ1,ρ2).

(c) WPSAPω(Z, X,ρ1,ρ2), where ω ∈ Z+ \ {0}, is a closed subspace of l∞(Z, X).

Remark 2.5 It is easy to see that the following inclusions hold: For ω ∈ Z+ \ {0},

Cω(Z, X) ⊂ APω(Z, X) ⊂ SAPω(Z, X) ⊂ PSAPω(Z, X) ⊂ WPSAPω(Z, X) ⊂ l∞(Z, X).
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Let ρ1,ρ2 ∈ U∞ be given, and ω ∈ Z+ \ {0}. In what follows, we will consider the
sets M(Z, X) := {WPAAd(Z, X), WPSAPω(Z, X)} and M(Z× X, X) := {WPAAd(Z× X, X),
WPSAPω(Z× X, X)}.

3 Solutions for abstract difference equations of convolution type
We consider the following abstract difference equation of convolution type:

u(n + 1) =
n∑

k=–∞
a(n – k)Au(k + 1) +

n∑

k=–∞
b(n – k)f

(
k, u(k)

)
, n ∈ Z,

where A : D(A) ⊂ X → X is a closed linear operator on X, f ∈ l1(Z× X, X), and a, b : Z+ →
R+ are given bounded positive sequences. Note that the associated nonhomogeneous lin-
ear equation is given by

u(n + 1) =
n∑

k=–∞
a(n – k)Au(k + 1) +

n∑

k=–∞
b(n – k)f (k), n ∈ Z. (3.1)

We begin with the definition of solution for the equations under consideration. We write
[D(A)] for the space D(A) equipped with the graph norm (which turns it into a Banach
space).

Definition 3.1 Given a, b ∈ s(Z, X) bounded positive sequences and f ∈ l1(Z, X), a se-
quence u : Z → [D(A)] is called a strong solution for equation (3.1) if u ∈ l1(Z; [D(A)]) and
satisfies (3.1).

We now define the concept of discrete resolvent family which will be a crucial tool for
the solution of equation (3.1).

Definition 3.2 Let A be a closed linear operator with domain D(A) defined on a Ba-
nach space X. Let a and b be scalar-valued sequences. An operator-valued sequence
{S(n)}n∈N0 ⊂ B(X) is called a discrete resolvent family generated by A if it satisfies the
following conditions:

(i) S(n)(X) ⊂ D(A), and S(n)Ax = AS(n)x for all x ∈ D(A) and n ∈N0;
(ii) S(n)x = b(n)x + A

∑n
k=0 a(n – k)S(k)x for n ∈ N0 and x ∈ X .

Remark 3.3 Note that Definition 3.2 corresponds to the resolvent sequence defined in [1,
5] when b(n) = a(n) = kα(n) := Γ (α+n)

Γ (α)n! for α > 0, n ∈N0. Sequences of operators for abstract
difference equations with the kernel kα(n) were introduced by Lizama in [26] and [25] in
connection with abstract difference equations of fractional order.

Remark 3.4 If a(0) = b(0) = 1, then by Definition 3.2 we have that

S(0)x = x + S(0)Ax, x ∈ D(A)

and

S(0)x = x + AS(0)x, x ∈ X.
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Therefore 1 ∈ ρ(A) and

S(0)x = (I – A)–1x.

Here, ρ(A) denotes the resolvent set of A.

Proposition 3.5 If 1/a(0) ∈ ρ(A), and there exists a discrete resolvent family corresponding
to the kernels a and b, then it is unique.

Proof Suppose that S(n) and R(n) are resolvent families generated by A. Let x ∈ X and
define ϕ(n) = S(n)x – R(n)x, n ∈N0. Note that ϕ(n) ∈ D(A) for all k ∈ N0 and

ϕ(n) = A
n∑

k=0

a(n – k)ϕ(k). (3.2)

Let us consider two cases according to whether a(0) = 0 or a(0) �= 0. In the case a(0) = 0,
expanding the sum in (3.2), we obtain ϕ(n) = 0 for all n ∈ N0. If a(0) �= 0, then by Defi-
nition 3.2 and since 1/a(0) ∈ ρ(A), we obtain S(0) = b(0)(I – a(0)A)–1 = R(0). Therefore
ϕ(0) = 0. Using (3.2), we obtain (I – a(0)A)ϕ(n) = 0 for all n ∈ N0. Then the invertibility of
(I – a(0)A) implies S(n)x = R(n)x for all n ∈N0 and x ∈ X. �

Remark 3.6 Note that if b(0) �= 0, then S(0)
b(0) (1–Aa(0))x = x for all x ∈ D(A). Thus combining

with Definition 3.2 part (i), we have 1/a(0) ∈ ρ(A). Then the conclusion of the previous
theorem holds.

In what follows â denotes the Laplace transform of the kernel a, whenever it exists. We
recall [31, Sect. 3.2 p. 69] that a function a ∈ L1

loc(R+) of subexponential growth is called
k-regular if there is a constant c > 0 such that

∣∣λnâ(n)(λ)
∣∣ ≤ c

∣∣̂a(λ)
∣∣ for all Reλ > 0, 0 ≤ n ≤ k.

Also a is said to be of positive type if | arg â(λ)| ≤ π
2 for all Reλ > 0.

Definition 3.7 Let a ∈ L1
loc(R+) and k ≥ 2. We say that a(t) is k-monotone if a ∈

Ck–2(0,∞), (–1)na(n)(t) ≥ 0 for all t > 0, 0 ≤ n ≤ k – 2, and the function (–1)k–2a(k–2)(t)
is nonincreasing and convex.

Theorem 3.8 Suppose that A generates a discrete resolvent family {S(n)}n∈N0 ⊂ B(X) with
a(n) = b(n) ∈ s(N0,R+) such that 1/a(0) ∈ ρ(A). Then the following statements hold:

(a) For all x ∈ X , we have that S(0)x = a(0)R(A)x, S(1)x = a(1)R2(A)x, and

S(n)x =

[ n–1∑

j=0

φj(n)
(
AR(A)

)j
]

R2(A)x, n ≥ 2,

where R(A) := (1 – a(0)A)–1 and φ0(n) = a(n),φ1(n) =
∑n–1

k=1 a(n – k)a(k), and

φj(n) =
n–1∑

k=j

a(n – k)φj–1(k), j ≥ 2.
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(b) S(n)X ⊂ D(A) and S(n)Ax = AS(n)x for all x ∈ D(A), and n ∈N0.

Proof Clearly, by Definition 3.2 part (ii), we obtain that

S(0)x = a(0)R(A)x.

Now, let x ∈ X, we have that

S(1)x = a(1)x + A
(
a(1)S(0) + a(0)S(1)

)
,

then

S(1)
(
1 – a(0)A

)
x = a(1)x + a(1)a(0)AR(A)x = a(1)R(A)x.

Thus

S(1)x = a(1)R2(A)x,

where we have used that AR(A) = 1
a(0) (–1 + R(A)). By induction, we suppose that

S(m)x =

[m–1∑

j=0

φj(m)
(
AR(A)

)j
]

R2(A)x for m ≤ n – 1.

For x ∈ X, we write, using the definition:

S(n)x = a(n)x + A
n∑

m=0

a(n – m)S(m)x

= a(n)x + A
[
a(n)S(0) + a(n – 1)S(1) + a(0)S(n)

]
x + A

n–1∑

m=2

a(n – m)S(m)x.

Then we obtain

(
1 – a(0)A

)
S(n) = a(n)

(
1 + AS(0)

)
+ Aa(n – 1)a(1)R2(A) + A

n–1∑

m=2

a(n – m)S(m).

Therefore, since R(A)(1 + AS(0)) = R2(A), we obtain

S(n)x = a(n)R2(A)x + Aa(n – 1)a(1)R3(A)x + A
n–1∑

m=2

a(n – m)S(m)R(A)x

= a(n)R2(A)x + a(n – 1)a(1)AR3(A)x

+
n–1∑

m=2

a(n – m)

[
a(m)AR3(A)x +

m–1∑

j=1

φj(m)Aj+1Rj+3(A)

]
x

= a(n)R2(A)x + a(n – 1)a(1)AR3(A)x + AR3(A)
n–1∑

m=2

a(n – m)a(m)x
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+
n–1∑

m=2

a(n – m)
m–1∑

j=1

φj(m)Aj+1Rj+3(A)x

= a(n)R2(A)x +
n–1∑

m=1

a(n – m)a(m)AR3(A)x +
n–1∑

m=2

a(n – m)
m–1∑

j=1

φj(m)Aj+1Rj+3(A)x

= a(n)R2(A)x + φ1(n)AR3(A)x +
n–1∑

m=2

a(n – m)
m–1∑

j=1

φj(m)Aj+1Rj+3(A)x

=

[ n–1∑

j=0

φj(n)
(
AR(A)

)j
]

R2(A)x.

Next, we prove (b). Note that

ARj(A) =
(

A –
1

a(0)
+

1
a(0)

)
Rj(A) =

1
a(0)

(
Rj(A) – Rj–1(A)

)

and

Rj(A)A = Rj(A)
(

A –
1

a(0)
+

1
a(0)

)
=

1
a(0)

(
Rj(A) – Rj–1(A)

)
.

Therefore, for all x ∈ X, it is a straightforward consequence of the above representation of
S(n) that (b) holds. �

The next theorem gives necessary conditions in terms of C0-semigroups in order to
ensure the existence and summability of a discrete resolvent family. We will denote by
f ∗ g :=

∫ t
0 f (t – s)g(s) ds the Laplace convolution of the functions f and g , and ρn(t) will

be the function ρn(t) = e–t tn

n! . The notion of 2-regular function is taken from the reference
[31].

Theorem 3.9 Let A be the generator of a bounded analytic C0-semigroup on a Banach
space X. Let k(t), g(t) ≥ 0 be given by a(n) =

∫ ∞
0 ρn(t)k(t) dt, b(n) =

∫ ∞
0 ρn(t)g(t) dt, where

k ∈ L1
loc(R+) is 2-regular and of subexponential growth, of positive type, such that 1

λ̂k(λ)
defined for λ �= 0 has a locally analytic extension at λ = 0, g(0) = 0, g ∈ W 1,1(R+), and 0 ∈
ρ(A). Then A generates a summable discrete resolvent family {R(n)}n∈N0 , with sequences
b(n) and a(n).

Proof By [31, Corollary 3.1] k̂(λ) �= 0, 1
k̂(λ) ∈ ρ(A) for all Reλ > 0, and there exists a constant

M ≥ 1 such that H(λ) = (I – k̂(λ)A)–1/λ satisfies ‖H(λ)‖ ≤ M
|λ| for all Reλ > 0. Then, by [31,

Theorem 10.2], there exists a resolvent family S(t) which is uniformly integrable. By [31,
Definition 1.3, (S3)] for all x ∈ X and t > 0, we have that

S(t)x = x + A(k ∗ S)(t)x. (3.3)

Define T(t)x := (g ′ ∗ S)(t)x for all x ∈ X and t ≥ 0. Note that T(t) ∈ L1(R+, X) since S(t) is
uniformly integrable and g ′ ∈ L1(R+). Moreover, since g(0) = 0, it follows that (g ′ ∗ 1)(t) =∫ t

0 g ′(s) ds = g(t). Thus, for all x ∈ X and t ≥ 0, we obtain from (3.3)

T(t)x =
(
g ′ ∗ 1

)
(t)x + A

(
k ∗ g ′ ∗ S

)
(t)x
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= g(t)x + A(k ∗ T)(t)x.

Define

R(n)x :=
∫ ∞

0
ρn(t)T(t)x dt =

(–1)n

n!

[
ĝ(λ)
k̂(λ)

(
1

k̂(λ)
–A

)–1

x
](n)∣∣∣

λ=1
for all n ∈N0, x ∈ X.

Then R(n)x ∈ D(A) for all x ∈ X. Now, from a(n) =
∫ ∞

0 ρn(t)a(t) dt and b(n) =∫ ∞
0 ρn(t)g(t) dt, and using [26, Theorem 3.4], we have that, for all x ∈ X,

R(n)x = b(n)x + A
n∑

j=0

a(n – j)R(j)x.

Finally, we prove that R(n) is summable. In fact, since T(t) ∈ L1(R+, X), we have that

∞∑

n=0

∥∥R(n)
∥∥ =

∞∑

n=0

∥∥∥∥
∫ ∞

0
ρn(t)T(t) dt

∥∥∥∥ =
∞∑

n=0

∥∥∥∥
∫ ∞

0

e–ttn

n!
T(t) dt

∥∥∥∥

≤
∫ ∞

0

∥∥T(t)
∥∥dt < ∞. �

Remark 3.10 We note that the family T defined in the previous theorem is the convolu-
tion of a function g ′ with a resolvent family S. The resolvent families have been studied
extensively by Prüss in [31]. It is well known that under certain conditions on the function
k, we can obtain resolvent families with various additional properties: analytic, differen-
tiable, exponentially bounded, uniform integrable, among others, see [31]. Next, we will
give conditions on g in order that the family T have the same properties of S.

• By Young’s inequality, if S(t) is uniformly integrable and g ′ ∈ L1(R+), then
T(t) ∈ L1(R+, X).

• Suppose that S is differentiable, then by [31, Definition 1.4] we see that
S(·)x ∈ W 1,1

loc (R+, X) for each x ∈ D(A), and there is ϕ ∈ L1
loc(R+) such that

‖S′(t)x‖ ≤ ϕ(t)‖x‖A a.e. on R+, for each x ∈ D(A). If g ∈ W 1,1
loc (R+), then

T(t) ∈ W 1,1
loc (R+). Moreover,

∥∥∥∥
d
dt

(
g ′ ∗ S

)
(t)x

∥∥∥∥ ≤ ∥∥S(0)g ′(t)x
∥∥ +

∥∥∥∥
∫ t

0
S′(t – s)g ′(s)x ds

∥∥∥∥

≤ M|x|A + M
∫ t

0

∥∥S′(t – s)x
∥∥ds

≤ M|x|A + M
∫ t

0
ϕ(t – s)‖x‖A ds ≤ (M + K)‖x‖A,

where M = supt∈R+ |g ′(t)| and K = M
∫ t

0 ϕ(t – s) ds. Thus T(t) is differentiable.

Remark 3.11 The conditions imposed on the sequences a(n) and b(n) in Theorem 3.9 are
sufficient but not necessary. In [1, Theorem 3.5] the authors proved that if 0 < α < 1 and
A is the generator of an exponentially stable C0-semigroup {T(t)}t≥0, defined on a Banach
space X, then A generates a summable discrete resolvent family {Sα(n)}n∈N0 defined by

Sα(n)x :=
∫ ∞

0

∫ ∞

0
e–t tn

n!
fs,α(t)T(s)x ds dt, n ∈N0, x ∈ X,
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where ft,α(λ) is a probability density function frequently called stable Lévy process. The
latter is defined by [35]

ft,α(λ) =
1

2π i

∫ σ+i∞

σ–i∞
ezλ–tzα

dz, σ > 0, t > 0,λ > 0, 0 < α < 1,

where the branch of zα is so taken that Re(zα) > 0 for Re(z) > 0.

Let f , g be sequences (defined on Z+). We define two convolution products (f ◦ g)(n) and
(f ∗ g)(n) as follows:

(f ◦ g)(n) =
n∑

k=–∞
f (n – k)g(k) and (f ∗ g)(n) =

n∑

k=0

f (n – k)g(k).

For the second product, no condition on the sequences is required, while for the first we
may for example assume that one of the sequences is summable and the other is bounded.
In the sequel, we derive a result which describes properties of the above operations.

Theorem 3.12 For f , g, h given sequences, the following properties hold:
(i) (f ∗ g)(n) = (g ∗ f )(n).

(ii) ((f ∗ g) ◦ h)(n) = (g ◦ (f ◦ h))(n).
(iii) (g ◦ (f ◦ h))(n) = (f ◦ (g ◦ h))(n).

Proof (i) is obvious. Now, we will prove (ii). By Fubini’s theorem,

(
(f ∗ g) ◦ h

)
(n) =

n∑

j=–∞
(f ∗ g)(n – j)h(j) =

n∑

j=–∞

n–j∑

k=0

f (n – j – k)g(k)h(j)

=
∞∑

k=0

g(k)
n–k∑

j=–∞
f (n – j – k)h(j) =

∞∑

k=0

g(k)(f ◦ h)(n – k)

=
n∑

j=–∞
(f ◦ h)(j)g(n – j) =

(
g ◦ (f ◦ h)

)
(n).

This proves (ii). Now, (iii) follows from (i) and (ii). �

The following theorem gives conditions for better regularity.

Theorem 3.13 Let {S(n)}n∈N0 ⊂ B(X) be a summable discrete resolvent family generated
by A and f ∈ l1(Z, [D(A)]), then

u(n + 1) :=
n∑

k=–∞
S(n – k)f (k)

is a strong solution of (3.1).
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Proof Note that u is clearly well defined and u ∈ l1(Z, [D(A)]). Now we will prove that u
satisfies (3.1). Indeed, by Definition 3.2 and Theorem 3.12,

u(n + 1) –
n∑

k=–∞
b(n – k)f (k)

= (S ◦ f )(n) – (b ◦ f )(n) =
n∑

k=–∞
S(n – k)f (k) – (b ◦ f )(n)

=
n∑

k=–∞

[
b(n – k) + A

n–k∑

l=0

a(n – k – l)S(l)

]
f (k) – (b ◦ f )(n)

= (b ◦ f )(n) + A(a ∗ S ◦ f )(n) – (b ◦ f )(n)

= A
n∑

k=–∞
a(n – j)u(j + 1).

Thus,

u(n + 1) =
n∑

k=–∞
b(n – j)f (j) + A

n∑

k=–∞
a(n – j)u(j + 1).

This proves the claim. �

Example 3.14 Consider the special case a(n) = b(n) = kα(n), n ∈ Z, and {S(n)}n∈N satisfying
Definition 3.2, then the nonlinear fractional difference equation

�αu(n) = Au(n + 1) + f (n), n ∈ Z,

for 0 < α < 1, can be written in the form (3.1). Here, A is the generator of an α resolvent
sequence {S(n)}n∈N0 in B(X),�α denotes fractional difference in Weyl-like sense (see [1,
5]), and f satisfies Lipschitz conditions of global and local type.

Indeed, first we recall the following definitions.

Definition 3.15 ([1]) Let α > 0 be given and ρ(n) = |n|α–1, n ∈ Z. The αth fractional sum
of a sequence f ∈ l1

ρ(Z, X) is defined by

�–αf (n) :=
n∑

j=–∞
kα(n – j)f (j), n ∈ Z.

Definition 3.16 ([1]) Let α > 0 be given and ρ(n) = |n|α–1, n ∈ Z. The αth fractional dif-
ference of a sequence f ∈ l1

ρ(Z, X) is defined by

�αf (n) := �m�–(m–α)f (n), n ∈ Z,

where m = [α] + 1, [·] is the greatest integer function.
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Now if

�αu(n) = Au(n + 1) + f (n),

then

n∑

k=–∞
kα(n – k)�αu(k) = A

n∑

k=–∞
kα(n – k)u(k + 1) +

n∑

k=–∞
kα(n – k)f (k).

Note that

n∑

k=–∞
kα(n – k)

(
k1–α ∗ u

)
(k + 1)

=
n+1∑

m=–∞
kα(n – m + 1)

(
k1–α ◦ u

)
(m) =

(
kα ◦ (

k1–α ◦ u
))

(m + 1)

=
((

kα ∗ k1–α
) ◦ u

)
(m + 1) =

m+1∑

k=–∞
u(k).

Analogously,

n∑

k=–∞
kα(n – k)

(
k1–α ∗ u

)
(k) =

m∑

k=–∞
u(k).

Thus,

n∑

k=–∞
kα(n – k)�αu(k) =

n∑

k=–∞
kα(n – k)

[(
k1–α ∗ u

)
(k + 1) –

(
k1–α ∗ u

)
(k)

]

=
n+1∑

k=–∞
u(k) –

n∑

k=–∞
u(k) = u(n + 1).

Then

u(n + 1) = A
n∑

k=–∞
kα(n – k)u(k + 1) +

n∑

k=–∞
kα(n – k)f (k).

More information on the sequences kα(n) can be found in the reference [26], in partic-
ular the semi group identity kα ∗ kβ = kα+β ,α,β > 0.

In the next result, borrowing ideas from [5], we prove regularity under convolution in
the above mentioned spaces.

Theorem 3.17 Let ρ1,ρ2 ∈ V∞ and ρ ∈ UT be given. Assume that A generates a summable
discrete resolvent family {S(n)}n∈N0 ⊂ B(X). If f belongs to one of the spaces Ω ∈ M(Z, X),
then the sequence u defined by

u(n + 1) =
n∑

k=–∞
S(n – k)f (k), n ∈ Z,

belongs to the same space Ω .
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Proof Note that u(n + 1) is well defined and ‖u(n + 1)‖ ≤ ‖S‖1‖f ‖∞ for all n ∈ Z.
First, we consider f ∈ WPAAd(Z, X). Let f = f1 + f2, where f1 ∈ AAd(Z, X) and f2 ∈
PAA0S(Z, X,ρ1,ρ2) is the decomposition of f . Then

u(n) =
n–1∑

k=–∞
S(n – 1 – k)f1(k) +

n–1∑

k=–∞
S(n – 1 – k)f2(k) =: u1(n) + u2(n).

From [6, Theorem 2.12], u1 ∈ AAd(Z, X). Now, we will prove that u2 ∈ PAA0S(Z, X,ρ1,ρ2).
Indeed,

1
ν(K ,ρ1)

K∑

k=–K

∥∥u2(k)
∥∥ρ2(k)

=
1

ν(K ,ρ1)

K∑

k=–K

∥∥∥∥∥

k–1∑

j=–∞
S(k – 1 – j)f2(j)

∥∥∥∥∥ρ2(k)

≤
∞∑

m=0

∥∥S(m)
∥∥
(

1
ν(K ,ρ1)

K∑

k=–K

∥∥f2(k – 1 – m)
∥∥ρ2(k)

)
.

By [33, Lemma 10] the space PAA0S(Z, X,ρ1,ρ2) is invariant under translations, then
f2(· – m) ∈ PAA0S(Z, X,ρ1,ρ2). Thus, by the Lebesgue dominated convergence theorem,
we obtain

lim
K→∞

1
ν(K ,ρ1)

K∑

k=–K

∥∥u2(k)
∥∥ρ2(k) = 0.

This proves the claim for such a space. Now, let f ∈ WPSAPω(Z, X,ρ1,ρ2). Then there
exists ω ∈ Z

+ \ {0} such that

lim
n→∞

1
ν(n,ρ1)

n∑

k=–n

ρ2(k)
∥∥f (k + ω) – f (k)

∥∥ = 0.

Now, we have

1
ν(m,ρ1)

m∑

n=–m

∥∥u(n + ω) – u(n)
∥∥ρ2(n)

≤ 1
ν(m,ρ1)

m∑

n=–m

n–1∑

k=–∞

∥∥S(n – 1 – k)
∥∥∥∥f (k + ω) – f (k)

∥∥ρ2(n)

≤
∞∑

k=0

∥∥S(k)
∥∥
(

1
ν(m,ρ1)

m∑

n=–m

∥∥f (n – 1 – k + ω) – f (n – 1 – k)
∥∥ρ2(n)

)
.

By [34, Lemma 2.2] WPSAPω(Z, X) is invariant under translations. Thus, applying again
the Lebesgue dominated convergence theorem, we obtain

lim
m→∞

1
ν(m,ρ1)

m∑

n=–m

∥∥u(n + ω) – u(n)
∥∥ρ2(n)
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≤ lim
m→∞

∞∑

k=0

∥∥S(k)
∥∥
(

1
ν(m,ρ1)

m∑

n=–m

∥∥f (n – 1 – k + ω) – f (n – 1 – k)
∥∥ρ2(n)

)
= 0. �

4 Semilinear difference equations
In this section we use the above defined resolvent families to investigate the existence and
uniqueness of solutions for the following class of abstract semilinear difference equations:

u(n + 1) = A
n∑

k=–∞
a(n – k)u(k + 1) +

n∑

k=–∞
b(n – k)f

(
k, u(k)

)
, n ∈ Z, (4.1)

where A is the generator of a discrete resolvent family {S(n)}n∈N0 in B(X), f : Z × X → X
is a function bounded on bounded subsets of X, and a, b are given such that (4.1) makes
sense.

We introduce the following conditions in order to prove our main results about the
asymptotic behavior of mild solutions.

(H2) A is the generator of a summable discrete resolvent family {S(n)}n∈N0 ⊂ B(X).
(F1) f satisfies the Lipschitz condition

∥∥f
(
k, h(k)u

)
– f

(
k, h(k)v

)∥∥ ≤ Lf ‖u – v‖ for all k ∈ Z, u, v ∈ X,

where Lf > 0 is a constant and h is given in Lemma 2.1.
(F2) f satisfies the local Lipschitz condition, that is, for each positive number r and all

u, v ∈ X with ‖u‖ ≤ r,‖v‖ ≤ r, we have

∥∥f
(
k, h(k)u

)
– f

(
k, h(k)v

)∥∥ ≤ Lf (r)‖u – v‖ for all k ∈ Z,

where Lf : R+ → R
+ is a nondecreasing function and h is given in Lemma 2.1.

(F3) f satisfies the following condition:

∥∥f
(
k, h(k)u

)
– f

(
k, h(k)v

)∥∥ ≤ Lf (k)‖u – v‖ for all k ∈ Z, u, v ∈ X,

where Lf : Z →R
+ is a summable function and h is given in Lemma 2.1.

(F4) f satisfies

∥∥f
(
k, h(k)u

)
– f

(
k, h(k)v

)∥∥ ≤ φ
(‖u – v‖) for all k ∈ Z, u, v ∈ X,

where φ : R+ →R
+ is a nondecreasing function and h is given in Lemma 2.1.

(F5) f satisfies

∥∥f (k, u) – f (k, v)
∥∥ ≤ Lf (k)‖u – v‖θ for all k ∈ Z, u, v ∈ X,

where θ ∈ (0, 1), Lf : Z →R
+ is a sequence (depending on f ) such that

lim|k|→∞ Lf (k) = 0.
Next we introduce the definition of solution for the semilinear difference equation.

Definition 4.1 Let A be the generator of a discrete resolvent family {S(n)}n∈N0 ⊂ B(X)
and f : Z × X → X. We say that a sequence u : Z → X is a mild solution of (4.1) if k →
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S(n – k)f (k, u(k)) is summable on N0 for each n ∈ Z and u satisfies

u(n + 1) =
n∑

k=–∞
S(n – k)f

(
k, u(k)

)
, n ∈ Z.

In the next Theorems 4.2, 4.3, and 4.4, we show existence, uniqueness, and asymptotic
behavior of discrete mild solutions of (4.1). We assume that f satisfies Lipschitz and locally
Lipschitz conditions, the proofs are based on the Banach fixed point theorem.

Theorem 4.2 Assume that (H2), (F1) hold and Lf ‖S‖1 < 1, then there exists a unique mild
solution u(n) of (4.1) such that lim|n|→∞ ‖u(n)‖

h(n) = 0.

Proof Consider the operator F : C0
h(Z, X) → C0

h(Z, X) defined by

(Fu)(n) :=
n–1∑

k=–∞
S(n – 1 – k)f

(
k, u(k)

)
, n ∈ Z. (4.2)

Note that F is well defined. Indeed,

∥∥(Fu)(n)
∥∥ ≤

n–1∑

k=–∞

∥∥S(n – 1 – k)
∥∥∥∥f

(
k, u(k)

)
– f (k, 0)

∥∥ +
n–1∑

k=–∞

∥∥S(n – 1 – k)
∥∥∥∥f (k, 0)

∥∥

≤ Lf ‖S‖1‖u‖h + ‖S‖1 sup
k∈Z

∥∥f (k, 0)
∥∥,

hence lim|n|→∞ ‖(Fu)(n)‖
h(n) = 0, which implies that F is well defined. In addition, for u, v ∈

C0
h(Z, X) and n ∈ Z, the following inequality holds:

∥∥(Fu)(n) – (Fv)(n)
∥∥ ≤

n–1∑

k=–∞

∥∥S(n – 1 – k)
∥∥∥∥f

(
k, u(k)

)
– f

(
k, v(k)

)∥∥ ≤ Lf ‖S‖1‖u – v‖h;

therefore, ‖Fu – Fv‖h ≤ Lf ‖S‖1‖u – v‖h. From the assumption Lf ‖S‖1 < 1 we see that F is
a contraction, and using the Banach fixed point theorem, we conclude that there exists a
unique discrete mild solution of (4.1) such that lim|n|→∞ ‖u(n)‖

h(n) = 0. �

In the following theorem, we make a modification on the previous hypothesis on the
Lipschitz condition, namely we consider a local condition instead of the global one.

Theorem 4.3 Suppose (H2), (F2) and that there exists r0 > 0 such that ‖S‖1(Lf (r0) +
1
r0

supk∈Z ‖f (k, 0)‖) < 1, then there exists a unique mild solution u(n) of (4.1) such that
lim|n|→∞ ‖u(n)‖

h(n) = 0.

Proof Define the operator F as in (4.2), then H is well defined. Let

Br0 :=
{

u ∈ C0
h(Z, X) : ‖u‖h ≤ r0

}
.

For u ∈ Br0 ,

∥∥(Fu)(n)
∥∥ ≤ ‖S‖1

(
Lf (r0) +

1
r0

sup
k∈Z

∥∥f (k, 0)
∥∥
)

r0 ≤ r0.
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Therefore, ‖Fu‖ ≤ r0, that is, Fu ∈ Br0 . Moreover, for u, v ∈ Br0 , we have

∥∥(Fu)(n) – (Fv)(n)
∥∥ ≤ Lf (r0)‖S‖1‖u – v‖h,

then there is a unique fixed point u ∈ Br0 , so there is a unique mild solution u(n) of (4.1)
such that lim|n|→∞ ‖u(n)‖

h(n) = 0. �

Theorem 4.4 Assume that (H2), (F3) hold, then there exists a unique mild solution u(n)
of (3.1) such that lim|n|→∞ ‖u(n)‖

h(n) = 0.

Proof Define the operator F as in (4.2). Then by hypothesis (F4), we have that

∥∥(Fu)(n)
∥∥ ≤

n–1∑

k=–∞

∥∥S(n – 1 – k)
∥∥Lf (k)

‖u(k)‖
h(k)

+ ‖S‖1 sup
k∈Z

∥∥f (k, 0)
∥∥

≤ ‖S‖∞‖Lf ‖1‖u‖h + ‖S‖1 sup
k∈Z

∥∥f (k, 0)
∥∥,

where ‖Lf ‖1 :=
∑∞

k=–∞ Lf (k), so F is well defined.
For u, v ∈ C0

h(Z, X), one has

∥∥(Fu)(n) – (Fv)(n)
∥∥ ≤ ‖S‖∞

( n–1∑

k=–∞
Lf (k)

)
‖u – v‖h.

Similarly, by [14, Lemma 3.2],

∥∥(F2u
)
(n) –

(
F2v

)
(n)

∥∥ ≤
∞∑

k=–∞
Lf (k)

∥∥S(n – 1 – k)
∥∥‖(Fu)(k) – (Fv)(k)‖

h(k)

≤ (‖S‖∞
)2
( n–1∑

k=–∞
Lf (k)

( k–1∑

j=–∞
Lf (j)

))
‖u – v‖h

≤ (‖S‖∞)2

2!

( ∞∑

k=–∞
Lf (k)

)2

‖u – v‖h.

By induction, one can easily see that

∥∥(Fnu
)
(n) –

(
Fnv

)
(n)

∥∥ ≤ (‖S‖∞‖Lf ‖1)n

n!
‖u – v‖h.

Therefore, ‖Fnu – Fnv‖h ≤ (‖S‖∞‖Lf ‖1)n

n! ‖u – v‖h. For sufficiently large n, we have
(‖S‖∞‖Lf ‖1)n

n! < 1. By the Banach contraction mapping principle, F has a unique fixed point
in C0

h(Z, X), so there is a unique mild solution u(n) of (3.1) such that lim|n|→∞ ‖u(n)‖
h(n) = 0. �

The following theorem establishes the existence of a mild solution of (4.1) in C0
h(Z, X),

based on the fixed point theorem of Matkowski.

Theorem 4.5 Let (H2), (F4) hold and assume further that (‖S‖1φ)n(t) → 0 as n → ∞ for
each t > 0. Then there exists a unique mild solution u(n) of (4.1) such that lim|n|→∞ ‖u(n)‖

h(n) =
0.
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Proof Define the operator F as in (4.2), then by hypothesis (F3), we have that

∥∥(Fu)(n)
∥∥ ≤

n–1∑

k=–∞

∥∥S(n – 1 – k)
∥∥φ

(‖u(n)‖
h(n)

)
+ ‖S‖1 sup

k∈Z

∥∥f (k, 0)
∥∥

≤ ‖S‖1

(
φ
(‖u‖h

)
+ sup

k∈Z

∥∥f (k, 0)
∥∥
)

.

Thus, F is well defined. For u, v ∈ C0
h(Z, X), we have

∥∥(Fu)(n) – (Fv)(n)
∥∥ ≤

n–1∑

k=–∞

∥∥S(n – 1 – k)
∥∥φ

(
u(k) – v(k)

h(k)

)
≤ ‖S‖1φ

(‖u – v‖h
)
.

Therefore, ‖Fu – Fv‖h ≤ ‖S‖1φ(‖u – v‖h). Since (‖S‖1φ)n(t) → 0 as n → ∞ for each t > 0,
by Matkowski’s fixed point theorem, F has a unique fixed point u ∈ C0

h(Z, X), so there exists
a unique mild solution u(n) of (4.1) such that lim|n|→∞ ‖u(n)‖

h(n) = 0. �

In the next theorem, the main tool used in proving the existence of solutions of (4.1) is
the classical Leray–Schauder alternative theorem combined with Lemma 2.1.

Theorem 4.6 Suppose (H2), (F5). Then under the following additional condition: (A1) For
all a, b ∈ Z, a ≤ b, and σ > 0, the set {f (k, x) : a ≤ k ≤ b,‖x‖ ≤ σ } is relatively compact in X;
there exists a function h : Z→ [1,∞) such that h(n) → ∞ as |n| → ∞ and a mild solution
u(n) of (4.1) such that lim|n|→∞ ‖u(n)‖

h(n) = 0.

Proof Define the function h : Z→ R
+ by h(k) := ( L∞

Lf (k) )1/θ , where L∞ = supk∈Z Lf (k), k ∈ Z.
Note that h(k) ≥ 1 for all k ∈ Z, and since lim|k|→∞ Lf (k) = 0, we also have lim|k|→∞ h(k) =
∞. Consider the operator F as defined in (4.2). Using the Leray–Schauder alternative the-
orem, we will show that F has a fixed point in C0

h(Z, X). The proof will be carried out in
several steps.

(i) F is well defined. For u ∈ C0
h(Z, X), one has

∥∥(Fu)(n)
∥∥ ≤

n–1∑

k=–∞

∥∥S(n – 1 – k)
∥∥(Lf (k)

∥∥u(k)
∥∥θ +

∥∥f (k, 0)
∥∥)

≤ ‖S‖1

(
L∞‖u‖θ

h + sup
k∈Z

∥∥f (k, 0)
∥∥
)

,

whence lim|n|→∞ ‖(Fu)(n)‖
h(n) = 0. Thus F is C0

h(Z, X)-valued.
(ii) F : C0

h(Z, X) → C0
h(Z, X) is a continuous map. In fact, for u, v ∈ C0

h(Z, X), one has

∥∥(Fu)(n) – (Fv)(n)
∥∥

≤
n–1∑

k=–∞

∥∥S(n – 1 – k)
∥∥Lf (k)h(k)θ

(‖u(k) – v(k)‖
h(k)

)θ

≤ L∞‖S‖1‖u – v‖θ
h.
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Since that h(k) = ( L∞
Lf (k) )1/θ ≥ 1, for all k ∈ Z, then

sup
n∈Z

‖(Fu)(n) – (Fv)(n)‖
h(n)

≤ L∞‖S‖1‖u – v‖θ
h.

So ‖Fu – Fv‖h ≤ L∞‖S‖1‖u – v‖θ
h. Hence F is a continuous map.

(iii) F is a completely continuous map. Let r be a positive real number and Br(Z) be a
closed ball with center at 0 and radius r in the space Z. We set V = F(Br(C0

h(Z, X)))
and v = Fu for u ∈ Br(C0

h(Z, X)). We prove that, for each n ∈ Z,

Ωn(V ) :=
{

v(n)
h(n)

: v ∈ V
}

is relatively compact in X . Indeed, for ε > 0, we choose l ∈ Z
+ such that

∞∑

k=l

∥∥S(k)
∥∥
(

L∞rθ + sup
k∈Z

∥∥f (k, 0)
∥∥
)

≤ ε.

Since v = Fu for u ∈ Br(C0
h(Z, X)),

v(n) =
l–1∑

k=0

S(k)f
(
n – 1 – k, u(n – 1 – k)

)
+

∞∑

k=l

S(k)f
(
n – 1 – k, u(n – 1 – k)

)
.

Thus,

v(n)
h(n)

=
l

h(n)

(
1
l

l–1∑

k=0

S(k)f
(
n – 1 – k, u(n – 1 – k)

)
)

+
1

h(n)

∞∑

k=l

S(k)f
(
n – 1 – k, u(n – 1 – k)

)
.

Note that

1
h(n)

∥∥∥∥∥

∞∑

k=l

S(k)f
(
n – 1 – k, u(n – 1 – k)

)
∥∥∥∥∥

≤ 1
h(n)

∞∑

k=l

∥∥S(k)
∥∥
(

L∞rθ + sup
k∈Z

∥∥f (k, 0)
∥∥
)

≤ ε.

Therefore

v(n)
h(n)

∈ l
h(n)

co(K) + Bε(X), (4.3)

where co(K) denotes the closed convex hull of K and

K =
l–1⋃

k=0

{
S(k)f (ξ , x) : ξ ∈ [n – l, n – 1] ∩Z,‖x‖ ≤ R

}
,
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where R = r max{h(ξ ) : ξ ∈ [n – l, n – 1] ∩Z}. Hence, K is relatively compact since
S(k) ∈ B(X) for all k ∈N0, and {f (k, x) : a ≤ k ≤ b,‖x‖ ≤ σ } is relatively compact in
X for all a, b ∈ Z, a ≤ b, and σ > 0. In view of

Ωn(V ) ⊆ l
h(n)

co(K) + Bε(X),

we deduce that Ωn(V ) is relatively compact in X .
Next, we prove that V is weighted equiconvergent at ±∞. Indeed, proceeding as

in (i), we have

‖v(n)‖
h(n)

≤ 1
h(n)

n–1∑

k=–∞

∥∥S(n – 1 – k)
∥∥(L∞‖u‖θ

h +
∥∥f (k, 0)

∥∥)

≤ 1
h(n)

‖S‖1

(
L∞rθ + sup

k∈Z

∥∥f (k, 0)
∥∥
)

,

therefore ‖v(n)‖
h(n) → 0 as |n| → ∞, and this convergence is independent of

u ∈ Br(C0
h(Z, X)). Hence V satisfies the conditions of Lemma 2.1, so V is a relatively

compact set in C0
h(Z, X).

(iv) Now, we will prove that the set C := {u ∈ C0
h(Z, X) : u = λFu,λ ∈ (0, 1)} is bounded.

In fact, if u ∈ C0
h(Z, X) is a solution of u = λFu for 0 < λ < 1, then

‖u(n)‖
h(n)

≤
n–1∑

k=–∞

∥∥S(n – 1 – k)
∥∥
(

L∞‖u‖θ
h + sup

k∈Z

∥∥f (k, 0)
∥∥
)

≤ ‖S‖1

(
L∞‖u‖θ

h + sup
k∈Z

∥∥f (k, 0)
∥∥
)

.

Hence

‖u‖h

‖S‖1(L∞‖u‖θ
h + supk∈Z ‖f (k, 0)‖)

≤ 1.

Observe that in view of the condition θ < 1, it follows that C is bounded.
(v) There exists r0 > 0 such that F(Br0 (C0

h(Z, X))) ⊂ Br0 (C0
h(Z, X)). Assume that the

assertion is false, then for all r > 0, arguing similarly as in (iv), we deduce that
1 ≤ ‖S‖1(L∞rθ–1 + 1

r supk∈Z ‖f (k, 0)‖), which is a contradiction because θ < 1.
(vi) Finally, by Theorem 2.3, F has a fixed point u ∈ C0

h(Z, X). �

In the next results, we study the existence and uniqueness of WPAAd and WPSAPω mild
solutions of (4.1).

Theorem 4.7 Let ρ1,ρ2 ∈ V∞ and ρ ∈ UT be given. Assume that (H2) holds, f ∈ Ω ∈
M(Z× X, X) is globally Lipschitz in the following sense:

∥∥f (n, x) – f (n, y)
∥∥ ≤ L‖x – y‖ for all n ∈ Z and all x, y ∈ X,

where L < 1
‖S‖1

, then (4.1) has a unique mild solution u which belongs to the corresponding
subset Ω ∈M(Z, X).
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Proof Consider the operator F : WPAAd(Z, X) → WPAAd(Z, X) defined by

(Fu)(n) :=
n–1∑

k=–∞
S(n – 1 – k)f

(
k, u(k)

)
, n ∈ Z, (4.4)

where f ∈ WPAAd(Z, X). Note that F is well defined by [33, Theorem 3.1] and Theo-
rem 3.17. In addition, for u, v ∈ WPAAd(Z, X) and n ∈ Z, the following inequality holds:

∥∥(Fu)(n) – (Fv)(n)
∥∥ =

∥∥∥∥∥

n–1∑

k=–∞
S(n – 1 – k)

(
f
(
k, u(k)

)
– f

(
k, v(k)

))
∥∥∥∥∥ ≤ L‖S‖1‖u – v‖∞.

Since ‖S‖1L < 1, we conclude that F is a contraction, and using the Banach fixed point
theorem we get that there exists a unique discrete weighted pseudo almost automorphic
solution of (4.1). The proof for the space of S-asymptotic ω-periodic sequences is analo-
gous, but in this case, we use [34, Theorem 2.3] and Theorem 3.17 in order to prove that
F is well defined. �

In the following theorem, we show that with a local Lipschitz condition on f the con-
clusion of the previous theorem holds.

Theorem 4.8 Let ρ1,ρ2 ∈ V∞ and ρ in UT be given. Assume that (H2) holds, and let f ∈
M(Z× X, X) that satisfies a local Lipschitz condition. If there exists r0 > 0 such that

‖S‖1

(
L(r0) +

supk∈Z ‖f (k, 0)‖
r0

)
< 1,

then the semilinear difference equation (4.1) has a unique mild solution u which belongs to
the same space as f with ‖u‖∞ ≤ r0.

Proof Consider f ∈ WPAAd(Z×X, X). Note that F : WPAAd(Z, X) → WPAAd(Z, X) given
by (4.4) is well defined by Corollary [5, Corollary 2.4] and Theorem 3.17.

Let

Br0 (0) :=
{

u ∈ WPAAd(Z, X) : ‖u‖∞ < r0
}

.

We show that F(Br0 (0)) ⊂ Br0 (0). Indeed, let u be in Br0 (0). Since f is locally Lipschitz, we
obtain

∥∥f
(
k, u(k)

)∥∥ ≤ ∥∥f
(
k, u(k)

)
– f (k, 0)

∥∥ +
∥∥f (k, 0)

∥∥ ≤ L(r0)
∥∥u(k)

∥∥ +
∥∥f (k, 0)

∥∥ for k ∈ Z.

Moreover, we have the estimate

∥∥F(u)(n)
∥∥ ≤

n–1∑

k=–∞

∥∥S(n – 1 – k)
∥∥∥∥(f

(
k, u(k)

)
– f (k, 0)

∥∥ +
n–1∑

k=–∞

∥∥S(n – 1 – k)f (k, 0)
∥∥

≤ L(r0)
n–1∑

k=–∞

∥∥S(n – 1 – k)
∥∥∥∥u(k)

∥∥ + ‖S‖1 sup
k

∥∥f (k, 0)
∥∥
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≤ ‖S‖1

(
L(r0) +

supk ‖f (k, 0)‖
r0

)
r0 ≤ r0,

proving the claim. On the other hand, for u, v ∈ Br0 (0), we have that

∥∥Fu(n) – Fv(n)
∥∥ ≤

n–1∑

k=–∞

∥∥S(n – 1 – k)
∥∥∥∥(f

(
k, u(k)

)
– f

(
k, v(k)

))∥∥

≤ L(r0)
n–1∑

k=–∞

∥∥S(n – 1 – k)
∥∥∥∥u(k) – v(k)

∥∥ ≤ ‖S‖1L(r0)‖u – v‖∞.

Observing that ‖S‖1L(r0) < 1, it follows that F is a contraction in Br0 (0). Then there
is a unique u ∈ Br0 (0) such that Fu = u. Analogously, we can prove the theorem for
f ∈ WPSAPω(Z× X, X,ρ). For that purpose, we use [34, Theorem 2.3] and Theorem 3.17
in order to prove that F is well defined, and we just have to take the ball of radius r0 in
WPSAPω(Z× X, X,ρ). �

Theorem 4.9 Let ρ1,ρ2 ∈ V∞ and ρ ∈ UT be given. Assume that (H2) holds and f ∈ Ω ∈
M(Z× X, X) satisfies the following condition:

∥∥f (n, x) – f (n, y)
∥∥ ≤ φ

(‖x – y‖) for all n ∈ Z and all x, y ∈ X,

where φ : R+ → R
+ is a nondecreasing function. Then (4.1) has a unique mild solution

u which belongs to the corresponding subset Ω ∈ M(Z, X), provided (‖S‖φ)n(t) → 0 as
n → ∞ for each t > 0.

Proof Consider the operator F : WPAAd(Z, X) → WPAAd(Z, X) defined by

(Fu)(n) :=
n–1∑

k=–∞
S(n – 1 – k)f

(
k, u(k)

)
, n ∈ Z,

where f ∈ WPAAd(Z, X). Note that F is well defined by [34, Theorem 2.3] and Theo-
rem 3.17. In addition, for u, v ∈ WPAAd(Z, X) and n ∈ Z, the following inequality holds:

∥∥(Fu)(n) – (Fv)(n)
∥∥ =

∥∥∥∥∥

n–1∑

k=–∞
‖S(n – 1 – k)

(
f
(
k, u(k)

)
– f

(
k, v(k)

))
∥∥∥∥∥ ≤ L‖S‖1φ

(‖u – v‖).

Since (‖S‖1φ)n(t) → 0 as n → ∞ for each t > 0, by Matkowski’s fixed point theorem (The-
orem 2.2), F has a unique fixed point u ∈ WPAAd(Z, X), so there is a unique mild solution
u(n) of (4.1). The proof for the space of S-asymptotic ω-periodic sequences is analogous,
we just use Theorem [34, Theorem 2.3] and Theorem 3.17 in order to prove that F is well
defined. �

In the following theorem, we study under certain non-Lipschitz conditions on the func-
tion f the existence of solutions in WPSAPω(Z × X, X) of equation (4.1). We consider
functions f : Z× X → X to establish our result.
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Remark 4.10 Hypothesis (B1) has also been considered previously in [3] and [34] in order
to prove the existence of mild solutions for a class of semilinear difference equations in a
Banach space X.

Theorem 4.11 Assume that f ∈ WPSAPω(Z×X, X)∩UCk(Z×X, X),ρ1,ρ2 ∈ V∞ and that
the assumptions (H1), (H2), and (A1) hold. Under the following additional conditions:

(B1) There exist a nondecreasing function W : R+ →R
+ and a function M : Z →R

+

such that ‖f (k, x)‖ ≤ M(k)W (‖x‖) for all k ∈ Z, x ∈ X .
(B2) For each ν > 0, lim|n|→∞ 1

h(n)
∑n–1

k=–∞ ‖S(n – k – 1)‖M(k)W (νh(k)) = 0, where h is
given in Lemma 2.1.

(B3) For each ε > 0, there exists δ > 0 such that, for u, v ∈ C0
h(Z, X),‖u – v‖h ≤ δ implies

that
∑n

k=–∞ ‖S(n – k)‖‖f (k, u(k) – f (k, v(k))‖ ≤ ε for all n ∈ Z.
(B4) lim infr→∞ r

β(r) > 1, where

β(r) = sup
n∈Z

(
1

h(n + 1)

n∑

k=–∞

∥∥S(n – k)
∥∥M(k)W

(
rh(k)

)
)

.

Then (4.1) has a mild solution in WPSAPω(Z × X, X).

Proof Consider the operator F : C0
h(Z, X) → C0

h(Z, X) defined by

(Fu)(n) :=
n–1∑

k=–∞
S(n – 1 – k)f

(
k, u(k)

)
, n ∈ Z,

by Leray–Schauder theorem, we will prove that F has a fixed point in WPSAPω(Z × X, X).
We divide the proof into several steps.

(i) F is well defined. For u ∈ C0
h(Z, X), by (B1), one has

∥∥(Fu)(n)
∥∥ ≤

n–1∑

k=–∞

∥∥S(n – 1 – k)
∥∥M(k)W

(∥∥u(k)
∥∥)

≤
n–1∑

k=–∞

∥∥S(n – 1 – k)
∥∥M(k)W

(‖u‖hh(k)
)
,

whence ‖(Fu)(n)‖
h(n) ≤ 1

h(n)
∑n–1

k=–∞ ‖S(n – 1 – k)‖M(k)W (‖u‖hh(k)). It follows from (B2)
that F is C0

h(Z, X)-valued.
(ii) F is continuous. In fact, for each ε > 0, by (B3) there exists δ > 0 such that, for

u, v ∈ C0
h(Z, X),‖u – v‖h ≤ δ, one has

∥∥(Fu)(n) – (Fv)(n)
∥∥ ≤

n–1∑

k=–∞

∥∥S(n – 1 – k)
∥∥∥∥f (k, u(k) – f

(
k, v(k)

)∥∥,

since h(n) ≥ 1, by (B3), one has ‖Fu – Fv‖h ≤ ε, hence F is continuous.
(iii) F is completely continuous. Let V = F(Br(C0

h(Z, X))) and v = Fu for u ∈ C0
h(Z, X).

First, we prove that Ωn(V ) := { v(n)
h(n) : v ∈ V } is relatively compact in X for each
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n ∈ Z. By (B2), for ε > 0, we can choose l ∈ Z
+ such that

∞∑

k=l

∥∥S(k)
∥∥M(n – 1 – k)W

(
rh(n – 1 – k)

) ≤ ε.

Since v = Fu for u ∈ C0
h(Z, X), then

v(n)
h(n)

=
l

h(n)

(
1
l

l–1∑

k=0

S(k)f
(
n – 1 – k, u(n – 1 – k)

)
)

+
1

h(n)

∞∑

k=l

S(k)f
(
n – 1 – k, u(n – 1 – k)

)
.

Note that

1
h(n)

∥∥∥∥∥

∞∑

k=l

S(k)f
(
n – 1 – k, u(n – 1 – k)

)
∥∥∥∥∥

≤ 1
h(n)

∞∑

k=l

‖S(k)
∥∥M(n – 1 – k)W

(
rh(n – 1 – k)

)∥∥ ≤ ε.

So (4.3) holds. Then Ωn(V ) is relatively compact in X for all n ∈ Z. Next, we show
that V is weighted equiconvergent at ±∞. In fact,

‖v(n)‖
h(n)

≤ 1
h(n)

n–1∑

k=–∞

∥∥S(n – 1 – k)
∥∥M(k)W

(
rh(k)

)
,

hence ‖v(n)‖
h(n) → 0 as |n| → ∞ by (B2), and this convergence is independent of

u ∈ Br(C0
h(Z, X)), V is a relatively compact set in C0

h(Z, X) by Lemma 2.1.
(iv) Now, we will prove that the set

{
u ∈ C0

h(Z, X) : u = λFu,λ ∈ (0, 1)
}

(4.5)

is bounded. In fact, if u ∈ C0
h(Z, X) is a solution of u = λFu for 0 < λ < 1, then

∥∥u(n)
∥∥ ≤

n–1∑

k=–∞

∥∥S(n – 1 – k)
∥∥M(k)W

(‖u‖hh(k)
) ≤ h(n)β

(‖u‖h
)
.

Hence, ‖u‖h
β(‖u‖h) ≤ 1. We conclude using (B4).

(v) There exists r0 > 0 such that F(Br0 (C0
h(Z, X))) ⊂ Br0 (C0

h(Z, X)). Assume that the
assertion is false, then for all r > 0, we can choose ur ∈ Br0 (C0

h(Z, X)) such that
‖Fur‖h > r. Similar as (iv), we deduce that r

β(r) ≤ 1, then lim infξ→∞ ξ

β(ξ ) ≤ 1, which
contradicts condition (B4).

(vi) It follows from Theorem [34, Theorem 2.3] and Theorem 3.17, that the
vector-valued space WPSAPω(Z, X) is invariant under F . Consequently, combining
this with step (iv), we have that

F
(
Br0

(
C0

h(Z, X)
)∩ WPSAPω(Z, X)

) ⊆ Br0

(
C0

h(Z, X)
)∩ WPSAPω(Z, X).
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Hence, we arrive at the following conclusion:

F
(
Br0

(
C0

h(Z, X)
)∩ WPSAPω(Z, X)

C0
h (Z,X))

⊆ F
(
Br0

(
C0

h(Z, X)
)∩ WPSAPω(Z, X)

)C0
h ,(Z,X)

⊆ Br0

(
C0

h(Z, X)
)∩ WPSAPω(Z, X)

C0
h ,(Z,X)

,

where BC0
h (Z,X) denotes the closure of a set B in the space C0

h(Z, X). Thus, we can
consider the following application:

F : Br0

(
C0

h(Z, X)
)∩ WPSAPω(Z, X)

C0
h (Z,X) → Br0

(
C0

h(Z, X)
)∩ WPSAPω(Z, X)

C0
h(Z,X)

.

By (i)–(iii), we have that F is completely continuous. Applying (iv) and the
Leray–Schauder theorem (Theorem 2.3), F has a fixed point u which belongs to

the space Br0 (C0
h(Z, X)) ∩ WPSAPω(Z, X)

C0
h (Z,X)

.
(vii) Finally, we prove that u (the fixed point of F given in (vi)) is discrete weighted

pseudo S-asymptotically ω-periodic. Indeed, let (um)m be a sequence in
Br0 (C0

h(Z, X)) ∩ WPSAPω(Z, X) such that um → u, as m → ∞ in the norm
C0

h(Z, X). For ε > 0, let δ > 0 be the constant in (B3), that is, there exists m0 ∈ Z
+

such that ‖um – u‖h ≤ δ for all m ≥ m0. Note that for m ≥ m0,

‖Fum – Fu‖∞ ≤ sup
n∈Z

n–1∑

k=–∞

∥∥S(n – 1 – k)
∥∥∥∥f

(
k, um(k)

)
– f

(
k.u(k)

)∥∥ ≤ ε,

which implies that (Fum)m converges to Fu = u uniformly in Z. Since Fum belongs
to WPSAPω(Z, X), we get that u ∈ WPSAPω(Z, X). �

Theorem 4.12 Assume that f ∈ WPSAPω(Z × X, X),ρ1,ρ2 ∈ V∞, (H2), (A1) hold and the
following conditions are satisfied:

(B5) There exists a nondecreasing and surjective function W : R+ →R
+ such that

∥∥f
(
k, h(k)u

)
– f (k, h(k)v

∥∥ ≤W
(‖u – v‖) for all k ∈ Z, u, v ∈ X,

where h is given in Lemma 2.1.
(B6) lim infτ→∞ τ

‖S‖1(W(τ )+supk∈Z ‖f (k,0)‖) > 1.
Then (3.1) has a mild solution u ∈ WPSAPω(Z, X).

Proof Consider the operator F : C0
h(Z, X) → C0

h(Z, X) defined by

(Fu)(n) :=
n–1∑

k=–∞
S(n – 1 – k)f

(
k, u(k)

)
, n ∈ Z.

For u, v ∈ C0
h(Z, X), we have the following estimates:

∥∥Fu(n)
∥∥ ≤

n–1∑

k=–∞

∥∥S(n – 1 – k)
∥∥∥∥f

(
k, u(k)

)∥∥ ≤ ‖S‖1

(
W

(‖u‖h
)

+ sup
k∈Z

∥∥f (k, 0)
∥∥
)

, (4.6)
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and ‖f (k, u) – f (k, v)‖ ≤ W( ‖u–v‖
h(k) ) ≤ W(‖u – v‖), hence F is well defined and f ∈ UC(Z ×

X, X). For u, v ∈ C0
h(Z, X), we have

∥∥(Fu(n)
)

–
(
Fv(n)

)∥∥ ≤
n–1∑

k=–∞

∥∥S(n – 1 – k)
∥∥W

(‖u(k) – v(k)‖
h(k)

)
≤ ‖S‖1W

(‖u – v‖h
)
,

which implies that F is continuous. Next, let V = F(Br(C0
h(Z, X))) and v = Fu for u ∈

Br(C0
h(Z, X)). For ε > 0, we choose l ∈ Z

+ such that
∑∞

k=l ‖S(k)‖(W(r) + supk∈Z ‖f (k, 0)‖) ≤
ε. Let u ∈ Br(C0

h(Z, X)), we have

1
h(n)

∥∥∥∥∥

∞∑

k=l

S(k)f
(
n – 1 – k, u(n – 1 – k)

)
∥∥∥∥∥

≤
∞∑

k=l

∥∥S(k)
∥∥
(
W(r) + sup

k∈Z

∥∥f (k, 0)
∥∥
)

≤ ε. (4.7)

From (4.3), (4.7), and (A1), we have that Ωn(V ) is relatively compact in X for all n ∈ Z. For
u ∈ Br(C0

h(Z, X)), by (4.6), we have

‖v(n)‖
h(n)

≤ ‖S‖1

h(n)

(
W(r) + sup

k∈Z

∥∥f (k, 0)
∥∥
)

.

Hence lim|n|→∞ ‖v(n)‖
h(n) = 0 uniformly in u ∈ Br(C0

h(Z, X)). By Lemma 2.1, F is completely
continuous.

Finally, we prove the boundedness of the set defined in (4.5). If u ∈ Br(C0
h(Z, X)) is a

solution of u = λFu for 0 < λ < 1, then by (4.6)

‖u‖h

‖S‖1(W(‖u‖h) + supk∈Z ‖f (k, 0)‖)
≤ 1.

From (B6), we conclude that the set (4.5) is bounded. Similar as the proof of Theorem 4.11,
(4.1) has a mild solution u ∈ WPSAPω(Z, X) by Theorem 2.3. �

5 An example
Let a > 0. Define a(n) = 1

a (1 – 1
(1+a)n+1 ) and b(n) = 1 – n–1

2n+2 . Then one can verify that a(n) =
∫ ∞

0 ρn(t)k(t) dt and b(n) =
∫ ∞

0 ρn(t)g(t) dt, where k(t) =
∫ t

0 e–as ds and g(t) = 1–e–t(t +1) in a
straightforward way. Denote a1(t) = e–at , t ≥ 0, then a1 ∈ L1(R+), a1(t) ≥ 0, and –a′

1(t) ≥ 0
for all t > 0, nonincreasing and convex, so a1 is 3-monotone. Thus a1(t) is 2-regular and
of positive type by [31, Proposition 3.3]. It is easy to see that k(t) is of positive type, and by
the remarks following [31, Definition 3.3] it follows that k(t) is 2-regular too.

Clearly g(0) = 0 and g ∈ W 1,1(R+). Note that

k̂(λ) =
a0

λ
+

â1(λ)
λ

.

By [31, p. 266] 1
λ̂k(λ) is locally analytic at λ = 0. Thus k(t) satisfies the hypotheses of The-

orem 3.9. Therefore, A generates a summable discrete resolvent family {R(n)}n∈N0 with
a(n) = 1

a (1 – 1
(1+a)n+1 ) and b(n) = 1 – n–1

2n+2 such that ‖R(n)‖ ≤ M, M > 0 for all n ∈ N. We
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set X = L2([0, 1]), and we consider the second order differential operator Az(ξ ) = ∂2
ξξ z(ξ )

with domain D(A) = {z ∈ H2[0, 1] : z(0) = z(1) = 0}. It is well known that A generates a
bounded analytic semigroup on L2[0, 1] (see [18, Example 4.8]). Let us consider the fol-
lowing differential-difference Volterra equation on X = L2([0, 1]):

u(n + 1, x) =
n∑

k=–∞
a(n – k)∂2

xxu(k + 1, x) +
n∑

k=–∞
b(n – k)f

(
k, u(k, x)

)
,

n ∈ Z, x ∈ [0, 1], (5.1)

where f (k, u) = sin u
ek2 K

, with K > M. Consider h(n) = en2 , then h(n) ≥ 1 for all n ∈ Z and
lim|n|→∞ h(n) = ∞. On the other hand,

∥∥f
(
k, h(k)u

)
– f

(
k, h(k)v

)∥∥ =
∥∥∥∥

sin(ek2 u) – sin(ek2 v)
Kek2

∥∥∥∥ ≤ ‖u – v‖
K

.

Therefore, (H2), (F1) hold and Lf ‖R‖1 < 1 with Lf = 1/K . Thus by Theorem 4.2 there is a
unique mild solution u(n) of (5.1) such that lim|n|→∞ ‖u(n)‖

h(n) = 0.
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