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1 Introduction

The renowned integral Steffensen inequality [28] is written as

b b a+i
(t)dt < / SOV (O dt < / () dt, (L1)

b-x

where u is nonincreasing, A = f: Y (t)dt and 0 < ¥ (£) <1 on [a, b]. It is simple to notice
that inequalities (1.1) are reversed if u is nondecreasing.

Also we have

n n A
D )<Y gk <Y plk) (1.2)
k=1

k=n-Ay+1 k=1

such that 0 < ¢ (k) < 1, Ay, A2 € {1,...,n} with Ay < > "7, ¥ (k) < Ay. Inequality (1.2) is
known as discrete Steffensen’s inequality [15].

Stefan Hilger started the hypotheses of time scales in his PhD thesis [16] so as to bring
together discrete and continuous analysis (see [17]). From that point onward, this theory
has gotten a ton of consideration. The book due to Bohner and Peterson [9] regarding the
matter of time scales briefs and sorts out a lot of time scales calculus.

Over the previous decade, a reasonable number of dynamic inequalities on time scales
has been proven by many analysts who were propelled by certain applications (see [1-4, 9—
14, 18, 29]). A few researchers created different outcomes concerning fractional calculus
on time scales to deliver related dynamic inequalities (see [5-7, 24]).
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Anderson, in [8], extended Steffensen’s inequality to times scale with nabla integrals as
follows:

b b a+i
SOVL < f SOVOVE < / S(OVL, (1.3)

b-i.
where u is of one sign and nonincreasing, 0 < y(¢t) < 1 forevery t € [a, b]1, . = fab Y (t)Ve,
and b - A,a + A € [a,b]r.
By employing diamond-« integrals, Ozkan and Yildirim [21] gave a generalization of

inequality (1.3) of the form:
If the following

b b n
/ W(t)<>at§/ ¢(t)<>at§/ w(t)Oot  ifu>0,t € [a,blr,
! a a
b b
/ w(t)Out Z/ P()Out > /n w(t)Out  ifu <0,t € [a, b,
! a a
hold, then
b b n
f (WD) Ot < / WOV Out < f U ut, (1.4)
1 a a

where 0 < ¥ (¢) < w(t) for all ¢t € [a, b]T with [,n € [a, b]T.
Also in [21], the authors have given the following interesting result:

b b
SOWD) St + f 1[6(6) = (b - )]e(®)]Sut

b-1
b
< / SOV (DSt

a+i b
< / HOWD Ot - / [6(0) - d(a + M)]e(®)|Sut;

with u is nonincreasing, 0 < z(¢t) < ¥ () < w(¢) — z(t) for every ¢t € [a, b]T, fbbﬁ\ w(t)Ogt =
[P U (@)0at = [ w(t)dut, and b— A, + 1 € [a, b]r.

The following inequality is a special case of the above inequality: if we put z(¢) = M and
w(t) =1, so

b b
/ ¢(t)<>at+M/ |p(6) = p(b - 1)| Ot
b—A a
b
< / SOV OOt
a+ir b
< / () at — M / 16(0) = d(a + W[ Sut,

a,be Tl witha<b, A= fab Y ()Out,and 0 <M < (t) <1 - M for all ¢ € [a, b]T.
Since its establishment, Steffensen’s inequality has played crucial roles in numerous
fields of mathematics, particularly in mathematical analysis. In the past several decades,
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numerous speculations and refinements of Steffensen’s inequality have been given by dif-
ferent authors. A few researchers have focused on Steffensen’s inequality related to local
and conformable fractional integrals (see [22, 25, 26, 30]). For a comprehensive review, we
refer the interested reader to the books [19, 20] and the references cited in them.

This article is about to extend some Steffensen-type inequalities given in [23] to a general
time scale, and build up some new generalizations of the diamond-« dynamic Steffensen
inequality on time scales. As special cases of our outcomes, we recapture the integral in-
equalities presented in the above mentioned paper. Our outcomes additionally give several
original discrete Steffensen’s inequalities.

We get the unique Steffensen inequalities by utilizing the diamond-« integrals on time
scales. For a = 1, the diamond-« integral moves toward becoming delta integral and for
a = 0 it moves toward becoming nabla integral. An excellent review about the diamond-«

calculus can be viewed in the paper [27].

2 Basics of time scales
For our convenience, R is the set of real numbers, Z is the set of integers, and a time
scale T is an arbitrary nonempty closed subset of the set of real numbers R. If T has a
left-scattered maximum #;, then T* = T — {¢;}, otherwise T = T. If T has a right-scattered
minimum £, then T* = T — {£,}, otherwise T, = T. Finally, we have T% = T N T,. The
interval [a,blr ={t € T:a <t <b}.

Assume the function ¢ : T — R, t € T, then ¢*(£) € R, ¢V (¢) € R are said to be the delta
derivative and nabla derivative of ¢ at ¢, respectively, if for any ¢ > 0 there exist a neigh-
borhood U and a neighborhood V of ¢ such that, for all s € U and s € V simultaneously,

we have

[¢(c®) - #()] - 6 O[0 (1) —5]| < e|or(t) 5|
and

[ (1) — ()] - Y @) () —5]| < &|p(2) - 5.

Moreover, ¢ is said to be delta differentiable on T* if it is delta differentiable at every ¢ € T*
and is said to be nabla differentiable on T, if it is nabla differentiable at each ¢ € T,.

There is the following formula of delta integration by parts on time scales:
b b
/ YEOPOAL =y (b)p(b) - Y (@)¢p(a) - _/ v (D9(t)At, (2.1)
the nabla integration by parts on time scales is given by
b b
| vr sy -vese)-vasa - [ vesve 2.2

We will use the following relations between calculus on time scales T and either differ-

ential calculus on R or difference calculus on Z. Note that:
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(i) If T =R, then

a®)=p®)=t, wO=v®)=0, P*O)=¢"01)=¢®),

b b b (2.3)
/ )AL= / ()Yt = / $(0)dt
(ii) If T = Z, then
ot)=t+1, ot)=t-1, () =v(t)=1,
@) = Ad(®),  ¢V() = V(o)
(2.4)

b b-1
f¢(t>At=Z¢(t), /¢ Vt-2¢

t=a+1

where the forward and backward difference operators are denoted by A and V,
respectively.
We dedicate the rest of this section to the diamond-« calculus on time scales, and we
recommend the paper [27] for further knowledge.
For any ¢ € T, the diamond-« dynamic derivative of u at ¢ is defined by

@) =au@®)+(Q1-)u¥ (@), 0<a<l, (2.5)

and denoted by u®*(£), where T is a time scale, and u is a function that is delta and nabla
differentiable on T.
Now, it is time to discuss our main results.

3 Main results

Lemma 3.1 Assume that
(B1) k is a positive &o-integrable function on [a, b]t.
(B2) ¢, ¥, h:la,blr — R are $y- mtegmblefunctlons on |a, b]t.
(B3) [c,d]T C [a,blT with fc h(@®)k(£)Oot = fa Y ()k(t)Out.
(B4) z € [a,b]r.

Then
/ " (0t - / OV Ot - [ (% - %)W)km%
+/C (% - %)k(t)[h(t) Y (@)]Out
+ /;(% - %)d/(t)k(t)(}at. (3.1)

Proof By straightforward calculations, we get

d b
/ SO Oat - / SOY ()t

/d °p(t)
= | k@[ -y @) m% [ mw(t)k@)oa /mw(t k(t)oa]

Page 4 of 14
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[ P) ¢@) 0Pt ¢(2)
_/a <@—m)w(t)k(t)<>at+/c <m—@>k(t)[h(t)—l/f(t)]<>at

‘(2@ _ @) )
[ (5559 wiomoon

#(2)

d c
+@[ / KO(E)Sut - / HOKOOLE

d b
—/ w(t)k(t)<>at—fd t/f(t)k(t)<>at:|. (3.2)

Consider

d b
/k(t)h(t)éat:/ k(&)Y (£)Oat,

therefore
9(2) [/dk(t)h(t)o t- /C Y(Ok()Out
k(2) ). o ¢
d b
- [ vokeou- [ voroo. t} -0, 3)
c d
Our desired result follows directly from (3.2) and (3.3). O

Corollary 3.2 Setting o = 1 in Lemma 3.1, we get the delta form of inequality (3.1) by

d b 4
/ ¢>(t)h(t)At—/ ¢(t)¢(t)At=/ (%—%)W)k“w
Cp) ¢
+/C <m_m)k(t)[h(t)—lﬂ(t)]At
Plo(z)  o(t)
. /d (@ _ w)l//(t)k(t)At. (3.4)

Corollary 3.3 Letting « = 0 in Lemma 3.1, we obtain the nabla version of (3.1) as follows:

d b a
/ SOMOVE - / SOV (OVE = / (%—%)w(t)k(t)w

) ¢(2)
+/c (m_@)k(t)[h(t)—w(t)]w

bioz)  ¢)
. /d (@ _ m)w(t)k(t)w. (3.5)

Corollary 3.4 If T =R in Corollary 3.2, then, with the help of relation (2.3), we recapture
[23, Lemma 2.1].
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Corollary 3.5 If T = Z in Corollary 3.2, then, with the help of relation (2.4), inequality
(3.4) becomes

= 2 (8@ ¢
S G~ S Blew (6t = Z(@ - m)w(t)ku)

t=c

S (0 o
;(m_m)k(t)[h(t) ¥ ()]

b-1
o(z)  @(2)
L (mm V(K.

Theorem 3.6 Let (B1)-(B3) of Lemma 3.1,
(B5) ¢/k is nonincreasing, and
(B6) 0 <y (t) <h(t) Ve € [a,blr

be satisfied, then the following inequalities hold:

b d c
/ SOV (Ot < / SOV (OOt + / (@—@)wt)k(tmu (3.6)

RORC)
o 60 o)
(i) / SOV (D)l - / (M‘ﬁ)‘”“)k“ Out < / SOVOat,  (37)
b a @) o)
(i) / SOV (OOat < / SOV (D)t - / (E—@ym[km (O] 0ut

(204D o

k(t) k(d)
< /d¢(t)1p(t)<>at+ /;(% - %)1&(1,‘)/((15)00@ (3.8)
(i) f sew 0t [ (% - %)w(t)kmw
< / POV (O0ut + / (% - %)k(t)[h(t) O]t
- (‘,’ig (/b((t))>1/f(t)k(t)<>a
< /a b¢(t)1p(t)<>at. (3.9)

If ¢/k is nondecreasing, then inequalities (3.6), (3.7), (3.8), and (3.9) should be switched.
Proof (i) Since ¢/k is nonincreasing, k is positive, and 0 < ¢ < s, we have

o) o)
/ (m - @>k(t)[h(t) Y (t)]Ouat =0 (3.10)

and

bro@d) o)
/ <@ - E)w(t)k(t)%t >0. (3.11)

Page 6 of 14
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From (3.1), (3.10), and (3.11) with z = d, we obtain

d b c d
/ SOV (D)t - / SO ()0t - / (@—@)wmk(t)w

k(t) k(d)
100t $(d) brod) o
:/c (W - @)k(t)[h(t)—w(t)]oat+/d <@ - m)w(t)k(t)%tzo.

This proves our claim.
(ii) Since ¢/k is nonincreasing, k is positive, and 0 < ¢ < k&, we have

1p(c) P
/c (W - m)k(t)[h(t) - w(t)]<>at >0 (3.12)
and
Lop(t) (e
l(m‘m)”mk(wza 13

From (3.1) with z = ¢, (3.12), and (3.13), we have

b d b
f SOV (OSut - / SOV (OSut - fd (@—@)w(t)k(tmt

k(c) k()
(Y bl ) (@) $()
_ f (@ _ m)k(t)[h(t) (O]t + / (W - m)w(nk(tmt -0,

This completes our proof.
The proof of (iii), (iv) is similar to (i), (ii) of Theorem 3.6, respectively. Details are omit-
ted. O

Corollary 3.7 Substituting o = 1 and o = 0 in Theorem 3.6(i), (ii), (iii), (iv) simultaneously,
we achieve the following delta and nabla versions of inequalities (3.6), (3.7), (3.8), and (3.9),

respectively:
b ¢ o) d(d)
) / SOV AL < / SOV(DAL+ / (m—@ﬂ(z)k(tm (3.14)
d c b
vi) / SOV (DAL - / <%—%>W(ﬂk(t)ms / SOVOAL  (3.15)
3 b d 100t)  $(d)
wi) [ swwacs [ owwwa- [ (m—@>k(t)[h(t)—w(t)]mf
¢ d
¢ <(o(t) ¢
E/C ¢(t)¢(t)At+/a (m—@)W(t)k(t)At, (3.16)
d c
(viii) / ¢(t)1//(t)At—/ (%—%)W(t)k(t)At

d d
< / SOVOAL+ f (%—%)km[km—m]m
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‘(o) ¢
—L <w—m>¢'(t)k(t)At

< / sovoar (3.17)
(i) / s < / "o s / (% - %)w(wk(t)w
&) f g ove- / (%—%)w)k OVt < / OV OV,
(xi) / POV ()VE < / #(t) / (qi((g ¢((Z)) ) ®)[n(t) - v @)Vt

+/a (%—%)V/(ﬂk(t)Vf
=/ v / (% - %)w(t)k(t)vt,

i | o ove - / C(%—%)wa)kmw

gfcdqs(t)w(t)w / (%—%)k(t)[la(t) v (0)]Ve

</ sw Ve

Corollary 3.8 If T = R in Corollary 3.7(v), (vi), (vii), (viii), then with the help of relation
(2.3), we recapture [23, Theorem 2.1, Theorem 2.2, Theorem 2.3, Theorem 2.4], respec-
tively.

Corollary 3.9 If T = Z and applying (2.4), then inequalities (3.14), (3.15), (3.16), and
(3.17), respectively, give

b-1 d-1 (t) (d)
Do) <) )@ + Z(— - (—)w(t)k(t), (3.18)
d-1 c-1 ¢(C) ( ) b-1
> @Oy - Z(m - m)w)k 1) < Z¢>(t>w(t) (3.19)
b-1 d-1 -1
p0v© <Y sy 3 (22 - 2DV ne - o)
ko) k)
c-1
$(1) $(d)
' Z(k(t) k(d))“’( Ko
< Z¢ U(O) + Z( 20 W))w (), (3.20)

c-1

d-1
> o@v() - Z(% - %)wt)k( )
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< Z¢ DY) + Z(M S LCLCRTC)

—Z(d’(;) @) Y OK®

k(2)

b-1
<> oy .

Theorem 3.10 Let (B1)—(B3) and

(B7) ¢/k is nonincreasing in the A and V sense,
be fulfilled.

(M) If

o(x) o(x)

/ k(t)yy () At < / k(Oh(t)At, c<x<d,
p(x) p(x)

/ k()Y (t)Ve < / k(t)h(t)Vt, c<x<d,

b
/ KW (OAL=0, d<x<bh,
ol(x

b
f KOWOVE=0, d<x<bh,
p(x)

then

b d ¢ 4
/ POV (D)ot < / SOt + / (@_M

x0) k(d))llf(t)k(t)%t.

(ii) 1

d d
/ k() (t)At < / k(Oh()At, c<x<d,
(%)

/ k()Y ()Ve < f k(Oh()Vt, c<x<d,
p(x)
o(x)

/ kOy(t)At>0, a<x<cg,
p(x)

/ k(t)y()Vt=0, a<x<c,

then

(3.21)

(3.22)

a Yo o)
/C SOt - /d ( o (t)>1/f(t)k(t)<>at< / SOVDOat.  (323)

Page 9 of 14
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Proof (i) Utilizing (3.4) and delta integration by parts formula on time scales, we get

d
f ¢(t)h(t)At+f ¢t)1//(t)At+/ <% ¢(( )))Ip(t)k(t)At

{-/j(/;( 00 - (o] ﬁ_) !
[f(/ Wf)kt)At><i(())>AAx:|Zo.

In a similar manner, using (3.5) and nabla integration by parts formula on time scales, we

have

/ ¢>(t)h(t)Vt+/ oY ()VE + ((z——¢—> Bkt

([ v 32"
L )

Therefore

d b c
/¢(t)h(t)<>o,t+/ PP () ot + /(%—%)w(t)k(ﬂ%

d d
—a / d(ORE)AL + (1) f (Oh(t)VE

b b
‘o / SOVOAL+ (1—a) / SOV (VL

+ a/c(@ - M)w(t)k(t)At

k(t) k(d)
¢ d
+(1- a)/ <% - %)wt)k(t)w > 0.

Hence, (3.22) holds.
(ii) Using (3.4) and delta integration by parts, we have

b d b
/ SOV (DAL - / SOhD)AL + / (%—%)mwk(rw

L o) )]
L ot-sors)(12) ']
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Now, (3.5) and nabla integration by parts yield

b a b o) ¢>(t)>
/ﬂ(ﬁ(t)l//(t)vt—/c ¢(t)h(t)Vt+/d <m—m Yy (t)k(E) Ve

c p(x) v
_ [_ / ( / w(t)k(t)Vt> (%) Vx}
a0 o)\ "
x [—/C </p(x) k(t)[h(t)—l//(t)]Vt) <@> Vx] >0,

so that

b a bro) o)
/ﬂ SOV (D)t - / SOt + /d (m—wﬂmk(t)eat

b b
—a / SOVOAL + (1—a) / SOV OV
d d
—Ol/ ¢(t)h(t)At—(1—0{)/ ¢(B)h(t)Vt

Plg) ()

Pl ¢()
from which (3.23) is satisfied. O

Corollary 3.11 Setting o = 1 and o = 0 in Theorem 3.10(i), (ii) simultaneously, we obtain
the delta and nabla versions of inequalities (3.22) and (3.23), respectively, as follows:

b d c d
) / SOV (AL < / SODOAL + / (%—%)wmk(tm (3.24)

d b b
(i) / SOh(t) At - /d <%—%>W(ﬂk(tmts / SOV (DAL (3.25)

b d c d
(i) / SOVOVE < / SOhO)VE+ / (%—%)wmkmw,

d b b
(iv) / SOV - fd (%—%)w(t)k(twtf / SOV VL.

Corollary 3.12 If T =R in Corollary 3.11, then, with the help of (2.3), (i), (ii) recover [23,
Theorem 2.5, Theorem 2.6], respectively.

Corollary 3.13 IfT = Z in Corollary 3.11, then, with the help of relation (2.4), inequalities
(3.24) and (3.25) turn into

b-1 d-1 c-1

¢(t)  ¢(d)
Y o0y ® <Y ¢e)h(e) + Z(W - @)w(nkm

t=a t=c t=a
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and
d-1 b-1 b-1
Do - (5 - i )OO < S owwe)
t=c t=d t=a
respectively.

The following theorem can be obtained by taking ¢ =a and d = a + A in Theorem 3.10.

Theorem 3.14 Let (B1)—(B3), (B7) hold.
() If 1 is defined by [“ h(E)k(D)Out = [ Y (Ok(E)ut,

o(x) o(x)

/ k(@) (t)At < / k(Oh(t)At, a<x<a+A,
p(x) p(x)

/ k(®)y()Ve < / kh(t)Vt, a<x<a+,
b

/ kt)y(&)At>0, a+r<x<b,

(%)

and
b
/ kO ()VE=0, a+Ai<x<b,
p(x)
then
b a+i
/ SOV (D)0t < / HOMD)at.
(i) If 1 is given by [}, hOk(©)Oat = [7 YOkt

b b
/ k(t)y ()ALt < / k(®)h(t)At, b—r<x<b,
o(x)

o(x)
b b
k()Y )Vt < k(t)h(6)Vt, b-Xr<x<b,
p(x) px)

o(x)
f k(O ()At=0, a<x<b-A,
and
p(x)
/ k(t)y(e)VE=0, a<x<b-2,
then

b b
/ HOMOOuL < / SOV (OO at.
b-r a

Page 12 of 14
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