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Abstract
The interaction between plants and herbivores plays a vital role for understanding
community dynamics and ecosystem function given that they are the critical link
between primary production and food webs. This paper deals with the qualitative
nature of two discrete-time plant–herbivore models. In both discrete-time models,
function for plant-limitation is of Ricker type, whereas the effect of herbivore on plant
population and herbivore population growth rate are proportional to functional
responses of type-II and type-III. Furthermore, we discuss the existence of equilibria
and parametric conditions of topological classification for these equilibria. Our
analysis shows that positive steady states of both discrete-time plant–herbivore
models undergo flip and Hopf bifurcations. Moreover, we implement a hybrid control
strategy, based on parameter perturbation and state feedback control, for controlling
chaos and bifurcations. Finally, we provide some numerical simulations to illustrate
theoretical discussion.

Keywords: Plant–herbivore model; Local stability; Period-doubling bifurcation;
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1 Introduction
The mathematical framework for plant–herbivore models is identical to interaction be-
tween preys and their predators. In other words, such type models are basically modifi-
cations of prey–predator systems [1]. The interaction between plants and herbivores has
been investigated by many researchers both in differential and difference equations. Kartal
[2] investigated the dynamical behavior of a plant–herbivore model including both differ-
ential and difference equations. Kang et al. [3] discussed bistability, bifurcation, and chaos
control in a discrete-time plant–herbivore model. Liu et al. [4] investigated stability, limit
cycle, Hopf bifurcations, and homoclinic bifurcation for a plant–herbivore model with
toxin-determined functional response. Li et al. [5] discussed period-doubling and Hopf
bifurcations for a plant–herbivore model incorporating plant toxicity in the functional re-
sponse of plant–herbivore interactions. Similarly, for some other discussions related to
qualitative behavior of plant–herbivore models, we refer the interested reader to [6–13]
and references therein.

We consider interaction between plants and herbivores by taking into account nonover-
lapping generation. For this, the growth rate for herbivore population is assumed to be pro-
portional to a function of nonlinear type dependent upon their feeding rate [14]. More-
over, we suppose that the growth rate for plant population is inversely proportional to
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population of herbivore, and the feeding rate of herbivore is dependent on plant density
[15]. Furthermore, an intraspecific competition is implemented for controlling the plant
population density in the absence of herbivore [14]. Then the general discrete-time plant–
herbivore interaction is modeled by the following planar system [16]:

Un+1 = rUnf (Un)g(Vn),

Vn+1 = cVnh(Un),
(1.1)

where Un and Vn represent the population densities of plant and herbivore at generation
n, respectively. Furthermore, f (Un) is used for the growth rate of plant, the effect of herbi-
vore population on the plant growth rate is denoted by the function g(Vn), the saturation
function for plant density is represented by h(Un), and the population growth rates for
plant and herbivore are denoted by r and c, respectively.

Arguing as in [16], we can choose f (Un) = e–aUn as the Ricker growth function [17],
where larger values for a give stronger density dependence in the growth rate of plant.
Furthermore, we can choose for g(Vn) and h(Un) functional responses of type II as follows:

g(Vn) =
α

β + Vn
, h(Un) =

γ Un

δ + Un
,

where α, β , γ , and δ are positive parameters. Then we rewrite system (1.1) as follows:

Un+1 =
rαUne–aUn

β + Vn
, Vn+1 =

cγ VnUn

δ + Un
. (1.2)

For the dimensionless form of system (1.2), we choose xn = aUn and yn = Vn/β . Then it
follows that

xn+1 =
kxne–xn

1 + yn
, yn+1 =

pxnyn

q + xn
, (1.3)

where k = rα
β

, cγ = p, aδ = q, and xn and yn are population densities of plant and herbivore
at generation n, respectively.

Similarly, we can implement functional responses of type-III for g(Vn) and h(Un) as fol-
lows:

g(Vn) =
α1

β2
1 + V 2

n
, h(Un) =

γ1U2
n

δ2
1 + U2

n
.

Due to implementation of functional responses of type-III, we obtain the following plant–
herbivore model:

Un+1 =
rα1Une–aUn

β2
1 + V 2

n
, Vn+1 =

cγ1VnU2
n

δ2
1 + U2

n
. (1.4)

Moreover, implementing the transformations xn = aUn and yn = Vn/β1 to system (1.4),
we have the following discrete-time plant–herbivore model:

xn+1 =
μxne–xn

1 + y2
n

, yn+1 =
νx2

nyn

η + x2
n

, (1.5)

where μ = rα1/β2
1 , cγ1 = ν , and a2δ2

1 = η.
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It is worth pointing out the rationality of considering the two types of models, that is,
functional response of type-II in system (1.3) and functional response of type-III in system
(1.5). For this, note that the functional response of type-III is connected with switching
predators, that is, if there is an option of prey, then the predator prefers the more bumper
prey type. Consequently, the functional response of type-III has been observed in exper-
iments. On the other hand, in real life studies the functional response of type-II is fre-
quently observed [18]. Therefore system (1.3) is associated with real-life plant–herbivore
interaction, and system (1.5) is a good representative for its experimental study.

In further discussion, we study the qualitative behavior for discrete-time plant–
herbivore systems (1.3) and (1.5). The main contributions of this paper are as follows:

• Keeping in view standard techniques for stability analysis of discrete-time systems, we
analyze the local asymptotic behavior of these plant–herbivore models of discrete
nature.

• We investigated that both models undergo flip bifurcation at their positive steady
states by implementing bifurcation theory, normal form theory, and center manifold
theorem.

• We study Hopf bifurcation for these models at their positive steady states with
bifurcation theory of normal forms.

• We introduce a chaos control method based on parameter perturbation and
introduce state feedback methodology for controlling chaotic and fluctuating
behaviors for these models.

• We present numerical simulations for verification of our theoretical discussions.
In Sects. 2 and 3, we discuss the existence of steady states and their linearized stability

for both systems (1.3) and (1.5). In Sect. 4, we investigate period-doubling bifurcations at
positive equilibria of systems (1.3) and (1.5). In Sect. 5, we show that the positive steady
states of both systems (1.3) and (1.5) undergo Neimark–Sacker bifurcations. Moreover, we
implement a hybrid feedback control methodology for controlling chaos and bifurcations
for both systems (1.3) and (1.5) in Sect. 6. Finally, in Sect. 7, we present numerical examples
to support and illustrate theoretical discussion.

2 Linearized stability of system (1.3)
The equilibria of system (1.3) can be obtained by solving the following algebraic equations:

x =
kxe–x

1 + y
, y =

pxy
q + x

.

We can easily obtain the solutions for aforementioned algebraic system as (0, 0), (ln(k), 0),
and ( q

p–1 , k exp(– q
p–1 ) – 1). Thus trivial equilibrium (0, 0) always exists, boundary equilib-

rium (ln(k), 0) exists only for k > 1, and a unique positive equilibrium ( q
p–1 , k exp(– q

p–1 ) – 1)
for system (1.3) exists if and only if p > 1, k > 1, and 0 < q < ln(k)(p – 1). For simplicity,
the unique positive equilibrium point of system (1.3) is (u∗, ke–u∗ – 1), where u∗ := q

p–1 .
Moreover, the Jacobian matrix of system (1.3) evaluated at (x, y) is as follows:

J(x, y) =

[ ke–x(1–x)
1+y – ke–xx

(1+y)2

pqy
(q+x)2

px
q+x

]
. (2.1)
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Taking (x, y) = (0, 0) in (2.1), we obtain the Jacobian matrix J(0, 0) at trivial equilibrium
of system (1.3):

J(0, 0) =

(
k 0
0 0

)
.

Hence, from J(0, 0) it easy to see that the trivial equilibrium (0, 0) is a sink if and only if
0 < k < 1, it is saddle point if k > 1, and (0, 0) is nonhyperbolic at k = 1.

Taking into account the relation between roots and coefficients for a quadratic equation,
the following lemma gives locality of roots with respect to the unit disk (see also [19–24]):

Lemma 2.1 Suppose that P(κ) = κ2 – Aκ + B with P(1) > 0 and κ1, κ2 are roots of P(κ) = 0.
Then, the following results hold: (i) |κ1| < 1 and |κ2| < 1 if and only if P(–1) > 0 and P(0) < 1;
(ii) |κ1| < 1 and |κ2| > 1, or |κ1| > 1 and |κ2| < 1 if and only if P(–1) < 0; (iii) |κ1| > 1 and
|κ2| > 1 if and only if P(–1) > 0 and P(0) > 1; (iv) κ1 = –1 or κ2 = –1 if and only if P(–1) = 0;
and (v) κ1 and κ2 are conjugate complex numbers with |κ1| = 1 and |κ2| = 1 if and only if
A2 – 4B < 0 and P(0) = 1.

Furthermore, we suppose that k > 1. Then the variational matrix J(x, y) at the boundary
equilibrium (x, y) = (ln(k), 0) is computed as follows:

J
(
ln(k), 0

)
=

[
1 – ln(k) – ln(k)

0 p ln(k)
q+ln(k)

]
. (2.2)

Lemma 2.2 Assume that k > 1. Then the following statements hold:
(i) (ln(k), 0) is a sink if and only if 1 < k < e2 and p ln(k) < q + ln(k).

(ii) (ln(k), 0) is a saddle point if and only if 1 < k < e2 and p ln(k) > q + ln(k), or k > e2

and p ln(k) < q + ln(k).
(iii) (ln(k), 0) is a source if and only if k > e2 and p ln(k) > q + ln(k).
(iv) (ln(k), 0) is nonhyperbolic if and only if k = e2 or p ln(k) = q + ln(k).

Moreover, for k ∈ [1, 20], p ∈ [0, 50], and q = 35, the topological classification of (ln(k), 0)
is depicted in Fig. 1.

Figure 1 Topological classification of (ln(k), 0) for
k ∈ [1, 20], p ∈ [0, 50] and q = 35
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Next, we assume that 0 < q < (p – 1) ln(k), k > 1, and p > 1. Then the variational matrix
(2.1) computed at positive steady state (u∗, ke–u∗ – 1) is given as follows:

J
(
u∗, ke–u∗ – 1

)
=

[
1 – u∗ – u∗eu∗

k
(ke–u∗

–1)(p–1)
pu∗ 1

]
. (2.3)

Moreover, the characteristic polynomial for J(u∗, ke–u∗ – 1) is computed as follows:

F(λ) = λ2 –
(

2 –
q

p – 1

)
λ + 2 –

e
q

p–1

k
–

1
p

+
e

q
p–1

kp
–

q
p – 1

. (2.4)

It must be noted that, due to the conditions for positivity of (u∗, ke–u∗ – 1), we have

F(1) =
(k – eu∗ )(p – 1)

kp
> 0.

Thus we can implement Lemma 2.1 to prove the following results.

Lemma 2.3 Let 0 < q < (p – 1) ln(k), k > 1, and p > 1, then the following hold for the topo-
logical classification of equilibrium point (u∗, ke–u∗ – 1) of system (1.3):

(i) (u∗, ke–u∗ – 1) is a sink if and only if

e
q

p–1

k
+

1
p

+
2q

p – 1
< 5 +

e
q

p–1

kp

and

1 +
e

q
p–1

kp
<

e
q

p–1

k
+

1
p

+
q

p – 1
.

(ii) (u∗, ke–u∗ – 1) is a saddle point if and only if

e
q

p–1

k
+

1
p

+
2q

p – 1
> 5 +

e
q

p–1

kp
.

(iii) (u∗, ke–u∗ – 1) is a source if and only if

e
q

p–1

k
+

1
p

+
2q

p – 1
< 5 +

e
q

p–1

kp

and

1 +
e

q
p–1

kp
>

e
q

p–1

k
+

1
p

+
q

p – 1
.

(iv) (u∗, ke–u∗ – 1) is nonhyperbolic with roots λ1 = –1 or λ2 = –1 of (2.4) if and only if

e
q

p–1

k
+

1
p

+
2q

p – 1
= 5 +

e
q

p–1

kp
.
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Figure 2 Topological classification of (u∗ , ke–u∗ – 1)

(v) (u∗, ke–u∗ – 1) is nonhyperbolic such that complex conjugate roots of (2.4) are with
modulus one if and only if

k =
e

q
p–1 (p – 1)2

1 – 2p + p2 – pq

and

(
2 –

q
p – 1

)2

< 4
(

2 –
e

q
p–1

k
–

1
p

+
e

q
p–1

kp
–

q
p – 1

)
.

For k ∈ [1, 100], p ∈ [20, 100], and q = 80, the topological classification of (u∗, ke–u∗ – 1)
is shown in Fig. 2.

3 Linearized stability of system (1.5)
Suppose that (x, y) is an arbitrary steady state for system (1.5). Then it solves the following
algebraic system:

x =
μxe–x

1 + y2 , y =
νx2y
η + x2 .

Simple computation yields the following nonnegative steady states for system (1.5):

(0, 0),
(
ln(μ), 0

)
,

(
v∗,

√
μe–v∗ – 1

)
,

where v∗ :=
√

η

ν–1 , μ > 1, ν > 1, and √
η < ln(μ)

√
ν – 1. Furthermore, the variational matrix

for system (1.5) computed at (x, y) is given as follows:

V (x, y) =

⎡
⎣μe–x(1–x)

1+y2 – 2μxye–x

(1+y2)2

2xyην

(x2+η)2
νx2

η+x2

⎤
⎦ . (3.1)
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Then, at (x, y) = (0, 0), V (x, y) reduces to

V (0, 0) =

(
μ 0
0 0

)
.

Then from V (0, 0) it follows that (0, 0) is a sink if and only if 0 < μ < 1, saddle if and only
if μ > 1, and nonhyperbolic if and only if μ = 1. Moreover, assume that μ > 1. Then the
variational matrix V (x, y) computed at semitrivial equilibrium (x, y) = (ln(μ), 0) is given as
follows:

V
(
ln(μ), 0

)
=

[
1 – ln(μ) 0

0 ν ln2(μ)
η+ln2(μ)

]
. (3.2)

Lemma 3.1 Assume that μ > 1. Then the following statements hold:
(i) (ln(μ), 0) is a sink if and only if 1 < μ < e2 and ν(ln(μ))2 < η + (ln(μ))2.

(ii) (ln(μ), 0) is a saddle point if and only if 1 < μ < e2 and ν(ln(μ))2 > η + (ln(μ))2, or
μ > e2 and ν(ln(μ))2 < η + (ln(μ))2.

(iii) (ln(μ), 0) is a source if and only if μ > e2 and ν(ln(μ))2 > η + (ln(μ))2.
(iv) (ln(μ), 0) is nonhyperbolic if and only if μ = e2 or ν(ln(μ))2 = η + (ln(μ))2.

Moreover, for μ ∈ [1, 20], η ∈ [0, 50], and ν = 6, the topological classification for (ln(μ), 0)
is depicted in Fig. 3.

Moreover, we suppose that √
η < ln(μ)

√
ν – 1, ν > 1, and μ > 1. Then the variational

matrix computed at positive steady state (v∗,
√

μe–v∗ – 1) is given as follows:

V
(
v∗,

√
μe–v∗ – 1

)
=

⎡
⎢⎢⎢⎢⎢⎣

1 –
√

η√
ν–1 – 2

√
e

√
η√

ν–1 √
η

√
μ–e

√
η√

ν–1

μ
√

ν–1

2

√
μ–e

√
η√

ν–1 (ν–1)3/2√
e

√
η√

ν–1 √
ην

1

⎤
⎥⎥⎥⎥⎥⎦ . (3.3)

Figure 3 Topological classification of (ln(μ), 0)
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The characteristic polynomial of V (v∗,
√

μe–v∗ – 1) is given by

F(λ) = λ2 –
(

2 –
√

η√
ν – 1

)
λ + 5 –

√
η√

ν – 1
–

4
ν

–
4e

√
η√

ν–1 (ν – 1)
μν

. (3.4)

Then from (3.4) it follows that

F(1) =
4(μ – e

√
η√

ν–1 )(ν – 1)
μν

> 0.

Therefore Lemma 2.1 can be implemented to prove the following results, which give a
topological classification for equilibrium (v∗,

√
μe–v∗ – 1).

Lemma 3.2 Let √
η < ln(μ)

√
ν – 1, ν > 1, and μ > 1. Then we have the following results for

equilibrium (v∗,
√

μe–v∗ – 1) of system (1.5):
(i) (v∗,

√
μe–v∗ – 1) is a sink if and only if

√
η√

ν – 1
+

2
ν

+
2e

√
η√

ν–1 (ν – 1)
μν

< 2

and

4 <
√

η√
ν – 1

+
4
ν

+
4e

√
η√

ν–1 (ν – 1)
μν

.

(ii) (v∗,
√

μe–v∗ – 1) is a saddle point if and only if

4 >
√

η√
ν – 1

+
4
ν

+
4e

√
η√

ν–1 (ν – 1)
μν

.

(iii) (v∗,
√

μe–v∗ – 1) is a source if and only if

√
η√

ν – 1
+

2
ν

+
2e

√
η√

ν–1 (ν – 1)
μν

< 2

and

4 >
√

η√
ν – 1

+
4
ν

+
4e

√
η√

ν–1 (ν – 1)
μν

.

(iv) (v∗,
√

μe–v∗ – 1) is nonhyperbolic with roots λ1 = –1 or λ2 = –1 of (3.4) if and only if

√
η√

ν – 1
+

2
ν

+
2e

√
η√

ν–1 (ν – 1)
μν

= 4.
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Figure 4 Topological classification of (v∗ ,√
μe–v∗ – 1)

(v) (v∗,
√

μe–v∗ – 1) is nonhyperbolic such that complex conjugate roots of (3.4) are with
modulus one if and only if

√
η√

ν – 1
+

4
ν

+
4e

√
η√

ν–1 (ν – 1)
μν

= 4

and

(
2 –

√
η√

ν – 1

)2

< 4
(

5 –
√

η√
ν – 1

–
4
ν

–
4e

√
η√

ν–1 (ν – 1)
μν

)
.

Taking μ ∈ [2, 20], η ∈ [1, 20], and ν = 3, the classification for positive steady state
(v∗,

√
μe–v∗ – 1) is depicted in Fig. 4.

4 Period-doubling bifurcation
In this section, we analyze that positive equilibrium points of systems (1.3) and (1.5) un-
dergo period-doubling bifurcation. For this bifurcation theory, normal forms and center
manifold theorem are implemented for the existence and direction of such type of bi-
furcation. Recently, period-doubling bifurcation related to discrete-time models has been
investigated by many authors [19–24].

First, we discuss emergence of flip bifurcation at positive equilibrium point (u∗, ke–u∗ –
1) of system (1.3). For this, it follows from part (v) of Lemma 2.3 that (u∗, ke–u∗ – 1) is
nonhyperbolic with root one of (2.4), say, δ1 = –1, if the following condition is satisfied:

k =
e

q
p–1 (p – 1)2

(5p – 1)(p – 1) – 2pq
, (5p – 1)(p – 1) > 2pq. (4.1)

Then, the second root for (2.4), say, δ2, satisfies |δ2| �= 1 if the following inequalities are
satisfied:

q �= 4(p – 1), q �= 2(p – 1). (4.2)
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Moreover, under the assumptions that p > 1 and q > 0, we consider the following set:

S1 =
{

(p, q, k) : k =
e

q
p–1 (p – 1)2

(5p – 1)(p – 1) – 2pq
, (5p – 1)(p – 1) > 2pq, q �= 2(p – 1), 4(p – 1)

}
.

Furthermore, let (p, q, k) ∈ S1. Then the positive steady-state (u∗, ke–u∗ – 1) of system (1.3)
undergoes flip bifurcation such that k is taken as bifurcation parameter, and it varies in a
small neighborhood of k1 given by

k1 :=
e

q
p–1 (p – 1)2

(5p – 1)(p – 1) – 2pq
.

Moreover, system (1.3) is represented equivalently with the following two-dimensional
map:

(
X
Y

)
→

( kXe–X

1+Y
pXY
q+X

)
. (4.3)

To discuss period-doubling bifurcation for fixed point (u∗, ke–u∗ – 1) of (4.3), we suppose
that (p, q, k1) ∈ S1. Then it follows that

(
X
Y

)
→

⎛
⎝ k1Xe–X

1+Y
pXY
q+X

⎞
⎠ . (4.4)

We take k∗ as small perturbation in parameter k1. Then a perturbed map corresponding
to (4.3) is given as follows:

(
X
Y

)
→

⎛
⎝ (k1+k∗)Xe–X

1+Y
pXY
q+X

⎞
⎠ . (4.5)

Suppose that x = X – a∗ and y = Y – b∗ are such that a∗ = q
p–1 and b∗ = (k1 + k∗)e–a∗ – 1.

Then from (4.5) we obtain the following map with fixed point at (0, 0):

(
x
y

)
→

(
α11 α12

α21 α22

)(
x
y

)
+

(
f1(x, y, k∗)
f2(x, y, k∗)

)
, (4.6)

where

f1
(
x, y, k∗) = α13x2 + α14xy + α15y2 + α16x3 + α17x2y + α18xy2 + α19y3 + a1yk∗ + a2xyk∗

+ a3y2k∗ + a4y
(
k∗)2 + O

((|x| + |y| + k∗)4),
f2
(
x, y, k∗) = α23x2 + α24xy + α25x3 + α26x2y + b1xk∗ + b2x2k∗ + O

((|x| + |y| + k∗)4),
α11 = 1 – a∗, α12 = –

a∗ea∗

k1
, α13 =

a∗ – 2
2

, α14 =
(a∗ – 1)ea∗

k1
,

α15 =
a∗e2a∗

k2
1

, α16 =
3 – a∗

6
, α17 =

ea∗ (2 – a∗)
2k1

, α18 =
e2a∗ (1 – a∗)

k2
1

,
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α19 = –
a∗e3a∗

k3
1

, a1 =
a∗ea∗

k2
1

, a2 =
ea∗ (1 – a∗)

k2
1

, a3 = –
2a∗e2a∗

k3
1

,

a4 = –
a∗ea∗

k3
1

, α21 =
pq(k1e–a∗ – 1)

(q + a∗)2 , α22 =
pa∗

q + a∗ , α23 =
pq(1 – k1e–a∗ )

(q + a∗)3 ,

α24 =
pq

(q + a∗)2 , α25 =
pq(k1e–a∗ – 1)

(q + a∗)4 , α26 = –
pq

(q + a∗)3 , b1 =
pqe–a∗

(q + a∗)2 ,

b2 = –
pqe–a∗

(q + a∗)3 .

Under the assumption that (p, q, k1) ∈ S1, the roots of (2.4) are computed as δ1 = –1 and

δ2 :=
3(p – 1) – q

p – 1
.

To obtain a normal form of (4.6), we consider the following similarity transformation:

(
x
y

)
=

(
α12 α12

–1 – α11 δ2 – α11

)(
u
v

)
. (4.7)

Then implementing similarity transformation (4.7), we obtain the following normal
form:

(
u
v

)
→

(
–1 0
0 δ2

)(
u
v

)
+

(
f3(u, v, k∗)
f4(u, v, k∗)

)
, (4.8)

where

f3
(
u, v, k∗) =

(
(δ2 – α11)α16

α12(δ2 + 1)
–

α25

δ2 + 1

)
x3 +

(
(δ2 – α11)α17

α12(δ2 + 1)
–

α26

δ2 + 1

)
x2y

+
(

(δ2 – α11)α13

α12(δ2 + 1)
–

b2k∗ + α23

δ2 + 1

)
x2 +

(δ2 – α11)α18xy2

α12(δ2 + 1)

+
(

(δ2 – α11)(k∗a2 + α14)
α12(δ2 + 1)

–
α24

δ2 + 1

)
xy –

b1k∗x
δ2 + 1

+
(δ2 – α11)α19y3

α12(δ2 + 1)

+
(δ2 – α11)(k∗a3 + α15)y2

α12(δ2 + 1)
+

(δ2 – α11)((k∗)2a4 + k∗a1)y
α12(δ2 + 1)

+ O
((|u| + |v| +

∣∣k∗∣∣)4),
f4
(
u, v, k∗) =

(
(1 + α11)α16

α12(δ2 + 1)
+

α25

δ2 + 1

)
x3 +

(
(1 + α11)α17

α12(δ2 + 1)
+

α26

δ2 + 1

)
x2y

+
(

(1 + α11)α13

α12(δ2 + 1)
+

b2k∗ + α23

δ2 + 1

)
x2 +

(1 + α11)α18xy2

α12(δ2 + 1)

+
(

(1 + α11)(k∗a2 + α14)
α12(δ2 + 1)

+
α24

δ2 + 1

)
xy +

b1k∗x
δ2 + 1

+
(1 + α11)α19y3

α12(δ2 + 1)

+
(1 + α11)(k∗a3 + α15)y2

α12(δ2 + 1)
+

(1 + α11)((k∗)2a4 + k∗a1)y
α12(δ2 + 1)

+ O
((|u| + |v| +

∣∣k∗∣∣)4),
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and

x = α12(u + v), y = –(1 + α11)u + (δ2 – α11)v.

For the implementation of center manifold theorem, we suppose that W c(0, 0, 0) repre-
sents the center manifold for (4.8) evaluated at (0, 0) in a small neighborhood of k∗ = 0.
Then W c(0, 0, 0) is approximated as follows:

W c(0, 0, 0) =
{(

u, v, k∗) ∈R
3 : v = h1u2 + h2uk∗ + h3

(
k∗)2 + O

((|u| +
∣∣k∗∣∣)3)},

where

h1 =
(

(1 + α11)α13

α12(1 – δ2
2)

+
α23

1 – δ2
2

)
α2

12 –
(

(1 + α11)α14

α12(1 – δ2
2)

+
α24

1 – δ2
2

)
α12(1 + α11)

+
α15(1 + α11)3

α12(1 – δ2
2)

,

h2 =
b1α12

1 – δ2
2

–
(1 + α11)2a1

α12(1 – δ2
2)

, h3 = 0.

The map restricted to the center manifold W c(0, 0, 0) is computed as follows:

F : u → –u + s1u2 + s2uk∗ + s3u2k∗ + s4u
(
k∗)2 + s5u3 + O

((|u| +
∣∣k∗∣∣)4),

where

s1 =
(

(δ2 – α11)α13

α12(1 + δ2)
–

α23

1 + δ2

)
α2

12 –
(

(δ2 – α11)α14

α12(1 + δ2)
–

α24

1 + δ2

)
α12(1 + α11)

+
(δ2 – α11)α15(1 + α11)2

α12(1 + δ2)
,

s2 = –
b1α12

1 + δ2
–

(δ2 – α11)a1(1 + α11)
α12(1 + δ2)

,

s3 = 2
(

(δ2 – α11)α13

α12(1 + δ2)
–

α23

1 + δ2

)
α2

12h2 –
b2α

2
12

1 + δ2

+
(

(δ2 – α11)α14

α12(1 + δ2)
–

α24

1 + δ2

)
α12(δ2 – α11)h2

–
((

(δ2 – α11)α14

α12(δ2 + 1)
–

α24

1 + δ2

)
α12h2 +

(δ2 – α11)a2

1 + δ2

)
(1 + α11)

–
b1α12h1

δ2 + 1
– 2

(δ2 – α11)2α15(1 + α11)h2

α12(1 + δ2)
+

(δ2 – α11)a3(1 + α11)2

α12(1 + δ2)

+
(δ2 – α11)2a1h1

α12(1 + δ2)
,

s4 =
(δ2 – α11)2a1h2

α12(1 + δ2)
–

b1α12h2

1 + δ2
–

(δ2 – α11)a4(1 + α11)
α12(1 + δ2)

,
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s5 =
(

(δ2 – α11)α16

α12(δ2 + 1)
–

α25

1 + δ2

)
α3

12 –
(

(δ2 – α11)α17

α12(1 + δ2)
–

α26

δ2 + 1

)
α2

12(1 + α11)

+ 2
(

(δ2 – α11)α13

α12(1 + δ2)
–

α23

1 + δ2

)
α2

12h1 +
(δ2 – α11)α18(1 + α11)2

1 + δ2

+
(

(δ2 – α11)α14

α12(1 + δ2)
–

α24

δ2 + 1

)
α12h1(δ2 – α11)

–
(

(δ2 – α11)α14

α12(1 + δ2)
–

α24

δ2 + 1

)
α12h1(1 + α11)

–
(δ2 – α11)α19(1 + α11)3

α12(δ2 + 1)
– 2

(δ2 – α11)2α15(1 + α11)h1

α12(δ2 + 1)
.

Next, we define the following two nonzero real numbers:

l1 =
(

∂2f1

∂u∂k∗ +
1
2

∂F
∂k∗

∂2F
∂u2

)
(0,0)

= –
b1α12

1 + δ2
–

(δ2 – α11)a1(1 + α11)
α12(1 + δ2)

�= 0

and

l2 =
(

1
6

∂3F
∂u3 +

(
1
2

∂2F
∂u2

)2)
(0,0)

= s2
1 + s5 �= 0.

Due to aforementioned computation, we have the following result about period-doubling
bifurcation of system (1.3).

Theorem 4.1 If l1 �= 0 and l2 �= 0, then system (1.3) undergoes period-doubling bifurcation
at the unique positive equilibrium point when parameter k varies in a small neighborhood
of k1. Furthermore, if l2 > 0, then the period-two orbits that bifurcate from positive equilib-
rium of (1.3) are stable, and if l2 < 0, then these orbits are unstable.

At the end of this section, we discuss that the positive equilibrium (v∗,
√

μe–v∗ – 1) of
system (1.5) undergoes flip bifurcation. For this, we first assume that

2
√

ν – 1(2ν – 1) >
√

ην (4.9)

and take

μ =
2e

√
η√

ν–1 (ν – 1)3/2

2
√

ν – 1(2ν – 1) – √
ην

. (4.10)

Suppose that (4.9) and (4.10) hold. Then the characteristic polynomial (3.4) has real
roots τ1 and τ2 with τ1 = –1 and |τ2| �= 1 if the following inequalities are satisfied:

√
η√

ν – 1
�= 4,

√
η√

ν – 1
�= 2. (4.11)

Keeping in view (4.9), (4.10), and (4.11), we define the following set:

S2 =
{

(μ,ν,η) : μ =
2e

√
η√

ν–1 (ν – 1) 3
2

2
√

ν – 1(2ν – 1) – √
ην

and (4.9), (4.11) hold
}

.
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Suppose that (μ,ν,η) ∈ S2. Then the positive steady-state (v∗,
√

μe–v∗ – 1) of system (1.5)
undergoes flip bifurcation when μ is taken as bifurcation parameter and varies in a small
neighborhood of μ1 defined as

μ1 :=
2e

√
η√

ν–1 (ν – 1)3/2

2
√

ν – 1(2ν – 1) – √
ην

.

In the similar fashion as for system (1.3), we construct a perturbed map corresponding to
system (1.5) as follows:

(
X
Y

)
→

⎛
⎝ (μ1+μ∗)Xe–X

1+Y 2

νX2Y
η+X2

⎞
⎠ . (4.12)

We consider the translations x = X – v∗ and y = Y –
√

(μ1 + μ∗)e–v∗ – 1, where v∗ =
√

η

ν–1 ,
for the conversion of map (4.12) into the following form having (0, 0) as its fixed point:

(
x
y

)
→

(
β11 β12

β21 β22

)(
x
y

)
+

(
g1(x, y,μ∗)
g2(x, y,μ∗)

)
, (4.13)

where

g1
(
x, y,μ∗) = β13x2 + β14xy + β15y2 + β16x3 + β17x2y + β18xy2 + β19y3 + c1yμ∗

+ c2xyμ∗ + c3y2μ∗ + c4y
(
μ∗)2 + O

((|x| + |y| +
∣∣μ∗∣∣)4),

g2
(
x, y,μ∗) = β23x2 + β24xy + β25x3 + β26x2y + d1xμ∗ + d2x2μ∗

+ O
((|x| + |y| +

∣∣μ∗∣∣)4),
β11 = 1 – v∗, β12 = –

2v∗ev∗√
μ1e–v∗ – 1
μ1

, β13 =
v∗

2
– 1,

β14 =
2
√

μ1e–v∗ – 1(v∗ – 1)
e–v∗

μ1
, β15 =

v∗ev∗ (3μ1 – 4ev∗ )
μ2

1
, β16 =

3 – v∗

6
,

β17 =
(2 – v∗)

√
μ1e–v∗ – 1

e–v∗
μ1

, β18 =
ev∗ (1 – v∗)(3μ1 – 4ev∗ )

μ2
1

,

β19 =
4v∗√μ1e–v∗ – 1(2 – μ1e–v∗ )

e–3v∗
μ3

1
, c1 =

v∗ev∗ (μ1e–v∗ – 2)
μ2

1
√

μ1e–v∗ – 1
,

c2 =
ev∗ (μ1e–v∗ – 2)(1 – v∗)

μ2
1
√

μ1e–v∗ – 1
, c3 =

v∗ev∗ (8ev∗ – 3μ1)
μ3

1
,

c4 = –
v∗ev∗ (3e–2v∗

μ2
1 – 12μ1e–v∗ + 8)

4μ3
1(μ1e–v∗ – 1) 3

2
, β21 =

2v∗(ν – 1)2
√

μ1e–v∗ – 1
ην

, β22 = 1,

β23 =
(ν – 1)2(ν – 4)

√
μ1e–v∗ – 1

ην2 , β24 =
2v∗(ν – 1)2

ην
,

β25 = –
4v∗(ν – 1)3(ν – 2)

√
μ1e–v∗ – 1

η2ν3 , β26 =
(ν – 1)2(ν – 4)

ην2 ,
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d1 =
v∗e–v∗ (ν – 1)2

ην
√

μ1e–v∗ – 1
, d2 =

e–v∗ (ν – 1)2(ν – 4)
2ην2

√
μ1e–v∗ – 1

.

Moreover, we take

τ2 := 3 –
√

η√
ν – 1

and construct the following similarity transformation:

(
x
y

)
=

(
β12 β12

–1 – β11 τ2 – β11

)(
u
v

)
. (4.14)

With the implementation of similarity transformation (4.14), we obtain the following
normal for map (4.13):

(
u
v

)
→

(
–1 0
0 τ2

)(
u
v

)
+

(
g3(u, v,μ∗)
g4(u, v,μ∗)

)
, (4.15)

where

g3
(
u, v,μ∗) =

(
(τ2 – β11)β16

β12(τ2 + 1)
–

β25

τ2 + 1

)
x3 +

(
(τ2 – β11)β17

β12(τ2 + 1)
–

β26

τ2 + 1

)
x2y

+
(

(τ2 – β11)β13

β12(τ2 + 1)
–

d2μ
∗ + β23

τ2 + 1

)
x2 +

(τ2 – β11)β18xy2

β12(τ2 + 1)

+
(

(τ2 – β11)(μ∗c2 + β14)
β12(τ2 + 1)

–
β24

τ2 + 1

)
xy –

d1μ
∗x

τ2 + 1
+

(τ2 – β11)β19y3

β12(τ2 + 1)

+
(τ2 – β11)(μ∗c3 + β15)y2

β12(τ2 + 1)
+

(τ2 – β11)((μ∗)2c4 + μ∗c1)y
β12(τ2 + 1)

+ O
((|u| + |v| +

∣∣μ∗∣∣)4),
g4
(
u, v,μ∗) =

(
(1 + β11)β16

β12(τ2 + 1)
+

β25

τ2 + 1

)
x3 +

(
(1 + β11)β17

β12(τ2 + 1)
+

β26

τ2 + 1

)
x2y

+
(

(1 + β11)β13

β12(τ2 + 1)
+

d2μ
∗ + β23

τ2 + 1

)
x2 +

(1 + β11)β18xy2

β12(τ2 + 1)

+
(

(1 + β11)(μ∗c2 + β14)
β12(τ2 + 1)

+
β24

τ2 + 1

)
xy +

d1μ
∗x

τ2 + 1
+

(1 + β11)β19y3

β12(τ2 + 1)

+
(1 + β11)(μ∗c3 + β15)y2

β12(τ2 + 1)
+

(1 + β11)((μ∗)2c4 + μ∗c1)y
β12(τ2 + 1)

+ O
((|u| + |v| +

∣∣μ∗∣∣)4),
and

x = β12(u + v), y = –(1 + β11)u + (τ2 – β11)v.

To apply center manifold theorem to map (4.15), we denote by W c(0, 0, 0) the center man-
ifold for (4.15) computed at (0, 0) in a small neighborhood of μ∗ = 0. Then this center
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manifold for (4.15) is approximated as

W c(0, 0, 0) =
{(

u, v,μ∗) ∈R
3 : v = p1u2 + p2uμ∗ + p3

(
μ∗)2 + O

((|u| +
∣∣μ∗∣∣)3)},

where

p1 =
(

(1 + β11)β13

β12(1 – τ 2
2 )

+
β23

1 – τ 2
2

)
β2

12 –
(

(1 + β11)β14

β12(1 – τ 2
2 )

+
β24

1 – τ 2
2

)
β12(1 + β11)

+
β15(1 + β11)3

β12(1 – τ 2
2 )

,

p2 =
d1β12

1 – τ 2
2

–
(1 + β11)2c1

β12(1 – τ 2
2 )

, p3 = 0.

Moreover, the map restricted to the center manifold W c(0, 0, 0) is computed as follows:

G : u → –u + t1u2 + t2uμ∗ + t3u2μ∗ + t4u
(
μ∗)2 + t5u3 + O

((|u| +
∣∣μ∗∣∣)4),

where

t1 =
(

(τ2 – β11)β13

β12(1 + τ2)
–

β23

1 + τ2

)
β2

12 –
(

(τ2 – β11)β14

β12(1 + τ2)
–

β24

1 + τ2

)
β12(1 + β11)

+
(τ2 – β11)β15(1 + β11)2

β12(1 + τ2)
,

t2 = –
d1β12

1 + τ2
–

(τ2 – β11)c1(1 + β11)
β12(1 + τ2)

,

t3 = 2
(

(τ2 – β11)β13

β12(1 + τ2)
–

β23

1 + τ2

)
β2

12p2 –
d2β

2
12

1 + τ2

+
(

(τ2 – β11)β14

β12(1 + τ2)
–

β24

1 + τ2

)
β12(τ2 – β11)p2

–
((

(τ2 – β11)β14

β12(τ2 + 1)
–

β24

1 + τ2

)
β12p2 +

(τ2 – β11)c2

1 + τ2

)
(1 + β11)

–
d1β12p1

τ2 + 1
– 2

(τ2 – β11)2β15(1 + β11)p2

β12(1 + τ2)
+

(τ2 – β11)c3(1 + β11)2

β12(1 + τ2)

+
(τ2 – β11)2c1p1

β12(1 + τ2)
,

t4 =
(τ2 – β11)2c1p2

β12(1 + τ2)
–

d1β12p2

1 + τ2
–

(τ2 – β11)c4(1 + β11)
β12(1 + τ2)

,

t5 =
(

(τ2 – β11)β16

β12(τ2 + 1)
–

β25

1 + τ2

)
β3

12 –
(

(τ2 – β11)β17

β12(1 + τ2)
–

β26

τ2 + 1

)
β2

12(1 + β11)

+ 2
(

(τ2 – β11)β13

β12(1 + τ2)
–

β23

1 + τ2

)
β2

12p1 +
(τ2 – β11)β18(1 + β11)2

1 + τ2

+
(

(τ2 – β11)β14

β12(1 + τ2)
–

β24

τ2 + 1

)
β12p1(τ2 – β11)

–
(

(τ2 – β11)β14

β12(1 + τ2)
–

β24

τ2 + 1

)
β12p1(1 + β11)

–
(τ2 – β11)β19(1 + β11)3

β12(τ2 + 1)
– 2

(τ2 – β11)2β15(1 + β11)p1

β12(τ2 + 1)
.
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Furthermore, we define the following nonzero real numbers:

m1 =
(

∂2g1

∂u∂μ∗ +
1
2

∂G
∂μ∗

∂2G
∂u2

)
(0,0)

= –
d1β12

1 + τ2
–

(τ2 – β11)c1(1 + β11)
β12(1 + τ2)

�= 0

and

m2 =
(

1
6

∂3G
∂u3 +

(
1
2

∂2G
∂u2

)2)
(0,0)

= t2
1 + t5 �= 0.

Due to aforementioned computation, we have the following result about period-doubling
bifurcation of system (1.5).

Theorem 4.2 If m1 �= 0 and m2 �= 0, then system (1.5) undergoes period-doubling bifur-
cation at the unique positive equilibrium point when the parameter μ varies in a small
neighborhood of μ1. Furthermore, if m2 > 0, then the period-two orbits that bifurcate from
positive equilibrium of (1.5) are stable, and if m2 < 0, then these orbits are unstable.

5 Neimark–Sacker bifurcation
In this section, we investigate when positive steady-states of systems (1.3) and (1.5) un-
dergo Neimark–Sacker bifurcation. For this bifurcation, theory of normal forms is imple-
mented for the existence and direction of such a type of bifurcation. Recently, Neimark–
Sacker bifurcation related to discrete-time models has been investigated by many authors
[19–27]. Furthermore, in the case of continuous systems, we refer to [28–32] for some
recent discussions related to Hopf bifurcation.

First, we show that the positive equilibrium (u∗, ke–u∗ – 1) of system (1.3) undergoes
Hopf bifurcation such that k is selected as a bifurcation parameter. For this, we see that
the characteristic polynomial (2.4) has complex roots if the following inequality holds:

(
2 –

q
p – 1

)2

< 4
(

2 –
e

q
p–1

k
–

1
p

+
e

q
p–1

kp
–

q
p – 1

)
. (5.1)

Furthermore, we suppose that η1 and η2 are complex roots of (2.4). Then these roots
satisfy |η1| = |η2| = 1 whenever the following conditions hold:

k =
e

q
p–1 (p – 1)2

(p – 1)2 – pq
, (p – 1)2 > pq. (5.2)

Keeping in view (5.1) and (5.2), we consider the following set:

S3 =
{

(p, q, k) ∈R
3
+ : p > 1, q > 0, k =

e
q

p–1 (p – 1)2

(p – 1)2 – pq
, pq < (p – 1)2

}
.

Suppose that (p, q, k) ∈ S3. Then the positive equilibrium (u∗, ke–u∗ – 1) of system (1.3)
undergoes Hopf bifurcation whenever k varies in a small neighborhood of k2 given as

k2 :=
e

q
p–1 (p – 1)2

(p – 1)2 – pq
.
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Assume that (p, q, k) ∈ S3. Then plant–herbivore model (1.3) is represented equivalently
by the following two-dimensional map:

(
X
Y

)
→

⎛
⎝ k2Xe–X

1+Y
pXY
q+X

⎞
⎠ . (5.3)

Assume that k̃ represents a small perturbation in k2. Then the corresponding perturbed
map for (5.3) is expressed as follows:

(
X
Y

)
→

⎛
⎝ (k2+k̃)Xe–X

1+Y
pXY
q+X

⎞
⎠ . (5.4)

To translate the positive fixed point of (5.4) at (0, 0), we implement the translations x =
X – u∗ and y = Y – ((k2 + k̃)e–u∗ – 1) with u∗ = q

p–1 . Then from (5.4) it follows that

(
x
y

)
→

(
m11 m12

m21 m22

)(
x
y

)
+

(
h1(x, y)
h2(x, y)

)
, (5.5)

where

h1(x, y) = m13x2 + m14xy + m15y2 + m16x3 + m17x2y + m18xy2 + m19y3 + O
((|x| + |y|)4),

h2(x, y) = m23x2 + m24xy + m25x3 + m26x2y + O
((|x| + |y|)4),

m11 = 1 – u∗, m12 = –
u∗eu∗

(k2 + k̃)
, m13 =

u∗ – 2
2

, m14 =
(u∗ – 1)eu∗

(k2 + k̃)
,

m15 =
u∗e2u∗

(k2 + k̃)2
, m16 =

3 – u∗

6
, m17 =

eu∗ (2 – u∗)
2(k2 + k̃)

, m18 =
e2u∗ (1 – u∗)

(k2 + k̃)2
,

m19 = –
u∗e3u∗

(k2 + k̃)3
, m21 =

pq((k2 + k̃)e–u∗ – 1)
(q + u∗)2 , m22 =

pu∗

q + u∗ ,

m23 =
pq(1 – (k2 + k̃)e–u∗ )

(q + u∗)3 , m24 =
pq

(q + u∗)2 , m25 =
pq((k2 + k̃)e–u∗ – 1)

(q + u∗)4 ,

m26 = –
pq

(q + u∗)3 .

Moreover, the characteristic equation for the variational matrix of system (5.5) computed
at (0, 0) is given as follows:

η2 – P(k̃)η + Q(k̃) = 0, (5.6)

where

P(k̃) = 2 –
q

p – 1
,
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and

Q(k̃) = 2 –
e

q
p–1

k2 + k̃
–

1
p

+
e

q
p–1

p(k2 + k̃)
–

q
p – 1

.

Assume that (p, q, k) ∈ S3. Then the complex roots for (5.6) are computed as follows:

η1 =
P(k̃) – i

√
4Q(k̃) – (P(k̃))2

2

and

η2 =
P(k̃) + i

√
4Q(k̃) – (P(k̃))2

2
.

Then it easily follows that

|η1| = |η2| =

√√√√2 –
e

q
p–1

k2 + k̃
–

1
p

+
e

q
p–1

p(k2 + k̃)
–

q
p – 1

.

Also, we have that

(
d|η2|

dk̃

)
k̃=0

=
(

d|η1|
dk̃

)
k̃=0

=
e– q

p–1 (1 + p2 – p(2 + q))2

2(p – 1)3p
�= 0.

Since –2 < P(0) < 2 as (p, q, k) ∈ S3. Moreover, a simple computation yields that P(0) =
2 – q

p–1 , and we suppose that P(0) �= 0 and P(0) �= –1, that is,

q �= 2(p – 1), q �= 3(p – 1). (5.7)

Suppose that (5.7) holds and (p, q, k) ∈ S3. Then it follows that P(0) �= ±2, 0, –1, that is,
ηm

1 ,ηm
2 �= 1 for all m = 1, 2, 3, 4 at k̃ = 0. Therefore both roots of (5.6) do not lie in the inter-

section of the unit circle with the coordinate axes when k̃ = 0.
Furthermore, we suppose that κ = P(0)

2 and ω =
√

4Q(0)–(P(0))2

2 . Then to convert (5.5) into
normal form, we take into account the following similarity transformation:

(
x
y

)
→

(
m12 0

κ – m11 –ω

)(
u
v

)
. (5.8)

Due to implementation of similarity transformation (5.8), we can obtain the following
normal form for (5.5):

(
u
v

)
→

(
κ –ω

ω κ

)(
u
v

)
+

(
f̃ (u, v)
g̃(u, v)

)
, (5.9)

where

f̃ (u, v) =
m13

m12
x2 +

m14

m12
xy +

m15

m12
y2 +

m16

m12
x3 +

m17

m12
x2y +

m18

m12
xy2 +

m19

m12
y3

+ O
((|u| + |v|)4),



Elsayed and Din Advances in Difference Equations        (2019) 2019:271 Page 20 of 34

g̃(u, v) =
(

(κ – m11)m13

m12ω
–

m23

ω

)
x2 +

(
(κ – m11)m14

m12ω
–

m24

ω

)
xy

+
(

(κ – m11)m15

m12ω

)
y2 +

(
(κ – m11)m16

m12ω
–

m25

ω

)
x3

+
(

(κ – m11)m17

m12ω
–

m26

ω

)
x2y +

(
(κ – m11)m18

m12ω

)
xy2

+
(

(κ – m11)m19

m12ω

)
y3 + O

((|u| + |v|)4),
x = m12u, and y = (κ – m11)u – ωv. To discuss the direction for Hopf bifurcation, we con-
sider the following first Lyapunov exponent computed as

L =
([

– Re

(
(1 – 2η1)η2

2
1 – η1

ζ20ζ11

)
–

1
2
|ζ11|2 – |ζ02|2 + Re(η2ζ21)

])
k̃=0

,

where

ζ20 =
1
8
[
f̃uu – f̃vv + 2g̃uv + i(g̃uu – g̃vv – 2f̃uv)

]
,

ζ11 =
1
4
[
f̃uu + f̃vv + i(g̃uu + g̃vv)

]
,

ζ02 =
1
8
[
f̃uu – f̃vv – 2g̃uv + i(g̃uu – g̃vv + 2f̃uv)

]
,

ζ21 =
1

16
[
f̃uuu + f̃uvv + g̃uuv + g̃vvv + i(g̃uuu + g̃uvv – f̃uuv – f̃vvv)

]
.

Arguing as in [33–37], we present the following result on the existence and direction of
Neimark–Sacker bifurcation at positive steady state of system (1.3).

Theorem 5.1 Suppose that (5.7) holds and L �= 0. Then the positive equilibrium (u∗, ke–u∗ –
1) of system (1.3) undergoes Hopf bifurcation as the bifurcation parameter k varies in a

small neighborhood of k2 = e
q

p–1 (p–1)2

(p–1)2–pq . Furthermore, if L < 0, then an attracting invariant
closed curve bifurcates from the equilibrium point for k > k2, and if L > 0, then a repelling
invariant closed curve bifurcates from the equilibrium point for k < k2.

Finally, in this section, we discuss when the positive steady state (v∗,
√

μe–v∗ – 1) of sys-
tem (1.5) undergoes Hopf bifurcation when μ is taken as a bifurcation parameter.

Suppose that the following parametric conditions hold:

η < 4
√

η
√

ν – 1, 4(ν – 1)3/2 –
√

ην > 0. (5.10)

Furthermore, we assume that

μ =
4e

√
η√

ν–1 (ν – 1)3/2

4(ν – 1)3/2 – √
ην

. (5.11)
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Then, keeping in view conditions (5.10) and (5.11), we consider the set

S4 =
{

(μ,ν,η) : ν > 1,μ,η > 0,μ =
4e

√
η√

ν–1 (ν – 1)3/2

4(ν – 1)3/2 – √
ην

,

η < 4
√

η
√

ν – 1, 4(ν – 1)3/2 >
√

ην

}
.

Moreover, assume that (μ,ν,η) ∈ S4. Then the positive steady state (v∗,
√

μe–v∗ – 1) of sys-
tem (1.5) undergoes Hopf bifurcation as μ varies in a small neighborhood of μ2 given as

μ2 :=
4e

√
η√

ν–1 (ν – 1)3/2

4(ν – 1)3/2 – √
ην

.

Next, we assume that (μ,ν,η) ∈ S4. Then system (1.5) is represented by the following two-
dimensional map:

(
X
Y

)
→

⎛
⎝μ2Xe–X

1+Y 2

νX2Y
η+X2

⎞
⎠ . (5.12)

Taking a small perturbation μ̃ in μ2 corresponding to map (5.12), we have the following
perturbed mapping:

(
X
Y

)
→

⎛
⎝ (μ2+μ̃)Xe–X

1+Y 2

νX2Y
η+X2

⎞
⎠ . (5.13)

Furthermore, taking into account the translations x = X – v∗ and y = Y –√
(μ1 + μ∗)e–v∗ – 1, where v∗ =

√
η

ν–1 , (5.13) is converted into following map:

(
x
y

)
→

(
b11 b12

b21 b22

)(
x
y

)
+

(
k1(x, y)
k2(x, y)

)
, (5.14)

where

k1(x, y) = b13x2 + b14xy + b15y2 + b16x3 + b17x2y + b18xy2 + b19y3 + O
((|x| + |y|)4),

k2(x, y) = b23x2 + b24xy + b25x3 + b26x2y + O
((|x| + |y|)4), b11 = 1 – v∗,

b12 = –
2v∗ev∗√(μ2 + μ̃)e–v∗ – 1

μ2 + μ̃
, b13 =

v∗

2
– 1,

b14 =
2
√

(μ2 + μ̃)e–v∗ – 1(v∗ – 1)
e–v∗ (μ2 + μ̃)

, b15 =
v∗ev∗ (3(μ2 + μ̃) – 4ev∗ )

(μ2 + μ̃)2 ,

b16 =
3 – v∗

6
, b17 =

(2 – v∗)
√

(μ2 + μ̃)e–v∗ – 1
e–v∗ (μ2 + μ̃)

,

b18 =
ev∗ (1 – v∗)(3(μ2 + μ̃) – 4ev∗ )

(μ2 + μ̃)2 , b19 =
4v∗√(μ2 + μ̃)e–v∗ – 1(2 – (μ2 + μ̃)e–v∗ )

e–3v∗ (μ2 + μ̃)3 ,
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b21 =
2v∗(ν – 1)2

√
(μ2 + μ̃)e–v∗ – 1
ην

, b22 = 1,

b23 =
(ν – 1)2(ν – 4)

√
(μ2 + μ̃)e–v∗ – 1

ην2 , b24 =
2v∗(ν – 1)2

ην
,

b25 = –
4v∗(ν – 1)3(ν – 2)

√
(μ2 + μ̃)e–v∗ – 1

η2ν3 , b26 =
(ν – 1)2(ν – 4)

ην2 .

Then the characteristic equation for the variational matrix of (5.14) computed at its equi-
librium (0, 0) is given as follows:

η2 – R(μ̃)η + S(μ̃) = 0, (5.15)

where

R(μ̃) = 2 –
√

η√
ν – 1

and

S(μ̃) = 5 –
√

η√
ν – 1

–
4
ν

–
4e

√
η√

ν–1 (ν – 1)
(μ2 + μ̃)ν

.

Assume that (μ,ν,η) ∈ S4. Then the complex roots for (5.17) are computed as follows:

η1 =
R(μ̃) – i

√
4S(μ̃) – (R(μ̃))2

2

and

η2 =
R(μ̃) + i

√
4S(μ̃) – (R(μ̃))2

2
.

Moreover, it follows that

|η1| = |η2| =

√√√√
5 –

√
η√

ν – 1
–

4
ν

–
4e

√
η√

ν–1 (ν – 1)
(μ2 + μ̃)ν

.

Similarly, a simple computation yields that

(
d|η2|
dμ̃

)
μ̃=0

=
(

d|η1|
dμ̃

)
μ̃=0

=
e–

√
η√

ν–1 (√ην – 4(ν – 1)3/2)2

8(ν – 1)2ν
�= 0.

Furthermore, according to the existence condition for bifurcation, we have that –2 < R(0) <
2. Next, it follows that R(0) = 2 –

√
η√

ν–1 . Moreover, we suppose that R(0) �= 0 and R(0) �= –1,
that is,

√
η �= 2

√
ν – 1,

√
η �= 3

√
ν – 1. (5.16)
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Assume that (μ,ν,η) ∈ S4 and (5.16) holds. Then it follows that R(0) �= ±2, 0, –1, and
due to these restrictions, we have that ηm

1 ,ηm
2 �= 1 for all m = 1, 2, 3, 4 at μ̃ = 0. Therefore, at

μ̃ = 0, the roots of (5.14) do not lie in the intersection of the unit circle with the coordinate
axes.

Furthermore, we take α = R(0)
2 and β =

√
4S(0)–(R(0))2

2 . Then, to obtain the normal form for
(5.14) at μ̃ = 0, we consider the following similarity transformation:

(
x
y

)
→

(
b12 0

α – b11 –β

)(
u
v

)
. (5.17)

Due to implementation of similarity transformation (5.17), we obtain the following nor-
mal form for (5.14):

(
u
v

)
→

(
α –β

β α

)(
u
v

)
+

(
h̃(u, v)
k̃(u, v)

)
, (5.18)

where

h̃(u, v) =
b13

b12
x2 +

b14

b12
xy +

b15

b12
y2 +

b16

b12
x3 +

b17

b12
x2y +

b18

b12
xy2 +

b19

b12
y3 + O

((|u| + |v|)4),
k̃(u, v) =

(
(α – b11)b13

b12β
–

b23

β

)
x2 +

(
(α – b11)b14

b12β
–

b24

β

)
xy

+
(

(α – b11)b15

b12β

)
y2 +

(
(α – b11)b16

b12β
–

b25

β

)
x3

+
(

(α – b11)b17

b12β
–

b26

β

)
x2y +

(
(α – b11)b18

b12β

)
xy2

+
(

(α – b11)b19

b12β

)
y3 + O

((|u| + |v|)4),
x = b12u, and y = (α – b11)u –βv. To discuss the direction for Hopf bifurcation, we consider
the following first Lyapunov exponent computed as

Υ =
([

– Re

(
(1 – 2η1)η2

2
1 – η1

ζ20ζ11

)
–

1
2
|ζ11|2 – |ζ02|2 + Re(η2ζ21)

])
μ̃=0

,

where

ζ20 =
1
8
[
h̃uu – h̃vv + 2k̃uv + i(k̃uu – k̃vv – 2h̃uv)

]
,

ζ11 =
1
4
[
h̃uu + h̃vv + i(k̃uu + k̃vv)

]
,

ζ02 =
1
8
[
h̃uu – h̃vv – 2k̃uv + i(k̃uu – k̃vv + 2h̃uv)

]
,

ζ21 =
1

16
[
h̃uuu + h̃uvv + k̃uuv + k̃vvv + i(k̃uuu + k̃uvv – h̃uuv – h̃vvv)

]
.

Next, due to aforementioned computation, we state the following theorem, which gives
conditions for the existence and direction of Hopf bifurcation for positive equilibrium of
system (1.5).
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Theorem 5.2 Suppose that (5.16) holds and Υ �= 0. Then the positive equilibrium
(v∗,

√
μe–v∗ – 1) of system (1.5) undergoes Hopf bifurcation as the bifurcation parameter

μ varies in a small neighborhood of μ2 = 4e

√
η√

ν–1 (ν–1)3/2

4(ν–1)3/2–√
ην

. Furthermore, if Υ < 0, then an at-
tracting invariant closed curve bifurcates from the equilibrium point for μ > μ2, and if
Υ > 0, then a repelling invariant closed curve bifurcates from the equilibrium point for
μ < μ2.

6 Chaos control
For controlling random irregular and fluctuating behavior in a biological system, chaos
control is considered to be a practical tool for avoiding this chaotic and complex behavior.
For further details related to biological meanings of chaos control and its practical use in
the real world, we refer to [38].

In this section we implement a simple chaos control technique for both systems (1.3)
and (1.5). Moreover, there are various chaos control methods for discrete-time dynamical
systems. For further details related to these techniques, we refer to [39–61].

Here we implement a hybrid control method (also see [24, 47]). The hybrid control tech-
nique is based on parameter perturbation and a state feedback control method. First, we
implement this methodology to system (1.3) as follows:

xn+1 = α

(
kxne–xn

1 + yn

)
+ (1 – α)xn,

yn+1 = α

(
pxnyn

q + xn

)
+ (1 – α)yn,

(6.1)

where 0 < α < 1 is a control parameter. Similarly, implementation of a hybrid control strat-
egy to system (1.5) yields:

xn+1 = β

(
μxne–xn

1 + y2
n

)
+ (1 – β)xn,

yn+1 = β

(
νx2

nyn

η + x2
n

)
+ (1 – β)yn,

(6.2)

where 0 < β < 1 is a control parameter for a hybrid control strategy. Next, system (6.1) is
controllable as long as its steady state (u∗, ke–u∗ – 1) is locally asymptotically stable. Then
for particular choice of control parameter α, we can obtain the desired interval for control-
ling chaos and bifurcation. Furthermore, the variational matrix for the controlled system
(6.1) at its positive equilibrium (u∗, ke–u∗ – 1) is computed as follows:

[
1 – αu∗ – αu∗eu∗

k
α(ke–u∗

–1)(p–1)
pu∗ 1

]
.

Then the characteristic polynomial for the aforementioned variational matrix is given
by

F(η) = η2 –
(

2 –
αq

p – 1

)
η + 1 –

qα

p – 1
+ α2 –

e
q

p–1 α2

k
–

α2

p
+

e
q

p–1 α2

kp
. (6.3)
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Figure 5 Controllable region for system (6.1)

Lemma 6.1 Assume that 0 < q < (p – 1) ln(k), k > 1, and p > 1. Then the positive steady
state (u∗, ke–u∗ – 1) of the controlled system (6.1) is a sink if and only if

∣∣∣∣2 –
αq

p – 1

∣∣∣∣ < 2 –
qα

p – 1
+ α2 –

e
q

p–1 α2

k
–

α2

p
+

e
q

p–1 α2

kp
< 2.

For 0 < α < 1, p ∈ [1, 1000], k = 60, and q = 50, the controllable region for system (6.1) is
depicted in Fig. 5 in the pα-plane.

Furthermore, we suppose that √
η < ln(μ)

√
ν – 1, μ > 1, and ν > 1. Then controlled sys-

tem (6.2) has a unique positive steady-state (v∗,
√

μe–v∗ – 1), which is similar to the positive
equilibrium point of (1.5). Moreover, the variational matrix for controlled system (6.2) is
computed as follows:

⎡
⎢⎢⎢⎢⎢⎣

1 – β
√

η√
ν–1 – 2β

√
e

√
η√

ν–1 √
η

√
μ–e

√
η√

ν–1

μ
√

ν–1

2β

√
μ–e

√
η√

ν–1 (ν–1)3/2√
e

√
η√

ν–1 √
ην

1

⎤
⎥⎥⎥⎥⎥⎦ .

Furthermore, the characteristic polynomial for the aforementioned variational matrix
is given by

P(η) = η2 –
(

2 –
β
√

η√
ν – 1

)
η + 1 –

β
√

η√
ν – 1

+
4β2(μ – e

√
η√

ν–1 )(ν – 1)
μν

. (6.4)

Lemma 6.2 Suppose that √
η < ln(μ)

√
ν – 1, μ > 1, and ν > 1. Then the positive steady

state (v∗,
√

μe–v∗ – 1) of system (6.2) is locally asymptotically stable if the following condi-
tion is satisfied:

∣∣∣∣2 –
β
√

η√
ν – 1

∣∣∣∣ < 2 –
β
√

η√
ν – 1

+
4β2(μ – e

√
η√

ν–1 )(ν – 1)
μν

< 2.
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Figure 6 Controllable region for system (6.2)

(a) Bifurcation diagram for xn (b) Maximum Lyapunov exponents

Figure 7 Bifurcation diagram and MLE for system (1.3) with p = 20.1, q = 45.1, k ∈ [5, 20], and
(x0, y0) = (2.36, 3.17)

For 0 < β < 1, ν ∈ [1, 100], η = 30, and μ = 40, the controllable region for system (6.2) is
depicted in Fig. 6 in the νβ-plane.

7 Numerical simulation and discussion
Example 7.1 First, we choose p = 20.1, q = 45.1, and k ∈ [5, 20]. Then system (1.3) under-
goes flip bifurcation as bifurcation parameter k varies in the interval [5, 20]. Moreover, the
bifurcation diagram for plant population density xn is depicted in Fig. 7a, and the corre-
sponding maximum Lyapunov exponents (MLE) are depicted in Fig. 7b.

Example 7.2 Next, we choose p = 7.3, q = 4.6, k ∈ [5, 55], and initial values (x0, y0) =
(0.73, 5.49). Then system (1.3) undergoes Hopf bifurcation as the bifurcation parame-
ter k varies in a small neighborhood of k = 13.48167321833215. If we choose (p, q, k) =
(7.3, 4.6, 13.482), then the positive steady state for system (1.3) is given by (0.730159,
5.49591). Furthermore, the characteristic equation for the variational matrix is given by

η2 – 1.26984126984127η + 1 = 0. (7.1)
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(a) Bifurcation diagram for xn (b) Bifurcation diagram for yn

(c) Maximum Lyapunov exponents

Figure 8 Bifurcation diagrams and MLE for system (1.3) with p = 7.3, q = 4.6, k ∈ [5, 55], and
(x0, y0) = (0.73, 5.49)

The complex conjugate roots for (7.1) are η1 = 0.634921 + 0.772577i and η2 = 0.634921 –
0.772577i with |η1| = |η2| = 1. Thus, we have (p, q, k) = (7.3, 4.6, 13.48167321833215) ∈ S3.
Moreover, bifurcation diagrams and MLE are depicted in Fig. 8. Taking q = 4.6, p = 7.3, and
k = 13.46, 13.48167, 13.6, 14, 16, 19.5, phase portraits for system (1.3) are depicted in Fig. 9.
To apply a hybrid control strategy, we choose (p, q, k) = (7.3, 4.6, 19.5). Then controlled
system (6.1) takes the following form:

xn+1 = α

(
19.5xne–xn

1 + yn

)
+ (1 – α)xn,

yn+1 = α

(
7.3xnyn

4.6 + xn

)
+ (1 – α)yn.

(7.2)

Then system (7.2) has a positive fixed point (0.730159, 8.39573). Furthermore, the char-
acteristic equation for the variational matrix of (7.2) is computed as follows:

η2 – (2 – 0.730159α)η + 1 – 0.730159α + 0.771162α2 = 0. (7.3)

Due to the Jury condition, the equilibrium point (0.730159, 8.39573) is a sink if and only
if 0 < α < 0.946829. Choosing α = 0.945, plots for the controlled system (7.2) are shown in
Fig. 10.

Example 7.3 Now we consider system (1.5) for the numerical verification of flip bifurca-
tion. For this, we choose μ ∈ [2, 22], ν = 8.5, η = 55.8, and the initial conditions (x0, y0) =
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(a) Phase portrait for k = 13.46 (b) Phase portrait for k = 13.48167

(c) Phase portrait for k = 13.6 (d) Phase portrait for k = 14

(e) Phase portrait for k = 16 (f ) Phase portrait for k = 19.5

Figure 9 Phase portraits of system (1.3) for p = 7.3, q = 4.6, x0 = 0.73, y0 = 5.49 with different values of k

(2.72, 0.83). Then the population density of plants xn undergoes flip bifurcation. We can
see the bifurcation diagram for xn and corresponding MLE in Fig. 11.

Example 7.4 At the end of this section, we verify the existence of Hopf bifurcation for
system (1.5) by taking into account some particular parametric values. For such verifi-
cation, we choose ν = 4.1, η = 1.5, μ ∈ [2, 8], and (x0, y0) = (0.6956, 0.5465). Then system
(1.5) undergoes Hopf bifurcation as the parameter μ varies in a small neighborhood of a
particular value μ = 2.603801522628164. Furthermore, if we choose the parametric val-
ues μ = 2.603801522628164, ν = 4.1, and η = 1.5, then the unique positive fixed point for
system (1.5) is (0.695608, 0.546535). At (0.695608, 0.546535) the characteristic equation
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(a) Plot of xn for (7.2) (b) Plot of yn for (7.2)

(c) Phase portrait for (7.2)

Figure 10 Plots of the controlled system (7.2) with α = 0.945 and (x0, y0) = (0.73, 8.3957)

(a) Bifurcation diagram for xn (b) Maximum Lyapunov exponents

Figure 11 Bifurcation diagram and MLE for system (1.5) with ν = 8.5, η = 55.8, μ ∈ [2, 22], and
(x0, y0) = (2.72, 0.83)

for system (1.5) is

η2 – 1.3043916563597475η + 1 = 0. (7.4)

Furthermore, η1 = 0.652196 + 0.758051i and η2 = 0.652196 – 0.758051i are the roots of
(7.4) with modulus |η1| = |η2| = 1. Therefore it follows that (μ,ν,η) = (2.603801522628164,
4.1, 1.5) ∈ S4, and bifurcation diagrams and MLE are depicted in Fig. 12. Moreover, for
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(a) Bifurcation diagram for xn (b) Bifurcation diagram for yn

(c) Maximum Lyapunov exponents

Figure 12 Bifurcation diagrams and MLE for system (1.5) with ν = 4.1, η = 1.5, μ ∈ [2, 8], and
(x0, y0) = (0.6956, 0.5465)

various values of μ, the phase portraits for system (1.5) are shown in Fig. 13. Lastly, we
check the effectiveness of hybrid control strategy for system (1.5). For this purpose, we
choose (μ,ν,η) = (8, 4.1, 1.5). Then due to this choice, controlled system (6.2) is given by

xn+1 = β

(
8xne–xn

1 + y2
n

)
+ (1 – β)xn,

yn+1 = β

(
4.1x2

nyn

1.5 + x2
n

)
+ (1 – β)yn.

(7.5)

Then system (7.5) has a unique positive equilibrium point (0.695608, 1.72921), and the
characteristic equation of the Jacobian matrix of (7.5) evaluated at (0.695608, 1.72921) is

η2 – (2 – 0.695608β)η + 1 – 0.695608β + 2.26643β2 = 0. (7.6)

Now, according to the Jury condition, the roots of (7.6) lie inside the open unit disk if
and only if

|2 – 0.695608β| < 2 – 0.695608β + 2.26643β2 < 2.

Or, equivalently,

4 – 1.39122β + 2.26643β2 > 0, 2.26643β < 0.695608.
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(a) Phase portrait for μ = 2.596 (b) Phase portrait for μ = 2.6038

(c) Phase portrait for μ = 2.61 (d) Phase portrait for μ = 3

(e) Phase portrait for μ = 6.8 (f ) Phase portrait for μ = 8

Figure 13 Phase portraits of system (1.5) for ν = 4.1, η = 1.5, x0 = 0.6956, y0 = 0.5465 with different values
of μ

From aforementioned inequalities it follows that 0 < β < 0.306918. Thus the unique posi-
tive equilibrium point (0.695608, 1.72921) of the controlled system (7.5) is locally asymp-
totically stable if and only if 0 < β < 0.306918. The plots of the controlled system (7.5) are
shown in Fig. 14 for β = 0.304.

8 Concluding remarks
This paper is concerned with qualitative behavior of two discrete-time plant–herbivore
models in exponential forms. The models are proposed by taking into account that the
function for plant limitation is of Ricker type, whereas the effect of herbivore on plant



Elsayed and Din Advances in Difference Equations        (2019) 2019:271 Page 32 of 34

(a) Plot of xn for (7.5) (b) Plot of yn for (7.5)

(c) Phase portrait for (7.5)

Figure 14 Plots for the controlled system (7.5) with β = 0.304 and (x0, y0) = (0.6956, 1.729)

population and herbivore population growth rate are proportional to functional responses
of type-II and type-III, respectively. The parametric conditions for local asymptotic sta-
bility of equilibria of both systems are investigated. Due to implementation of bifurcation
theory and center manifold theorem, we obtained that both models undergo Neimark–
Sacker bifurcation and period-doubling bifurcation at their positive steady states. Our re-
sults show that parameters related to growth rates of plants have strong stability effects or
vice versa. To control chaotic behaviors of the systems, a hybrid control strategy is imple-
mented. The effectiveness of this control strategy is illustrated through numerical simula-
tions. Moreover, complex dynamics for both models is exhibited through periodic orbits,
quasi-periodic orbits, and chaotic sets and windows. Furthermore, in present discussion
of qualitative analysis for plant–herbivore interaction, Holling type-II and III functional
responses are implemented with Ricker-type function for plant self-limitation. It is inter-
esting to implement some other choice of plant self-limitation function. In future, we will
apply a Beverton–Holt-type function for plant self-limitation.
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