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Abstract
In this paper, we shall investigate some oscillation criteria for the solutions of
mth-order nonlinear neutral difference equation wherem ≥ 1. The results presented
here complement some of the known results reported in the literature. Examples are
included to illustrate the importance of the main results.
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1 Introduction
In this paper, we are concerned with the following higher order neutral difference equa-
tion:

�m[
x(n) + p(n)x

(
τ (n)

)]
+ q(n)f

(
x
(
σ (n)

))
= 0, n ∈ N = {0, 1, . . .}, (1.1)

where m ≥ 1 and � is the forward difference operator defined by

�x(n) = x(n + 1) – x(n).

Throughout this paper, we assume the following conditions to hold:
(H1) {q(n)} is a real-valued sequence with q(n) ≥ 0, n ∈ N and {q(n)} is not identically

zero.
(H2) {p(n)} is a real-valued sequence with 0 ≤ p(n) < 1, n ∈ N .
(H3) {τ (n)} and {σ (n)} are nondecreasing sequences such that τ (n) < n with

limn→+∞ τ (n) = +∞ and σ (n) < n with limn→+∞ σ (n) = +∞.
(H4) f : R → R is a nondecreasing continuous function such that xf (x) > 0 for x �= 0 and

–f (–xy) ≥ f (xy) ≥ f (x)f (y). (1.2)

The factorial expression is defined as (r)(s) =
∏s–1

i=0 (r – i) with (r)(0) = 1 for all r ∈ R =
(–∞,∞) and s, a nonnegative integer.

Let N0 be a fixed nonnegative integer. By a solution of equation (1.1), we mean a nontriv-
ial real sequence {x(n)} which is defined for all n ≥ mini≥0{τ (i),σ (i)} and satisfies equation
(1.1) for n ≥ N0. A solution {x(n)} is said to be oscillatory if it is neither eventually posi-
tive nor eventually negative. Otherwise it is called non-oscillatory. A difference equation
is said to be oscillatory if all of its solutions are oscillatory. Otherwise, it is non-oscillatory.
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In recent years, the oscillation behavior of neutral difference equations has been stud-
ied vigorously, for example, see [1–26] and the references cited therein. This is because
of the fact that neutral difference equations find various applications in some variational
problems, in natural science and technology.

Agarwal et al. [5] considered the mth order neutral difference equation

�m[yn + pnyn–k] + qnf (yn–l) = 0 (1.3)

and discussed some oscillation theorems for (1.3), when m is odd, for which every solution
of (1.3) either oscillates or tends to zero as n → ∞.

In [4], Agarwal and Grace considered the higher order difference equation

�
(
�m–1x(n)

)α + q(n)xα(n – τ ) = 0 (1.4)

and obtained some sufficient conditions for the oscillation of all solutions of (1.4).
Yasar Bolat et al. [9] have taken even order nonlinear neutral difference equation

�m[
y(k) + p(k)y

(
τ (k)

)]
+ q(k)y

(
σ (k)

)
= 0, (1.5)

and established some criteria for oscillation of bounded solutions only.
Therefore, it is to be noted that, to the best of our knowledge, there is no paper for

higher order nonlinear neutral difference equations which ensures that all the solutions
are oscillatory when m is odd. Following this notion, our aim in this paper is to provide
sufficient conditions which ensure that all solutions of (1.1) are oscillatory.

To obtain our results, we shall need the following lemma.

Lemma 1.1 (see [1]) Let x(n) be defined for n ≥ n0 ∈ N and x(n) > 0 with �nx(n) of con-
stant sign for n ≥ n0 and not identically zero. Then there exists an integer l, 0 ≤ l ≤ m, with
(m + l) odd for �mx(n) ≤ 0 and (m + l) even for �mx(n) ≥ 0 eventually such that

(i) l ≤ m – 1 implies (–1)l+k�kx(n) > 0 for all n ≥ n0, l ≤ k ≤ m – 1.
(ii) l ≥ 1 implies �kx(n) > 0 for all large n ≥ n0, 1 ≤ k ≤ l – 1.

2 Main results
To obtain the main results, we shall use the following notations.

For all large n ≥ n0 > 0, let

Rj(n) = f
(

(σ (n) – m + j)(j–i)

j!

) ∞∑

r=n

(r – n + m – j – 3)(m–j–3)

(m – j – 3)!

×
( ∞∑

j=r

q(j)

)

f
(
1 – p

(
σ (r)

))
, j ∈ {1, 2, . . . , m – 3},

Rm–1(n) = q(n)f
(
1 – p

(
σ (n)

))
f
(

(σ (n) – 1)(m–2)

(m – 1)!

)
,

R0(n) = q(n)f
(
1 – p

(
σ (n)

))
f

(
η(n)∑

r=σ (n)

(r – σ (n) + m – 2)(m–2)

(m – 2)!

)

for some nondecreasing function η(n) with σ (n) < η(n) ≤ n, n ≥ n0.
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Then we shall discuss the following theorems.

Theorem 2.1 Assume that conditions (H1)–(H4) hold and

∞∑

n=n0

( ∞∑

j=n

q(j)

)
(
σ (n)

)(m–2) = ∞. (2.1)

Let m be odd. If all the second order equations

�2y(n) + Rj(n)f
(
y
(
σ (n)

))
= 0, j ∈ {2, 4, . . . , m – 1} (2.2)

for n ≥ n0 are oscillatory and if there exists a nondecreasing sequence {η(n)} with σ (n) <
η(n) ≤ n, n ≥ n0 such that the first order difference equation

�v(n) + R0(n)f
(
v
(
η(n)

))
= 0 (2.3)

is oscillatory, then every solution of equation (1.1) oscillates.

Theorem 2.2 Assume that conditions (H1)–(H4) and (2.1) hold. Let m be even. If all the
second order equations (2.2), j ∈ {1, 3, . . . , m – 3} and

�2u(n) + Rm–1(n)f
(
u
(
σ (n)

))
= 0, (2.4)

for n ≥ n0 are oscillatory, then every solution of equation (1.1) oscillates.

Proofs of Theorems 2.1 and 2.2 Let {x(n)} be a non-oscillatory solution of (1.1). Without
loss of generality, assume that x(n) > 0, x(τ (n)) > 0, x(σ (n)) > 0 for all n ≥ n0 ≥ 0.

Let

z(n) = x(n) + p(n)x
(
τ (n)

) ≥ x(n) > 0.

Then (1.1) becomes

�mz(n) = –q(n)f
(
x
(
σ (n)

)) ≤ 0 for n ≥ n1 ≥ n0. (2.5)

From Lemma 1.1, it is easy to check

�m–1z(n) > 0 for n ≥ n1. (2.6)

Also, from (2.5), we have �mz(n) ≤ 0 eventually.
So, z(n) satisfies Lemma 1.1 for some l ∈ {1, 2, . . . , m – 3} and (l + m) odd. Also, by

Lemma 1.1, �z(n) > 0. Since z(n) is increasing, we have

(
1 – p(n)

)
z(n) ≤ z(n) – p(n)z

(
τ (n)

)

= x(n) – p(n)p
(
τ (n)

)
x
(
τ
(
τ (n)

))

≤ x(n) for n ≥ n1.
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That is,

(
1 – p(n)

)
z(n) ≤ x(n) for n ≥ n1. (2.7)

Now the following three cases are considered: l ∈ {1, 2, . . . , m – 3}, l = m – 1, l = 0.
Case (i): l ∈ {1, 2, . . . , m – 3}. From discrete Taylor’s formula, we have

–�l+1z(n) =
m–2∑

j=l+1

(s – n + j – l – 2)(j–l–1)

(j – l – 1)!
(–1)j–l�jz(s)

+ (–1)m–l–3
s–1∑

r=n

(r – n + m – l – 3)(m–l–3)

(m – l – 3)!
�m–1z(r) (2.8)

for s ≥ n ≥ n1. Using Lemma 1.1 in (2.8), we obtain

–�l+1z(n) ≥
∞∑

r=n

(r – n + m – l – 3)(m–l–3)

(m – l – 3)!
�m–1z(r). (2.9)

Summing up equation (1.1) from r to u – 1 and letting u → ∞, we have

�m–1z(r) ≥
∞∑

j=r

q(j)f
(
x
(
σ (r)

))
for n ≥ n2 ≥ n1. (2.10)

Substituting (2.10) in (2.9), we have

–�l+1z(n) ≥
∞∑

r=n

(r – n + m – l – 3)(m–l–3)

(m – l – 3)!

( ∞∑

j=r

q(j)

)

f
(
x
(
σ (r)

))
. (2.11)

Using (2.7) and (1.2) in (2.11), we get

–�l+1z(n) ≥
∞∑

r=n

(r – n + m – l – 3)(m–l–3)

(m – l – 3)!

×
( ∞∑

j=r

q(j)

)

f
(
1 – p

(
σ (r)

))
f
(
z
(
σ (r)

))
. (2.12)

From (2.10), we can see that

(n)(m–l–1)�m–1z(n) ≥ (n)(m–l–1)

( ∞∑

j=n

q(j)

)

x
(
σ (n)

)

≥ (n)(m–l–1)

( ∞∑

j=n

q(j)

)
(
σ (n)

)(l–1)

≥
∞∑

j=n

q(j)
(
σ (n)

)(m–l–2).
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Hence from (2.1), we get

∞∑
(s)(m–l–1)�m–1z(s) = ∞. (2.13)

Consider the equality

m–2∑

j=l–1

(–1)(j+l+1) (n – m + j + 1)(j–l+1)

(j – l + 1)!
�jz(n)

=
m–2∑

j=l–1

(–1)(j+l+1) (n2)(j–l+1)

(j – l + 1)!
�jz(n1 + m – j – 2)

+ (–1)m+l–1
m–2∑

s=n2

(s)(m–l–1)�m–1z(s)

with l ∈ {1, 2, . . . , m – 1} and (l + m) is odd.
Now from the above, there exists an integer n ≥ n3 ≥ n2 such that

�l–1z(n) ≥ (n – m + l + 1)�lz(n) (2.14)

and

z(n) ≥ (n – m + l)(l–1)

l!
�l–1z(n). (2.15)

Then we can find an integer N ≥ n3 such that

z
(
σ (n)

) ≥ (σ (n) – m + l)(l–1)

l!
�l–1z

(
σ (n)

)
for n ≥ N . (2.16)

Using (2.16) in (2.12), we have

–�l+1z(n) ≥
∞∑

r=n

(r – n + m – l – 3)(m–l–3)

(m – l – 3)!

( ∞∑

j=r

q(j)

)

f
(
1 – p

(
σ (r)

))

× f
(

(σ (n) – m + l)(l–1)

l!

)
f
(
�l–1z

(
σ (n)

))
.

That is,

–�l+1z(n) ≥ Rl(n)f
(
�l–1z

(
σ (n)

))
.

Let y(n) = �l–1z(n).
Then y(n) > 0 for n ≥ N and the above inequality becomes

�2y(n) + Rl(n)f
(
y
(
σ (n)

)) ≤ 0 for n ≥ N .
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Thus the last inequality has an eventually positive solution. By a well-known result in [14,
p. 186, Corollary 7.6.1], we can see that the equation

�2y(n) + Rl(n)f
(
y
(
σ (n)

))
= 0 for n ≥ N

also has an eventually positive solution, which contradicts our assumption.
Case (ii): l = m – 1. Substituting l = m – 1 in inequality (2.16), we get

z
(
σ (n)

) ≥ (σ (n) – 1)(m–2)

(m – 1)!
�m–2z

(
σ (n)

)
.

From (1.1), (1.2), (2.7), and the above inequality, we have

–�
(
�m–1z(n)

)
= q(n)f

(
x
(
σ (n)

))

≥ q(n)f
(
1 – p

(
σ (n)

))
f
(
z
(
σ (n)

))

≥ q(n)f
(
1 – p

(
σ (n)

))
f
(

(σ (n) – 1)(m–2)

(m – 1)!

)
f
(
�m–2z

(
σ (n)

))

= Rm–1(n)f
(
�m–2z

(
σ (n)

))
.

Set u(n) = �m–2z(n) > 0 for n ≥ n1.
Then the above inequality becomes

–�
(
�u(n)

) ≥ Rm–1(n)f
(
u
(
σ (n)

))
.

That is,

�2u(n) + Rm–1(n)f
(
u
(
σ (n)

)) ≤ 0,

which has an eventually positive solution. Thus we get a contradiction as in Case (i).
Case (iii): l = 0. In this case, m is odd. From discrete Taylor’s formula, we have

z(n) =
m–2∑

j=0

(s – n + j – 1)(j)

j!
(–1)j�jz(s)

+
s–1∑

r=n

(r – n + m – 2)(m–2)

(m – 2)!
�m–1z(r) for s ≥ n.

Considering Lemma 1.1 with l = 0 and using this in the above equation, we get

z(n) ≥
s–1∑

r=n

(r – n + m – 2)(m–2)

(m – 2)!
�m–1z(r) for n ≥ n1 ≥ n0.

Then we can find an integer n2 ≥ n1 and a nondecreasing function η(n) with σ (n) < η(n) ≤
n such that

z
(
σ (n)

) ≥
η(n)∑

r=σ (n)

(r – σ (n) + m – 2)(m–2)

(m – 2)!
�m–1z

(
η(n)

)
for n ≥ n2 ≥ n1. (2.17)
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From (1.1), (1.2), (2.7), and (2.17), we have

–�
(
�m–1z(n)

)
= q(n)f

(
x
(
σ (n)

))

≥ q(n)f
(
1 – p

(
σ (n)

))
f
(
z
(
σ (n)

))

≥ q(n)f
(
1 – p

(
σ (n)

))
f

(
η(n)∑

r=σ (n)

(r – σ (n) + m – 2)(m–2)

(m – 2)!

)

× f
(
�m–1z

(
η(n)

))

= R0(n)f
(
�m–1z

(
η(n)

))
.

Let v(n) = �m–1z(η(n)). Then v(n) > 0 for n ≥ n2, and the above inequality becomes

�v(n) + R0(n)f
(
v
(
σ (n)

)) ≤ 0,

for which an eventually positive solution exists. By a well-known result in [14, p. 186,
Corollary 7.6.1], we have equation (2.3) also has an eventually positive solution, which
contradicts our assumption. This completes the proof. �

Example 2.3 Consider the third order difference equation

�3
[

x(n) +
1
2

x(n – 1)
]

+ 4x(n – 2) = 0. (E1)

Here, 0 ≤ p(n) = 1
2 < 1, q(n) = 4n, τ (n) = n – 1 < n, σ (n) = n – 2 < n, and f (u) = u

n .
Also,

∞∑

n=n0

( ∞∑

j=n

q(j)

)
(
σ (n)

)(m–2) =
∞∑

n=n0

( ∞∑

j=n

4j

)

(n – 2) = ∞.

We can easily see that all the conditions of Theorem 2.1 are satisfied, and hence all the
solutions of equation (E1) are oscillatory.

One of such solutions is x(n) = (–1)n.

Example 2.4 Consider the second order difference equation

�2
[

x(n) +
1
4

x(n – 2)
]

+
5n + 3
n – 1

x(n – 1) = 0. (E2)

Here, 0 ≤ p(n) = 1
4 < 1, q(n) = 5n+3

n–1 , τ (n) = n – 2 < n, σ (n) = n – 1 < n, and f (u) = u.
Also,

∞∑

n=n0

( ∞∑

j=n

q(j)

)
(
σ (n)

)(m–2) =
∞∑

n=n0

( ∞∑

j=n

5j + 3
j – 1

)

= ∞.

We check that all the conditions of Theorem 2.2 are satisfied. In fact, x(n) = n(–1)n is an
oscillatory solution of (E2).
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Next we shall present the following theorems.

Theorem 2.5 Assume that conditions (H1)–(H4) and (2.1) hold. Let m be odd. If

f
(

(σ (n) – m + j)(j–i)

j!

) ∞∑

r=n0

(r – n + m – j – 2)(m–j–2)

(m – j – 2)!

×
( ∞∑

j=r

q(j)

)

f
(
1 – p

(
σ (r)

))
= ∞ (2.18)

for j ∈ {2, 4, . . . , m–1} and if there exists a nondecreasing sequence {η(n)} with σ (n) < η(n) ≤
n, n ≥ n0 such that equation (2.3) is oscillatory, then every solution of equation (1.1) oscil-
lates.

Theorem 2.6 Assume that conditions (H1)–(H4) and (2.1) hold. Let m be even. If condition
(2.18), j ∈ {1, 3, . . . , m – 3} holds for all large n and if

f
(

(σ (n))(m–2)

(m – 1)!

)
f
(
1 – p

(
σ (n)

))
( ∞∑

r=n0

q(r)

)

= ∞, (2.19)

then all the solutions of (1.1) are oscillatory.

Proofs of Theorems 2.5 and 2.6 Assume that {x(n)} is a non-oscillatory solution of (1.1).
Without loss of generality, assume that x(n) > 0, x(τ (n)) > 0, x(σ (n)) > 0 for all n ≥ n0 ≥ 0.

Let

z(n) = x(n) + p(n)x
(
τ (n)

) ≥ x(n) > 0.

Proceeding as in the proof of Theorems 2.1 and 2.2, we get the following three cases:
l ∈ {1, 2, . . . , m – 3}, l = m – 1, l = 0.

Case (i): l ∈ {1, 2, . . . , m – 3}. From discrete Taylor’s formula, we have

�lz(n) =
m–2∑

j=l

(s – n + j – l – 2)(j–l)

(j – l)!
(–1)j–l�jz(s)

+ (–1)m–l–1
s–1∑

r=n

(r – n + m – l – 2)(m–l–2)

(m – l – 2)!
�m–1z(r) (2.20)

for s ≥ n. Using (1.2), (2.7), (2.10), and Lemma 1.1 in (2.20), we obtain

�lz(n) ≥
∞∑

r=n

(r – n + m – l – 2)(m–l–2)

(m – l – 2)!

( ∞∑

j=r

q(j)

)

× f
(
1 – p

(
σ (n)

))
f
(
z
(
σ (n)

))
. (2.21)

From (2.15), there exist n2 ≥ n1 and a positive constant c > 0 such that

z
(
σ (n)

) ≥ (σ (n) – m + l)(l–1)

l!
�l–1z

(
σ (n)

)
for n ≥ n2 (2.22)
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and

�l–1z
(
σ (n)

) ≥ c for n ≥ n2. (2.23)

Using (2.22) and (2.23) in (2.21), we get

∞ > �lz(n2) ≥
∞∑

r=n2

(r – n + m – l – 2)(m–l–2)

(m – l – 2)!

×
( ∞∑

j=r

q(j)

)

f
(
1 – p

(
σ (n)

))
f (c)f

(
(σ (n) – m + l)(l–1)

l!

)
,

which contradicts (2.18).
Case (ii): l = m – 1. Summing up equation (1.1) from r to u – 1 and letting u → ∞, we

have

�m–1z(r) ≥
∞∑

j=r

q(j)f
(
1 – p

(
σ (n)

))
f
(
z
(
σ (n)

))
for n ≥ n1 ≥ n0. (2.24)

Using (2.22) and (2.23) in (2.24), we get a contradiction to (2.19).
Case (iii): l = 0. The proof for this case is similar to the proof of Case (iii) in Theorems

2.1 and 2.2 and is hence omitted. This completes the proof. �

Example 2.7 Consider the first order difference equation

�

[
x(n) +

3
4

x(n – 1)
]

+
1
2

x(n – 2) = 0. (E3)

Here, 0 ≤ p(n) = 3
4 < 1, q(n) = 1

2 , τ (n) = n – 1 < n, σ (n) = n – 2 < n, and f (u) = u.
We can find that all the hypotheses of Theorem 2.5 are fulfilled. Also, equation (E3) has

an oscillatory solution given by x(n) = (–1)n

2 .

Example 2.8 Consider the fourth order difference equation

�4
[

x(n) +
1
2

x(n – 1)
]

+ 8(n + 2)x(n – 1) = 0. (E4)

Here, 0 ≤ p(n) = 1
2 < 1, q(n) = 8(n + 2), τ (n) = n – 1 < n, σ (n) = n – 1 < n, and f (u) = u

n+2 .
It is noted that all the conditions of Theorem 2.6 are satisfied. Also, we can find an os-

cillatory solution given by x(n) = (–1)n for equation (E4).

3 Conclusion
In this paper, by using discrete Taylor’s formula, the summing averaging technique, and
the comparison method, the oscillatory behavior of every solution of equation (1.1) is
discussed in Theorems 2.1 and 2.2, Theorems 2.5 and 2.6. Here, some sufficient conditions
are proved. These sufficient conditions, which are new, extend and complement some of
the known results in the literature. Also, the examples reveal the illustration of the proved
results.
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