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Abstract
This paper mainly concerns the uniqueness of meromorphic solutions of first order
linear difference equations of the form

R1(z)f (z + 1) + R2(z)f (z) = R3(z), (*)

where R1(z) �≡ 0, R2(z), R3(z) are rational functions. Our results indicate that the finite
order transcendental meromorphic solution of equation (*) is mainly determined by
its zeros and poles except for some special cases. Examples for the sharpness of our
results are also given.
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1 Introduction
Throughout the whole paper, for a meromorphic function f (z), we use standard notations
of the Nevanlinna theory (see, e.g., [2, 8, 14]) such as T(r, f ), m(r, f ), and N(r, f ) and define
respectively the order of growth of f (z), the exponent of convergence of the zeros of f (z),
and the exponent of convergence of the poles of f (z) by ρ(f ), λ(f ), λ(1/f ) as follows:

ρ(f ) = lim sup
r→∞

log T(r, f )
log r

,

λ(f ) = lim sup
r→∞

log N(r, 1/f )
log r

,

λ(1/f ) = lim sup
r→∞

log N(r, f )
log r

.

And we call a meromorphic function a(z) a small function of f (z) if

lim
r→∞,r /∈E

T(r, a)
T(r, f )

= 0,

where E is an exceptional set of finite logarithmic measure. Denote the family of all small
functions of f (z) by S(f ) and set̂S(f ) = S(f ) ∪ {∞}.
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The uniqueness is always one of most essential properties of research objects, such as
a function under some given conditions, a solution of a given equation, and so on. The
uniqueness theory of meromorphic functions is an important part of Nevanlinna theory.
The following is the famous Nevanlinna 5 IM (4 CM) theorem.

Theorem A ([11]) Let f (z) and g(z) be two nonconstant meromorphic functions. If f (z) and
g(z) share five values IM (four values CM, respectively) in the extended complex plane, then
f (z) ≡ g(z) (f (z) = T(g(z)), where T is a Möbius transformation, respectively).

Here and in the following, f (z) and g(z) are said to share the value a CM(IM), provided
that f (z) – a and g(z) – a have the same zeros with the same multiplicities (ignoring multi-
plicities), and f (z) and g(z) are said to share the value ∞ CM(IM), provided that f (z) and
g(z) have the same poles with the same multiplicities (ignoring multiplicities).

For about 90 years, lots of researchers have devoted themselves to reducing the number
of the shared values, relaxing the CM (IM) shared conditions, or replacing the shared
values by sets or small functions in Theorem A (see, e.g., [14]). We recall two relative
considerations here. One is to consider the case that g(z) is a derivative, shift, or difference
operator of f (z) (see, e.g., [7, 9, 13]). The other is to consider the case that f (z) satisfies some
differential equations or difference equations (see, e.g., [1, 4, 5, 10]).

In fact, Heittokangas et al. were the first to consider the case that f (z) shares values and
small functions with its shift f (z + η) and to prove the following.

Theorem B ([7]) Let f (z) be a meromorphic function of finite order, and let η ∈ C. If f (z)
and f (z + η) share three distinct periodic functions a1, a2, a3 ∈̂S(f ) with period η CM, then
f (z) = f (z + η) for all z ∈C.

Cui and Chen considered the uniqueness of meromorphic solutions sharing three values
with a meromorphic function to some linear difference equations and proved the follow-
ing.

Theorem C ([4]) Let f (z) be a finite order transcendental meromorphic solution of the
equation

A1(z)f (z + 1) + A2(z)f (z) = 0, (1.1)

where A1(z), A2(z) are nonzero polynomials such that A1(z) + A2(z) �≡ 0. If a meromorphic
function g(z) shares 0, 1, ∞ CM with f (z), then either f (z) ≡ g(z) or f (z)g(z) ≡ 1.

Theorem D ([5]) Let f (z) be a finite order transcendental meromorphic solution of the
equation

A1(z)f (z + 1) + A2(z)f (z) = A3(z),

where A1(z), A2(z), A3(z) are nonzero polynomials such that A1(z) + A2(z) �≡ 0. If a mero-
morphic function g(z) shares 0, 1, ∞ CM with f (z), then one of the following cases holds:

(i) f (z) ≡ g(z);
(ii) f (z) + g(z) = f (z)g(z);
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(iii) there exist a polynomial β(z) = az + b0 and a constant a0 satisfying ea0 �= eb0 such
that

f (z) =
1 – eβ(z)

eβ(z)(ea0–b0 – 1)
, g(z) =

1 – eβ(z)

1 – eb0–a0
,

where a0 �= 0, b0 are constants.

Remark 1 Obviously, if (1.1) admits a meromorphic solution f (z), then for each periodic
entire function h(z) with period 1 (chosen by the method of Ozawa in [12]), f (z)h(z) is
also a meromorphic solution of (1.1). This means that (1.1) may admit infinitely many
solutions.

Examples are provided in [4] and [5] to show that all cases of Theorem C and Theo-
rem D can happen, and the number of shared values cannot be reduced. When looking at
Theorem C and Theorem D and considering Remark 1, instead of trying to improve them
directly, we are interested in the following natural question:

Question What can we say about the uniqueness of finite order transcendental meromor-
phic solution of the equation

R1(z)f (z + 1) + R2(z)f (z) = R3(z), (1.2)

where R1(z) �≡ 0, R2(z), R3(z) are rational functions? That is, how can we guarantee the
uniqueness of such solution by its zeros and poles?

For the question above, we discuss two cases R3(z) ≡ 0 and R3(z) �≡ 0 separately since
they are quite different and prove the following two results.

Theorem 1.1 Let f (z) and g(z) be two finite order transcendental meromorphic solutions
of equation (1.2), where R3(z) ≡ 0. Suppose that f (z) and g(z) share 0, ∞ CM. Then

f (z) ≡ e2k0π iz+a0 g(z)

for some integer k0 and constant a0. What is more, f (z) ≡ g(z) provided that one of the
following cases holds:

(i) there exist two points z1, z2 such that f (zj) = g(zj) �= 0 (j = 1, 2) and z1 – z2 /∈Q;
(ii) f (z) – g(z) has a zero z3 of multiplicity ≥ 2 such that f (z3) = g(z3) �= 0.

Theorem 1.2 Let f (z) and g(z) be two finite order transcendental meromorphic solutions
of equation (1.2), where R3(z) �≡ 0. Suppose that f (z) and g(z) share 0, ∞ CM. Then either
f (z) ≡ g(z) or

f (z) =
R3(z)

2R2(z)
(

ea1z+a0 + 1
)

and

g(z) =
R3(z)

2R2(z)
(

e–a1z–a0 + 1
)

,
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where a1, a0 are constants such that e–a1 = ea1 = –1, and the coefficients of (1.2) satisfy

R1(z)R3(z + 1) ≡ R3(z)R2(z + 1).

Remark 2 From the proof of Theorem 1.1, we see that it still holds, even if R1(z) or R2(z)
is a transcendental meromorphic function. Unfortunately, we still wonder what happens
if R3(z) �≡ 0 and one of coefficients is a transcendental meromorphic function.

From Theorem 1.2, we get the following corollaries.

Corollary 1.1 Let f (z) and g(z) be two finite order transcendental meromorphic solutions
of equation (1.2), where R3(z) �≡ 0 such that R1(z)R3(z + 1) �≡ R3(z)R2(z + 1). If f (z) and g(z)
share 0, ∞ CM, then f (z) ≡ g(z).

Corollary 1.2 Let f (z) and g(z) be two finite order transcendental meromorphic solutions
of equation (1.2), where

R1(z) + R2(z) �≡ R3(z), R1(z)
[

R3(z + 1) – R1(z + 1)
] �≡ [

R3(z) – R2(z)
]

R2(z + 1).

If f (z) and g(z) share 1, ∞ CM, then f (z) ≡ g(z).

Corollary 1.3 Let f (z) and g(z) be two finite order transcendental meromorphic solutions
of equation (1.2), where R3(z) ≡ 0 and R1(z) �≡ –R2(z). Suppose that f (z) and g(z) share 1,
∞ CM. Then either f (z) ≡ g(z) or f (z)g(z) ≡ 1 such that

f (z) = ea1z+a0 and g(z) = e–a1z–a0 ,

where a1, a0 are constants such that e–a1 = ea1 = –1, and the coefficients of (1.2) satisfy
R1(z) ≡ R2(z).

Remark 3 Corollary 1.1 and Corollary 1.2 follow from Theorem 1.2 immediately. And
their proofs are thus omitted.

Remark 4 From Corollary 1.3, one can find that equation (1.2), where R3(z) ≡ 0 and
R1(z) �≡ –R2(z), is equivalent to the equation

f (z + 1) + f (z) = 0,

provided that it admits two distinct finite order transcendental meromorphic solutions
sharing 1, ∞ CM.

We should give some examples in which f (z) �≡ g(z) for our results before the proofs of
them. These examples show that the conditions in these results cannot be omitted.
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Example 1
(1) The entire functions f1(z) = z3ze2π iz and g1(z) = z3z , and the meromorphic functions

f2(z) = z3ze2π iz/ cos(2πz) and g2(z) = z3z/ cos(2πz) satisfy the equation

z
3(z + 1)

f (z + 1) – f (z) = 0.

Here fj(z) and gj(z) share 0, ∞ CM, fj(z) = e2π izgj(z), fj(z) and gj(z) have only one zero
z0 = 0, and all zeros of fj(z) – gj(z) such that fj(z) = gj(z) �= 0 are simple (j = 1, 2).

(2) f (z) = (eπ iz + 1)/2 and g(z) = (e–π iz + 1)/2 satisfy the equation

f (z + 1) + f (z) = 1.

Here f (z) and g(z) share 0, ∞ CM and f (z) = eπ izg(z), R3(z) ≡ 1 �= 0 and
R1(z)R3(z + 1) ≡ R3(z)R2(z + 1) ≡ 1.

(3) f (z) = eπ iz and g(z) = e–π iz satisfy the equation

f (z + 1) + f (z) = 0.

Here f (z) and g(z) share 1, ∞ CM, e–π i = eπ i = –1, and the coefficients of (1.2)
satisfy R1(z) ≡ R2(z) ≡ 1; R1(z) + R2(z) �≡ –R3(z), but

R1(z)
[

R3(z + 1) – R1(z + 1)
] ≡ –1 ≡ [

R3(z) – R2(z)
]

R2(z + 1).

This shows that the condition
R1(z)[R3(z + 1) – R1(z + 1)] ≡ –1 ≡ [R3(z) – R2(z)]R2(z + 1) in Corollary 1.2 cannot
deleted.

(4) f (z) = z3ze2π iz/ cos2(2πz) and g(z) = z3z/ cos(2πz) share 0 CM and ∞ IM, and they
satisfy the equation

z
3(z + 1)

f (z + 1) – f (z) = 0,

but f (z) �≡ g(z). This indicates that the shared condition “CM” cannot be replaced by
“IM” and the number of CM shared values cannot be reduced in Theorem 1.1.

Remark 5 We still wonder what happens if the shared condition “CM” is replaced by “IM”
or the number of CM shared values is reduced in Theorem 1.2.

2 Proof of Theorem 1.1
To prove Theorem 1.1, we need the following lemma, which is a very important result in
studying the difference analogues of Nevanlinna theory and difference equations, proved
by Chiang and Feng [3] and by Halburd and Korhonen [6] independently.

Lemma 2.1 ([3, 6]) Let f (z) be a meromorphic function of finite order ρ(f ) = ρ , ε be a
positive constant, η1 and η2 be two distinct complex constants. Then

m
(

r,
f (z + η1)
f (z + η2)

)

= O
(

rρ–1+ε
)

= o
(

T(r, f )
)

.
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Proof of Theorem 1.1 Since f (z) and g(z) are finite order transcendental meromorphic
functions and share 0, ∞ CM, we have

f (z)
g(z)

= eP(z), (2.1)

where P(z) is a polynomial such that deg P(z) ≤ max{ρ(f ),ρ(g)}.
We can get from (1.2) and (2.1) that

g(z + 1)eP(z+1)

g(z)eP(z) =
f (z + 1)

f (z)
= –

R2(z)
R1(z)

=
g(z + 1)

g(z)
.

Thus eP(z+1)–P(z) ≡ 1 and hence P(z + 1) – P(z) must be a constant. More precisely, P(z +
1) – P(z) = 2k0π i for some integer k0. Then we obtain easily that P(z) = 2k0π iz + a0 and
hence

f (z) ≡ e2k0π iz+a0 g(z), (2.2)

where a0 is a constant. The first conclusion is thus proved.
Next, we discuss two cases for the second conclusion.
Case (i): There exist two points z1, z2 such that f (zj) = g(zj) �= 0 and z1 – z2 /∈Q, then from

(2.1) and (2.2), we have

e2k0π izj+a0 g(zj) = f (zj) = g(zj) �= 0 (j = 1, 2), (2.3)

which gives

e2k0π iz1+a0 = 1 = e2k0π iz2+a0 .

This indicates that k0(z1 – z2) is an integer. Suppose that k0 �= 0, then z1 – z2 must be a
rational number. This contradicts our assumption z1 – z2 /∈Q. Thus k0 = 0. From (2.3) and
f (z1) = g(z1) �= 0, we get ea0 = 1 and prove that f (z) ≡ g(z).

Case (ii): f (z) – g(z) has a zero z3 of multiplicity ≥ 2 such that f (z3) = g(z3) �= 0. From
(2.2), we see that e2k0π iz3+a0 = 1.

Differentiating both sides of (2.2), we get

f ′(z) – e2k0π iz+a0 g ′(z) = 2k0π ie2k0π iz+a0 g(z). (2.4)

Suppose that k0 �= 0. By the assumption that z3 is a zero of f (z) – g(z) with multiplicity
≥ 2, e2k0π iz3+a0 = 1 and (2.4), we can deduce the following contradiction:

0 = f ′(z3) – g ′(z3) = f ′(z3) – e2k0π iz3+a0 g ′(z3)

= 2k0π ie2k0π iz3+a0 g(z3) = 2k0π ig(z3) �= 0.

Thus k0 = 0. From (2.2) and f (z3) = g(z3) �= 0, we can also get ea0 = 1 and prove that f (z) ≡
g(z). �
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3 Proof of Theorem 1.2
Since f (z) and g(z) are finite order transcendental meromorphic functions and share 0, ∞
CM, equation (2.1) still holds. Keep in mind that R1(z)R2(z) �≡ 0. Otherwise, (1.2) cannot
admit any transcendental meromorphic solution.

We can get from (1.2) and (2.1) that

R1(z)g(z + 1) + R2(z)g(z) = R3(z) (3.1)

and

R1(z)eP(z+1)g(z + 1) + R2(z)eP(z)g(z) = R3(z). (3.2)

By (3.1) and (3.2), we obtain

R2(z)
[

eP(z)–P(z+1) – 1
]

g(z) = R3(z)
[

e–P(z+1) – 1
]

. (3.3)

If eP(z)–P(z+1) – 1 ≡ 0, then from (3.3), e–P(z+1) – 1 ≡ 0. This means that f (z) ≡ g(z).
If eP(z)–P(z+1) – 1 �≡ 0, we can solve out g(z) from (3.3) as the form

g(z) =
R3(z)[e–P(z+1) – 1]

R2(z)[eP(z)–P(z+1) – 1]
. (3.4)

Combining (3.1) with (3.4), we get

R1(z)R3(z + 1)[e–P(z+2) – 1]
R2(z + 1)[eP(z+1)–P(z+2) – 1]

+
R3(z)[e–P(z+1) – 1]

eP(z)–P(z+1) – 1
= R3(z).

Equally,

R1(z)h(z + 1)
[

e–P(z+2) – 1
]

+ R2(z)h(z)
[

e–P(z+1) – 1
]

= R3(z), (3.5)

where

h(z) =
R3(z)

R2(z)[eP(z)–P(z+1) – 1]
.

Set

P(z) = anzn + · · · + a1z + a0, (3.6)

where an �= 0, . . . , a1, a0 are constants and n is an integer.
Notice that g(z) is transcendental. From (3.4), we see that deg P(z) ≥ 1. We claim that

deg P(z) = 1. Otherwise, n = deg P(z) ≥ 2.
It is clear that

deg
[

P(z + 2) – P(z + 1)
]

= deg
[

P(z + 1) – P(z)
]

= n – 1. (3.7)
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Therefore, ρ(eP(z+2)–P(z+1)) = n – 1 and

T(r, h) = T
(

r,
1
h

)

+ O(1) = T
(

r,
R2(z)
R3(z)

[

eP(z)–P(z+1) – 1
]

)

+ O(1)

= T
(

r, eP(z)–P(z+1)) + O(log r),

which means ρ(h) = n – 1. By Lemma 2.1, for each ε ∈ (0, 1),

m
(

r,
h(z + 1)

h(z)

)

= O
(

rρ(h)–1+ε
)

= O
(

rn–2+ε
)

= o
(

rn–1). (3.8)

Rewrite (3.5) as the form

R1(z)h(z + 1) + R2(z)h(z)eP(z+2)–P(z+1)

=
[

R3(z) + R1(z)h(z + 1) + R2(z)h(z)
]

eP(z+2). (3.9)

Suppose that R3(z) + R1(z)h(z + 1) + R2(z)h(z) �≡ 0. Then from (3.7), (3.9) and the fact ρ(h) =
n – 1, we can deduce the following contradiction:

n = ρ
([

R3(z) + R1(z)h(z + 1) + R2(z)h(z)
]

eP(z+2))

= ρ
(

R1(z)h(z + 1) + R2(z)h(z)eP(z+2)–P(z+1)) ≤ n – 1.

Thus, R3(z) + R1(z)h(z + 1) + R2(z)h(z) ≡ 0 and hence we get from (3.9) that

R1(z)h(z + 1) + R2(z)h(z)eP(z+2)–P(z+1) = 0. (3.10)

By (3.8) and (3.10), we get

T
(

r, eP(z+2)–P(z+1)) = m
(

r, eP(z+2)–P(z+1))

= m
(

r, –
R1(z)h(z + 1)

R2(z)h(z)

)

≤ o
(

rn–1) + O(log r),

which contradicts ρ(eP(z+2)–P(z+1)) = n – 1 ≥ 1. Thus, we prove that deg P(z) = 1 and get
from (3.6) that P(z) = a1z + a0, where a1 �= 0.

Now, submitting P(z) = a1z + a0 into (3.4), we obtain

g(z) =
cR3(z)
R2(z)

(

e–a1z–a1–a0 – 1
)

, (3.11)

where c = (e–a1 – 1)–1 �= 0.
By (3.1) and (3.11), we have

(

cR1(z)R3(z + 1)
R2(z + 1)

e–a1 + cR3(z)
)

e–a1z–a1–a0 = (1 + c)R3(z) +
cR1(z)R3(z + 1)

R2(z + 1)
.

Comparing the orders of both sides of the equation above, we can deduce that

R1(z)R3(z + 1)
R2(z + 1)

e–a1 + R3(z) ≡ 0, (3.12)
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and hence

(1 + c)R3(z) +
cR1(z)R3(z + 1)

R2(z + 1)
≡ 0. (3.13)

From (3.12) and (3.13), we get

e–a1 = –
R3(z)R2(z + 1)
R1(z)R3(z + 1)

=
c

1 + c
= ea1 ,

which yields that e–a1 = ea1 = –1, since c = (e–a1 – 1)–1 �= 0.
Finally, we obtain from (2.1) and (3.11) that

f (z) =
R3(z)

2R2(z)
(

ea1z+a0 + 1
)

and

g(z) =
R3(z)

2R2(z)
(

e–a1z–a0 + 1
)

,

where e–a1 = ea1 = –1. What is more, from (3.12) or (3.13), we see that

R1(z)R3(z + 1) ≡ R3(z)R2(z + 1)

holds for this case.

4 Proof of Corollary 1.3
Set F(z) = f (z) – 1 and G(z) = g(z) – 1. Then F(z) and G(z) share 0, ∞ CM, since f (z) and
g(z) share 1, ∞ CM.

Submitting f (z) = F(z) + 1 and g(z) = G(z) + 1 into (1.2), we see that both F(z) and G(z)
satisfy the equation of the form

R1(z)f (z + 1) + R2(z)f (z) = R∗
3(z), (4.1)

where

R∗
3(z) = –R1(z) – R2(z) �≡ 0, (4.2)

by the assumption R1(z) �≡ –R2(z). Thus, by Theorem 1.2, either F(z) ≡ G(z) and hence
f (z) ≡ g(z), or

F(z) =
R∗

3(z)
2R2(z)

(

ea1z+b0 + 1
)

(4.3)

and

G(z) =
R∗

3(z)
2R2(z)

(

e–a1z–b0 + 1
)

, (4.4)
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where a1, b0 are constants such that e–a1 = ea1 = –1, and the coefficients of (4.1) satisfy

R1(z)R∗
3(z + 1) = R∗

3(z)R2(z + 1). (4.5)

From (4.2) and (4.5), we get

R1(z)R1(z + 1) = R2(z)R2(z + 1),

which indicates that R1(z) ≡ R2(z).
Now, R∗

3(z) = –R1(z) – R2(z) = –2R2(z). By this fact and (4.3)–(4.4), we see that

F(z) = –
(

ea1z+b0 + 1
)

and

G(z) = –
(

e–a1z–b0 + 1
)

.

Finally, we can finish our proof by denoting a0 = b0 + π i and using f (z) = F(z) + 1 and
g(z) = G(z) + 1.
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