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Abstract
This paper considers a non-autonomous modified Leslie–Gower model with Holling
type IV functional response and nonlinear prey harvesting. The permanence of the
model is obtained, and sufficient conditions for the existence of a periodic solution
are presented. Two examples and their simulations show the validity of our results.
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1 Introduction
It is well known that predation activities are ubiquitous in nature [1]. Modeling of
predator-prey interaction has become an important topic in mathematical biology. Song
and Yuan [2] studied bifurcation analysis in a predator-prey system with time delay. Ruan
and Xiao [3] provided a global analysis in a predator-prey system with a nonmonotonic
functional response, and they proved the existence of two limit cycles. Huang and Xiao
[4] considered a bifurcation analysis and stability for a predator-prey system with Holling-
IV functional response. Xiao and Ruan [5] and Xue and Duan [6] considered time-delay
effects to a predator-prey model with Holling-IV type functional response, where stabil-
ity and bifurcation of periodic solutions were investigated. For the non-autonomous case,
Chen [7] proved the existence of two periodic solutions for a model with Holling-IV func-
tional response, and Xia et al. [8] obtained some sufficient conditions for the existence of
two periodic solutions in a stage-structured predator-prey model. Li et al. [9] established
the existence of multiple periodic solutions for a stage-structured model with harvesting
terms. Wang et al. [10] studied the existence of multiple periodic solutions for an impul-
sive model with a Holling IV type functional response. A two-species model (the so-called
LG model) was proposed by Leslie and Gower [11] in 1960. Korobeinikov [12] proved the
existence of the limit cycle in such a model. For autonomous predator-prey models with
Holling II or III type functional response, the existence of a limit cycle was proved and for
the non-autonomous case, the existence of periodic solutions was established. Yu [13] re-
ported some important research for a modified Leslie–Gower model. The Leslie–Gower
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type predator-prey model with Holling type IV functional response is described by

⎧
⎨

⎩

du
dt = [r(1 – u

K ) – mv
u2
i +u+a

]u,

dv
dt = s(1 – nv

u )v,
(1.1)

where u ≡ u(t) and v ≡ v(t) are the prey and predator population density, respectively, r
and s are intrinsic growth rates of the prey and predator, respectively. K is the carrying ca-
pacity of prey population; here m and i denote the maximum per capita predation rate and
a measure of the predator’s immunity from or tolerance of the prey, respectively, and a and
n are the half saturation constant and the number of prey required to support one preda-
tor at equilibrium, respectively. Upadhyay et al. [14] studied that interaction between prey
and predator with a Holling type IV functional response. We know that there are three
main types of harvesting in the biomodel article: (1) constant rate of harvesting, (2) pro-
portional harvesting H(x) = qEx, and (3) nonlinear harvesting H(u) = qEu

m1E+m2u , where m1,
m2 are suitable constants, E is the effort applied to harvest individuals and q is the catch-
ability coefficient. Zhang et al. [15] introduced the nonlinear harvesting H(u) = qEu

m1E+m2u
into model (1.1), and it can be described by

⎧
⎨

⎩

du
dt = [r(1 – u

K ) – mv
u2
i +u+a

– qE
m1E+m2u ]u,

dv
dt = s(1 – nv

u )v.
(1.2)

Taking

u = Kx, t = rT , h =
qE

rm2K
, c =

m1E
m2K

, v =
rKy
m

, α =
i
k

,

β =
nr
m

, γ =
a
K

, δ =
s
r

,

then system (1.2) becomes

⎧
⎨

⎩

dx
dt = x(1 – x) – xy

x2
α +x+γ

– hx
x+c ,

dy
dt = δy(1 – β

y
x ).

(1.3)

In spite of a lot of works focused on the global dynamics and bifurcation analysis of the
ecological systems (e.g., [2–23]), in realistic environment, ecological systems are usually
affected by the seasonable perturbations or other unpredictable disturbances (e.g., see
[24–36]). Thus the time-varying parameters are more reasonable when we try to con-
sider the periodic environment. In this paper, we consider the following non-autonomous
model:

⎧
⎪⎨

⎪⎩

dx
dt = x(1 – x) – xy

x2
α(t) +x+γ (t)

– h(t)x
x+c(t) ,

dy
dt = δ(t)y(1 – β(t) y

x ).
(1.4)

The rest of this paper is organized as follows. In Sect. 2, we discuss the permanence for
the general nonautonomous case. Section 3 is to obtain some sufficient conditions for the
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existence of periodic solution of system (1.4). Finally, we use numerical simulation to fully
demonstrate the existence of our periodic solution.

2 Permanence
In this section, we assume that α(t),γ (t), h(t), c(t), δ(t), and β(t) are all continuous and
bounded above and below by positive constants. Let R2

+ := {(x, y) ∈ R
2 | x ≥ 0, y ≥ 0}. For

a continuous bounded function f (t) on R, denote

f u := supt∈R f (t), f l := inft∈R f (t).

From a biological viewpoint, we assume that the initial conditions satisfy

x(t0) = x0 > 0, y(t0) = y0 > 0.

Definition 2.1 If a positive solution (x(t), y(t)) of system (1.4) satisfies

min
{

lim
t→∞ inf x(t), lim

t→∞ inf y(t)
}

= 0,

then system (1.4) is non-persistent.

Definition 2.2 If there exist two positive constants φ and ϕ(0 < φ < ϕ) with

min
{

lim
t→∞ inf x(t), lim

t→∞ inf y(t)
}

≥ φ,

max
{

lim
t→∞ sup x(t), lim

t→∞ sup y(t)
}

≤ ϕ,

then system (1.4) is permanent.

Define the collections:

S1 =
{(

cu, cl, hu,γ l,αu) | cu > 1, cl > hu, 4γ l < αu};

S2 =
{(

cu, cl, hu, hl,γ l,αu,β l) | cu > 1, cl > hu, 4γ l > αu,

β l(cu – 1
)(

cl – hu)(4γ l – αu) > 4cl(cu – hl)};

S3 =
{
(
cu, cl, hu, hl,γ l,αu,β l) | cu > hl, cu > 1, cl < hu, 4γ l < αu,

4cl(cu – hl)
(4γ l – αu)

> β l(cu – 1
)(

cl – hu)
}

;

S4 =
{(

cu, cl, hu, hl,γ l,αu,β l) | cu < hl, cu < 1, 4γ l < αu,

4cl(cu – hl) > β l(cu – 1
)(

cl – hu)(4γ l – αu)}.

The set Γ is defined by

Γ =
{

(x, y) ∈R
2 | 0 < g1 ≤ x ≤ G1, 0 < g2 ≤ y ≤ G2

}
, (2.1)
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where

G1 =
cu – hl

cu – 1
, g1 =

β l(cu – 1)(cl – hu)(4γ l – αu) – 4cl(cu – hl)
β lcl(cu – 1)(4γ l – αu)

, (2.2)

G2 =
cu – hl

β l(cu – 1)
, g2 =

β l(cu – 1)(cl – hu)(4γ l – αu) – 4cl(cu – hl)
βuβ lcl(cu – 1)(4γ l – αu)

. (2.3)

Theorem 2.3 If S1 ∪ S2 ∪ S3 ∪ S4 	= ∅, then the set Γ is a positively invariant and bounded
region with respect to system (1.4).

Proof Let (x(t), y(t)) be any solution of system (1.4) satisfying the initial values (x(t0),
y(t0)) = (x0, y0) ∈ Γ . It suffices to show that all the solutions starting from the point in
Γ keep inside Γ . From the first equation of system (1.4), we get

ẋ(t) ≤ x(t)
(

1 – x(t) –
hl

x(t) + cu

)

=
x(t)

x(t) + cu

{
x(t) – x2(t) + cu – cux(t) – hl}

≤ x(t)
x(t) + cu

{
cu – hl –

(
cu – 1

)
x(t)

}

≤ x(t)(cu – 1)
x(t) + cu

{
cu – hl

cu – 1
– x(t)

}

=
x(t)(cu – 1)

x(t) + cu

{
G1 – x(t)

}
,

which implies

0 ≤ x(t0) ≤ G1 ⇒ x(t) ≤ G1, t ≥ t0.

From the second equation of system (1.4), we obtain

ẏ(t) ≤ δuy(t)
[

1 –
β ly(t)

G1

]

=
δuβ l(cu – 1)y(t)

cu – hl

[
cu – hl

β l(cu – 1)
– y(t)

]

=
δuβ l(cu – 1)y(t)

cu – hl

[
G2 – y(t)

]
,

which implies

0 ≤ y(t0) ≤ G2 ⇒ y(t) ≤ G2, t ≥ t0.

Similarly, we have

ẋ(t) ≥ x(t)
[

1 – x(t) –
hu

cl –
G2α

u

x(t)2 + αux(t) + αuγ l

]

≥ x(t)
[

1 – x(t) –
hu

cl –
4G2α

u

4αuγ l – (αu)2

]
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= x(t)
[
β l(cu – 1)(cl – hu)(4γ l – αu) – 4cl(cu – hl)

β lcl(cu – 1)(4γ l – αu)
– x(t)

]

= x(t)
[
g1 – x(t)

]
,

which leads to

x(t0) ≥ g1 ⇒ x(t) ≥ g1, t ≥ t0.

Moreover, it follows from the predator equation that

ẏ(t) ≥ δly(t)
[

1 –
βuy
g1

]

=
βuδly(t)

g1

[
β l(cu – 1)(cl – hu)(4γ l – αu) – 4cl(cu – hl)

βuβ lcl(cu – 1)(4γ l – αu)
– y

]

=
βuδly(t)

g1
[g2 – y],

and hence,

y(t0) ≥ g2 ⇒ y(t) ≥ g1, t ≥ t0.

This completes the proof of Theorem 2.3. �

Theorem 2.4 Assume that the condition in Theorem 2.3 is satisfied. Then the set Γ is the
ultimately bounded region of system (1.4).

3 Periodic case
This section is to obtain some sufficient conditions for the existence of a periodic solu-
tion of system (1.4). When we study the non-autonomous periodic system, we focus on
obtaining the existence of positive periodic solutions. Therefore, we assume that all the pa-
rameters of system (1.4) are periodic in t of period ω > 0. It is easy to follow from Brouwer’s
fixed point theorem that

Theorem 3.1 In addition to the conditions of Theorem 2.3, system (1.4) has at least one
positive periodic solution of period ω, say (x∗(t), y∗(t)), which lies in Γ , i.e., g1 ≤ x∗(t) ≤
G2, g2 ≤ y∗(t) ≤ g2(t), where gi, Gi, i = 1, 2, are defined in (2.2).

Alternatively, we can employ another method (coincidence degree theory) to investi-
gate periodic solutions of system (1.4). We adopt the notations and lemmas from [24, 27,
37–39]. We denote f̄ := 1

ω

∫ ω

0 f (t) dt when f (t) is a periodic and continuous function with
period ω (see [31]). Let

H1 := ln

{

1 +
h̄
c̄

}

+ 2ω, H2 := ln

{
exp {H1}

β̄

}

+ 2δ̄ω,

H3 := ln

{
(c̄ – h̄)(4γ l – αu) – 4 exp {H2}c̄

c̄(4γ l – αu)

}

– 2ω, H4 := ln

{
exp {H3}

β̄

}

– 2δ̄ω,
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and define the collections

S̄1 =
{(

c̄, h̄,γ l,αu) | 4γ l < αu, c̄ > h̄
}

;

S̄2 =
{(

c̄, h̄,γ l,αu, H2
) | 4γ l > αu, c̄ > h̄, (c̄ – h̄)

(
4γ l – αu) > 4 exp {H2}c̄

}
;

S̄3 =
{(

c̄, h̄,γ l,αu, H2
) | 4γ l < αu, c̄ < h̄, (c̄ – h̄)

(
4γ l – αu) < 4 exp {H2}c̄

}
.

Theorem 3.2 If (S1 ∪ S2 ∪ S3 ∪ S4) ∩ (S̄1 ∪ S̄2 ∪ S̄3) 	= ∅, then system (1.4) has at least one
positive ω periodic solution, namely (x∗(t), y∗(t)).

Proof We make the change of variables:

x(t) = exp
{

x̃(t)
}

, y(t) = exp
{

ỹ(t)
}

.

Then system (1.4) becomes

⎧
⎨

⎩

x̃′(t) = 1 – exp {x̃(t)} – α(t) exp {ỹ(t)}
(exp {x̃(t)})2+α(t) exp {x̃(t)}+α(t)γ (t) – h(t)

exp {x̃(t)}+c(t) ,

ỹ′(t) = δ(t)(1 – β(t) exp {ỹ(t)}
exp {x̃(t)} ).

(3.1)

We denote

X = Y =
{

(x̃, ỹ) ∈ C
(
R,R2)|x̃(t + ω) = x̃, ỹ(t + ω) = ỹ

}
,

∥
∥(x̃, ỹ)

∥
∥ = max

t∈[0,ω]

(∣
∣x̃(t)

∣
∣ +

∣
∣ỹ(t)

∣
∣
)
, (x̃, ỹ) ∈X (or Y).

Clearly, X and Y are Banach spaces. Let

N

[
x̃
ỹ

]

=

[
1 – exp {x̃(t)} – α(t) exp {ỹ(t)}

(exp {x̃(t)})2+α(t) exp {x̃(t)}+α(t)γ (t) – h(t)
exp {x̃(t)}+c(t)

δ(t)(1 – β(t) exp {ỹ(t)}
exp {x̃(t)} )

]

,

L

[
x̃
ỹ

]

=

[
x̃′

ỹ′

]

, P

[
x̃
ỹ

]

= Q

[
x̃
ỹ

]

=

[
1
ω

∫ ω

0 x̃(t) dt
1
ω

∫ ω

0 ỹ(t) dt

]

.

We easily see that the inverse Kp : Im L → Dom L ∩ ker P exists, and a simple computa-
tion leads to

QN

[
x̃
ỹ

]

=

[
1
ω

∫ ω

0 [1 – exp {x̃(t)} – α(t) exp {ỹ(t)}
(exp {x̃(t)})2+α(t) exp {x̃(t)}+α(t)γ (t) – h(t)

exp {x̃(t)}+c(t) ] dt
1
ω

∫ ω

0 [δ(t)(1 – β(t) exp {ỹ(t)}
exp {x̃(t)} )] dt

]

and

Kp(I – Q)N

[
x̃
ỹ

]

=

[∫ t
0 N1(s) ds – 1

ω

∫ ω

0
∫ t

0 N1(s) ds dt – ( t
ω

– 1
2 )

∫ ω

0 N1(s) ds
∫ t

0 N2(s) ds – 1
ω

∫ ω

0
∫ t

0 N2(s) ds dt – ( t
ω

– 1
2 )

∫ ω

0 N2(s) ds

]

.

Also, it is easy to prove that N is L-compact on Ω with any open bounded set Ω ⊂ X. Now
we find an appropriate open bounded subset Ω for the application of the continuation
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theorem of [24, 37]. According to the equation Lx = λNx,λ ∈ (0, 1), we get

⎧
⎨

⎩

x̃′(t) = λ[1 – exp {x̃(t)} – α(t) exp {ỹ(t)}
(exp {x̃(t)})2+α(t) exp {x̃(t)}+α(t)γ (t) – h(t)

exp {x̃(t)}+c(t) ],

ỹ′(t) = λ[δ(t)(1 – β(t) exp {ỹ(t)}
exp {x̃(t)} )].

(3.2)

Assume that (x̃(t), ỹ(t)) is an arbitrary solution of system (3.1) with certain λ ∈ (0, 1).
Integration on both sides of system (3.2) over the interval [0,ω] leads to

⎧
⎨

⎩

ω =
∫ ω

0 [exp {x̃(t)} + α(t) exp {ỹ(t)}
(exp {x̃(t)})2+α(t) exp {x̃(t)}+α(t)γ (t) + h(t)

exp {x̃(t)}+c(t) ] dt,

δ̄ω =
∫ ω

0 [δ(t)β(t) exp {ỹ(t)}
exp {x̃(t)} ] dt.

(3.3)

According to system (3.2) and (3.3), we get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ ω

0 |x̃′(t)|dt

≤ λ[
∫ ω

0 1 dt +
∫ ω

0 exp {x̃(t)}dt +
∫ ω

0
α(t) exp {ỹ(t)}

(exp {x̃(t)})2+α(t) exp {x̃(t)}+α(t)γ (t) dt

+
∫ ω

0
h(t)

exp {x̃(t)}+c(t) dt]

< 2ω,
∫ ω

0 |ỹ′(t)|dt

≤ λ[
∫ ω

0 δ(t) dt +
∫ ω

0 δ(t)β(t) exp {ỹ(t)}
exp {x̃(t)} dt]

< 2δ̄ω.

(3.4)

Since (x̃(t), ỹ(t)) ∈X , we know that there exist ξi and ηi ∈ [0,ω], i = 1, 2, such that

x̃(ξ1) = min
t∈[0,ω]

x̃(t), x̃(η1) = max
t∈[0,ω]

x̃(t),

ỹ(ξ2) = min
t∈[0,ω]

ỹ(t), ỹ(η2) = max
t∈[0,ω]

ỹ(t).
(3.5)

According to the first equation of system (3.3), we have

ω ≥
∫ ω

0
exp

{
x̃(ξ1)

}
dt –

∫ ω

0

h(t)
c(t)

dt = exp
{

x̃(ξ1)
}
ω –

h̄
c̄
ω,

x̃(ξ1) ≤ ln

{

1 +
h̄
c̄

}

.

From systems (3.4) and (3.5), we obtain

x̃(t) ≤ x̃(ξ1) +
∫ ω

0

∣
∣x̃′(t)

∣
∣dt < ln

{

1 +
h̄
c̄

}

+ 2ω := H1. (3.6)

According to system (3.5) and the second equation of system (3.3), we have

δ̄ω ≥
∫ ω

0
β(t)δ(t)

exp {ỹ(ξ2)}
exp {H1} dt = β̄δ̄

exp {ỹ(ξ2)}
exp {H1} ω,

ỹ(ξ2) ≤ ln

{
exp {H1}

β̄

}

,
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and hence,

ỹ(t) ≤ ỹ(ξ2) +
∫ ω

0

∣
∣ỹ′(t)

∣
∣dt < ln

{
exp {H1}

β̄

}

+ 2δ̄ω := H2. (3.7)

From the first equation of system (3.3), we also obtain

ω ≤
∫ ω

0

[

exp
{

x̃(η1)
}

+
4α(t) exp {H2}

4α(t)γ (t) – {α(t)}2 +
h(t)
c(t)

]

dt

= exp
{

x̃(η1)
}
ω +

4 exp {H2}
4γ l – αu ω +

h̄
c̄
ω,

and therefore,

exp
{

x̃(η1)
} ≥ 1 –

4 exp {H2}
4γ l – αu –

h̄
c̄

=
4γ l c̄ – αuc̄ – 4 exp {H2}c̄ – h̄(4γ l – αu)

c̄(4γ l – αu)

=
(c̄ – h̄)(4γ l – αu) – 4 exp {H2}c̄

c̄(4γ l – αu)
,

which implies

x̃(η1) ≥ ln

{
(c̄ – h̄)(4γ l – αu) – 4 exp {H2}c̄

c̄(4γ l – αu)

}

.

Thus,

x̃(t) ≥ x̃(η1) –
∫ ω

0

∣
∣x̃′(t)

∣
∣dt > ln

{
(c̄ – h̄)(4γ l – αu) – 4 exp {H2}c̄

c̄(4γ l – αu)

}

– 2ω := H3. (3.8)

The second equation of system (3.3) also produces

δ̄ω ≤
∫ ω

0
β(t)δ(t)

exp {ỹ(η2)}
exp {H3} dt = βδ

exp {ỹ(ξ2)}
exp {H3} ω,

ỹ(η2) ≥ ln

{
exp {H3}

β̄

}

;

and consequently,

ỹ(t) ≥ ỹ(η2) –
∫ ω

0

∣
∣ỹ′(t)

∣
∣dt > ln

{
exp {H3}

β̄

}

– 2δ̄ω := H4. (3.9)

It follows from (3.6)–(3.9) that

⎧
⎨

⎩

maxt∈[0,ω] |x̃(t)| ≤ max{|H1|, |H3|} := C1,

maxt∈[0,ω] |ỹ(t)| ≤ max{|H2|, |H4|} := C2.
(3.10)
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Figure 1 20-periodic solution

We choose C > 0 such that C > C1 + C2. Let Ω = {(x̃, ỹ) ∈ X | ‖(x̃, ỹ)‖ < C}. Then it is easy
to verify that requirement (1) in the continuation theorem of [24, 37] is satisfied. Also,

QN

[
x̃
ỹ

]

=

⎡

⎢
⎣

1 – 1
ω

∫ ω

0 exp {x̃(t)}dt – 1
ω

∫ ω

0
α(t) exp {ỹ(t)}

(exp {x̃(t)})2+α(t) exp {x̃(t)}+α(t)γ (t) dt
– 1

ω

∫ ω

0
h(t)

exp {x̃(t)}+c(t) dt,
1
ω

∫ ω

0 δ(t) dt – 1
ω

∫ ω

0 δ(t)β(t) exp {ỹ(t)}
exp {x̃(t)} dt

⎤

⎥
⎦ 	=

[
0
0

]

.

In addition, we have deg{JQN ,Ω ∩ Ker L, 0} 	= 0. Thus all the conditions in the contin-
uation theorem are satisfied (see, e.g., [24, 37]). Hence, system (3.1) has at least one ω

periodic solution (x̃∗(t), ỹ∗(t)). It is easy to see that x∗(t) = exp {x̃∗(t)}, y∗(t) = exp {ỹ∗(t)},
and then (x∗(t), y∗(t)) is an ω periodic solution of system (1.4). The proof of Theorem 3.2
is complete. �

4 Numerical simulations
To support the previous theoretical analysis, in this section, we present two numerical
simulation results for the different coefficients of system (1.4).

Example 1 Consider the following model:

⎧
⎪⎨

⎪⎩

dx
dt = x(1 – x) – xy

x2
[2+sin(0.1π t)] +x+[101+sin(0.1π t)]

– [2+sin(0.1π t)]x
x+[3+sin(0.1π t)] ,

dy
dt = [3 + sin(0.1π t)]y(1 – [2 + sin(0.1π t)] y

x ).
(4.1)

It is easy to verify that the coefficients of system (1.4) satisfy the conditions in Theorem 3.2.
Thus, system (1.4) has a 20-periodic solution. Figure 1 shows the validity of our results.
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Figure 2 200-periodic solution

Example 2 Consider the following model:

⎧
⎪⎨

⎪⎩

dx
dt = x(1 – x) – xy

x2
[100+sin(0.01π t)] +x+[3+sin(0.01π t)]

– [2+sin(0.01π t)]x
x+[5+sin(0.01π t)] ,

dy
dt = [3 + sin(0.01π t)]y(1 – [2 + sin(0.01π t)] y

x ).
(4.2)

It is easy to verify that the coefficients of system (1.4) satisfy the conditions in Theorem 3.2.
Thus, system (1.4) has a 200-periodic solution. Figure 2 shows the validity of our results.

5 Conclusions
This paper considers a non-autonomous modified Leslie–Gower model with Holling
type IV functional response and nonlinear prey harvesting. We study the permanence
of the model. Sufficient conditions are obtained for the existence of a periodic solution by
Brouwer fixed point theorem and coincidence degree theory, respectively. Also, we give
examples and simulations to verify our theoretical analysis.
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