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Abstract
In this paper, we consider the initial-boundary value problem of the one-dimensional
compressible viscous and heat-conductive Navier–Stokes equations with a reacting
mixture. This model is used to describe the dynamic combustion. Respectively, we
obtain the vanishing species diffusion limit, the rate of reactant limit, and the
convergence rates.
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1 Introduction
The equations of one-dimensional compressible viscous and heat-conductive Navier–
Stokes equations for a reacting mixture in the Lagrange coordinates are of the following
form (see [1–3]):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

vt – ux = 0,

ut + ( aθ
v )x = ( μux

v )x,

(θ + u2

2 )t + ( auθ
v )x = ( μuux

v + νθx
v )x + qkφz,

zt + kφz = ( λzx
v2 )x,

(1.1)

where x ∈ Ω := (0, 1) denotes the Lagrange mass coordinate, t > 0 is time, the unknown
functions v > 0, u, θ > 0, z are the specific volume, the fluid velocity, the absolute temper-
ature, and the mass fraction of the reactant; the constants μ,ν, q,λ, and k are the coeffi-
cients of bulk viscosity, the heat conduction, the difference in the heats of formation of the
reactant and the product, the species diffusion, and the rate of reactant, respectively.

The total specific energy has the form

Ẽ := e +
u2

2
+ qz,

where e is the specific internal energy.
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For a perfect gas mixture with the same γ -gas laws, the pressure p = p(v, θ ) and the in-
ternal energy e = e(v, θ ) are related with the specific volume and the absolute temperature
which have the following form:

p(v, θ ) =
aθ

v
, e(v, θ ) =

pv
γ – 1

,

where a = RM > 0, R is Boltzmann’s gas constant and M is the molecular weight.
The rate function φ(θ ), which describes the intensity of a chemical reaction, is typically

determined by the Arrhenius law (see [1, 4, 5]):

φ(θ ) = θαe–A/θ ,

where the positive constant A is the activation energy, α ≥ 0 is a physical number.
When species diffusion λ > 0, the initial boundary value problems for (1.1) with the

initial data are as follows:

⎧
⎪⎪⎨

⎪⎪⎩

(v(x, 0), u(x, 0), θ (x, 0), z(x, 0)) = (v0(x), u0(x), θ0(x), z0(x)), x ∈ [0, 1],

0 < m0 ≤ v0(x), θ0(x) ≤ M0 < ∞, 0 ≤ z0(x) ≤ 1,
∫ 1

0 v0(x) dx = 1,

(1.2)

and the impermeably insulated boundary conditions

⎧
⎪⎪⎨

⎪⎪⎩

u(0, t) = u(1, t) = 0,

θx(0, t) = θx(1, t) = 0,

zx(0, t) = Zx(1, t) = 0,

(1.3)

with the compatibility conditions

⎧
⎨

⎩

(u0, θ0x, z0x)|x=0,1 = 0,

( aθ0
v0

– ( μu0x
v0

)x)|x=0,1 = 0.
(1.4)

The existence and behavior of steady plane wave solutions to the compressible Navier–
Stokes equations for a reacting gas have been investigated by Gardner (see [6]) and Wagner
(see [7]), and they confirmed some phenomena observed in numerical calculations and
predicted by the ZND theory, which has been developed independently by Zeldovich, von
Neumann, and Döring (see [8]). In [9] and the references cited therein, lots of theoretical
and computational properties regarding the structure and stability of reacting shock waves
of (1.1) are analyzed. For recent developments and strategies, see [10, 11] and [12, 13], the
authors also gave the mathematical theory of combustion.

The existence of global solutions to the one-dimensional nonsteady equations of a vis-
cous compressible gas was first studied in [14, 15]. The global existence and large-time
behavior of solutions for the one-dimensional models of compressible, viscous, and heat-
conductive fluids have been studied by many researchers. In particular, the case λ > 0 was
treated in [1, 2, 16, 17] and the references therein. For the binary-mixture case λ = 0, we
can find in [18, 19]. In [1], when φ(θ ) is discontinuous, existence theorems are established
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for global generalized solutions to the compressible Navier–Stokes equations for a reacting
mixture. So, it is of great importance to understand how the model changes when λ → 0
and λ, k → 0. The convergence rates need some careful analysis, based on the elementary
energy methods and the application of Sobolev’s inequality.

In this paper, the initial-boundary value problems (1.1) with the vanishing species dif-
fusion and rate of reactant limits are considered. With the help of global-λ and global-λ, k
independent estimates, we obtain the convergence rates.

Formally, if the species diffusion λ = 0, then system (1.1) turns into the binary-mixture
form

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

vt – ux = 0,

ut + ( aθ
v )x = ( μux

v )x,

(θ + u2

2 )t + ( auθ
v )x = ( μuux

v + νθx
v )x + qkφz,

zt + kφz = 0,

(1.5)

which is equipped with the following initial data:

⎧
⎪⎪⎨

⎪⎪⎩

(v(x, 0), u(x, 0), θ (x, 0), z(x, 0)) = (v0(x), u0(x), θ0(x), z0(x)), x ∈ [0, 1],

0 < m0 ≤ v0(x), θ0(x) ≤ M0 < ∞, 0 ≤ z0(x) ≤ 1,
∫ 1

0 v0(x) dx = 1,

(1.6)

and boundary conditions

⎧
⎨

⎩

u(0, t) = u(1, t) = 0,

θx(0, t) = θx(1, t) = 0,
(1.7)

with the compatibility conditions

⎧
⎨

⎩

(u0, θ0x)|x=0,1 = 0,

( aθ0
v0

– ( μu0x
v0

)x)|x=0,1 = 0.
(1.8)

Compared with the large literature body for compressible reacting mixture equations,
for system (1.1) with initial-boundary conditions (1.2), (1.3), (1.4) and system (1.5) with
initial-boundary conditions (1.6), (1.7), (1.8), we also assume that the reacting rate func-
tion φ(θ ) is a smooth function.

In the other case, if the coefficients of the species diffusion λ = 0 and the rate of reactant
k = 0, then system (1.1) turns into the following form:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

vt – ux = 0,

ut + ( aθ
v )x = ( μux

v )x,

(θ + u2

2 )t + ( auθ
v )x = ( μuux

v + νθx
v )x,

zt = 0,

(1.9)
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which is equipped with the following initial data:

⎧
⎪⎪⎨

⎪⎪⎩

(v(x, 0), u(x, 0), θ (x, 0), z(x, 0)) = (v0(x), u0(x), θ0(x), z0(x)), x ∈ [0, 1],

0 < m0 ≤ v0(x), θ0(x) ≤ M0 < ∞, 0 ≤ z0(x) ≤ 1,
∫ 1

0 v0(x) dx = 1,

(1.10)

and boundary conditions

⎧
⎨

⎩

u(0, t) = u(1, t) = 0,

θx(0, t) = θx(1, t) = 0,
(1.11)

with the compatibility conditions

⎧
⎨

⎩

(u0, θ0x)|x=0,1 = 0,

( aθ0
v0

– ( μu0x
v0

)x)|x=0,1 = 0.
(1.12)

Our main results are as follows.

Theorem 1.1 (i) Suppose that

0 < v0, 0 < θ0, (v0, u0, θ0, z0)(x) ∈ H1. (1.13)

Then, for each fixed λ > 0, there exists a unique global solution (v, u, θ , z) to the initial-
boundary value problem (1.1)–(1.4) on (0, 1) × [0,∞) such that

M–1 ≤ v(x, t), θ (x, t) ≤ M for all x ∈ [0, 1], t ∈ [0,∞), (1.14)

sup
t∈[0,∞)

(∥
∥(v – ṽ, u)

∥
∥2

H2 + ‖θ – θ̃‖2
H1 +

∥
∥(vt , ut)

∥
∥2

L2
)

+
∫ ∞

0

(∥
∥(vx, ux, θx)

∥
∥2

H1 +
∥
∥(vxt , uxt)

∥
∥2

L2
)

dt +
∫ ∞

0

(∥
∥(vt , ut , θt , zt)

∥
∥2

L2
)

dt ≤ M, (1.15)

sup
t∈[0,∞)

∥
∥z(t)

∥
∥2

H2 + λ

∫ ∞

0
‖zx‖2

H2 dt +
∫ ∞

0

∫ 1

0
kφ(θ )

(
z2 + z2

x + z2
xx

)
dx dt ≤ M, (1.16)

where ṽ =
∫ 1

0 v(x, t) dx, and the constant θ̃ is determined by

e(ṽ, θ̃ ) = Ẽ0 :=
∫ 1

0

(

e(v0, θ0) +
1
2

u2
0

)

dx.

(ii) Assume that (v0, u0, θ0, z0) satisfies (1.6). Then there exists a unique global solution
(v, u, θ , z) to problem (1.5)–(1.8) on (0, 1) × [0,∞) such that

M–1 ≤ v(x, t), θ (x, t) ≤ M for all x ∈ [0, 1], t ∈ [0,∞), (1.17)

sup
t∈[0,∞)

(∥
∥(v – ṽ, u, z)(t)

∥
∥2

H2 + ‖θ – θ̃‖2
H1 +

∥
∥(vt , ut)

∥
∥2

L2
)

+
∫ ∞

0

(∥
∥(vt , ut , θt , zt)

∥
∥2

L2
)

dt +
∫ ∞

0

(∥
∥(vx, ux, θx)

∥
∥2

H1 +
∥
∥(vxt , uxt)

∥
∥2

L2
)

dt
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+
∫ ∞

0

∫ 1

0
kφ(θ )

(
z2 + z2

x + z2
xx

)
dx dt ≤ M. (1.18)

Here, the letter M denotes the generic positive constant which depends on a,μ,ν, q, k,‖φ‖L∞ ,
but not on λ and t.

In terms of (1.1)–(1.4) and (1.9)–(1.12), the second important theorem is as follows.

Theorem 1.2 (i) Under the conditions of Theorem 1.1, for each fixed λ, k > 0, there exists
a unique global solution (v, u, θ , z) to the initial-boundary value problem (1.1)–(1.4) on
(0, 1) × [0,∞) such that

M∗–1 ≤ v(x, t), θ (x, t) ≤ M∗ for all (x, t) ∈ [0, 1] × [0,∞),

sup
t∈[0,∞)

(∥
∥(v – ṽ, u)

∥
∥2

H2 + ‖θ – θ̃‖2
H1 +

∥
∥(vt , ut)

∥
∥2

L2
)

+
∫ ∞

0

(∥
∥(vx, ux, θx)

∥
∥2

H1 +
∥
∥(vxt , uxt)

∥
∥2

L2
)

dt +
∫ ∞

0

(∥
∥(vt , ut , θt , zt)

∥
∥2

L2
)

dt ≤ M∗,

sup
t∈[0,∞)

∥
∥z(t)

∥
∥2

H2 + λ

∫ ∞

0
‖zx‖2

H2 dt + k
∫ ∞

0

∫ 1

0
φ(θ )

(
z2 + z2

x + z2
xx

)
dx dt ≤ M∗.

(ii) Assume that (v0, u0, θ0, z0) satisfies (1.10). Then there exists a unique global solution
(v, u, θ , z) to problem (1.9)–(1.12) on (0, 1) × [0,∞) such that

M∗–1 ≤ v(x, t), θ (x, t) ≤ M∗, z(x, t) = z0(x), for all x ∈ [0, 1], t ∈ [0,∞),

sup
t∈[0,∞)

(∥
∥(v – ṽ, u)(t)

∥
∥2

H2 + ‖θ – ṽ‖2
H1 +

∥
∥(vt , ut)

∥
∥2

L2
)

+
∫ ∞

0

(∥
∥(vx, ux, θx)

∥
∥2

H1 +
∥
∥(vxt , uxt)

∥
∥2

L2
)

dt +
∫ ∞

0

(∥
∥(vt , ut , θt)

∥
∥2

L2
)

dt ≤ M∗.

Here, the letter M∗ denotes the generic positive constant which may depend on
a,μ,ν, q,‖φ‖L∞ , but does not depend on λ, k, and t.

It was pointed out in [1, 18] that the justification of (1.1) with vanishing species diffusion
limit is still open. Indeed, the study of the vanishing species diffusion and rate of reactant
limits relies on the global uniform-in-λ estimates and the global uniform-in-λ, k estimates
of the solutions respectively of problem (1.1)–(1.4), which are more difficult to achieve
than those for problem (1.5)–(1.8) and (1.9), (1.10), (1.11), and (1.12) due to the presence
of reacting-diffusion equation. Our third and fourth results of this paper are concerned
with the vanishing species diffusion and rate of reactant limit, which are shown by making
a full use of some strong condition of the heat-conductive Navier–Stokes equations for a
reacting mixture.

Theorem 1.3 Under the conditions of Theorem 1.1, for any fixed 0 < T < ∞, let (vλ, uλ, θλ,
zλ) and (v, u, θ , z), defined on (0, 1) × [0, T), be the solutions of problems (1.1)–(1.4) and



Zhang Advances in Difference Equations        (2019) 2019:319 Page 6 of 26

(1.5)–(1.8), respectively. Then

sup
t∈[0,T)

(∥
∥
(
vλ – v, uλ – u, θλ – θ , zλ – z

)
(t)

∥
∥2

H1
)

+
∫ T

0

(∥
∥uλ – u

∥
∥2

H2 +
∥
∥
(
θλ – θ

)∥
∥2

H1
)

dt

+
∫ T

0

(∥
∥
(
uλ – u, θλ – θ

)

t

∥
∥2

L2
)

dt ≤ Nλ1/2,

where N is a generic positive constant independent of λ.

Theorem 1.4 Under the condition of Theorem 1.1, for any fixed 0 < T < ∞, let (vλ,k , uλ,k ,
θλ,k , zλ,k) and (v, u, θ , z), defined on (0, 1) × [0, T), be the solutions of problems (1.1)–(1.4)
and (1.9)–(1.12), respectively. Then

sup
t∈[0,T)

(∥
∥
(
vλ,k – v, uλ,k – u, θλ,k – θ , zλ,k – z

)
(t)

∥
∥2

H1
)

+
∫ T

0

(∥
∥uλ,k – u

∥
∥2

H2 +
∥
∥
(
θλ,k – θ

)∥
∥2

H1
)

dt

+
∫ T

0

(∥
∥
(
uλ,k – u, θλ,k – θ

)

t

∥
∥2

L2
)

dt ≤ N∗(λ1/2 + k1/2),

where N∗ is a generic positive constant independent of λ and k.

The rest of this paper is organized as follows. In Sect. 2, we establish the global λ-
independent estimates of the solutions (vλ, uλ, θλ, zλ) to problem (1.1)–(1.4), the global
estimates of the solutions (v, u, θ , z) to problem (1.5)–(1.8), respectively. With the help of
global (uniform) estimates at hand, we justify the vanishing species diffusion limit and ob-
tain the convergence rates. In Sect. 3, we establish the global λ, k-independent estimates
of the solutions (vλ,k , uλ,k , θλ,k , zλ,k) to problem (1.1)–(1.4), the global estimates of the so-
lutions (v, u, θ , z) to problem (1.9), (1.10), (1.11), and (1.12), respectively. With the help of
global (uniform) estimates, we justify the vanishing species diffusion and rate of reactant
limit and obtain the convergence rates.

2 The vanishing species diffusion limit
2.1 Global λ-independent estimates of (1.1)–(1.4)
Based on the standard local existence results and the global a priori estimates, the global
well-posedness of the solutions to (1.1)–(1.4) can be shown in the same way as that in
[1, 18, 20]. Our main purpose is to obtain the global λ-independent estimates of solu-
tions, which are used to justify the vanishing species diffusion limit. For simplicity, in this
section, we use (v, u, θ , z) to denote the solutions of (1.1)–(1.4), the letter M denotes the
generic positive constant which depends on a,μ,ν, q, k,‖φ‖L∞ , but not on λ and t.

We begin with the following elementary estimates.

Lemma 2.1 Under the conditions of Theorem 1.1,

∫ 1

0
v(x, t) dx =

∫ 1

0
v0(x) dx = 1, ∀t ∈ [0,∞),

∫ 1

0
z(x, t) dx +

∫ ∞

0

∫ 1

0
kφ(θ )z(x, t) dx dτ =

∫ 1

0
z0(x) dx,
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∫ 1

0

(

θ +
u2

2
+ qz

)

dx =
∫ 1

0

(

θ0 +
u2

0
2

+ qz0

)

dx,

and

E(v, u, θ ) +
∫ ∞

0

∫ 1

0

(
μu2

x
vθ

+
νθ2

x
vθ2

)

dx dτ ≤ M,

where E(v, u, θ ) is defined as

E(v, u, θ ) �
∫ 1

0

[

a(v – ln v – 1) +
u2

2
+ (θ – ln θ – 1)

]

dx.

The proof of Lemma 2.1 is the same as in [1, Lemma 1]; here, we omit it for simplic-
ity. With the help of Lemma 2.1, similar to the proof in [1, 20], it is easy to establish the
following lemma, we omit its proof as well.

Lemma 2.2 The following inequalities hold:

0 ≤ z(x, t) ≤ 1, α0 ≤
∫ 1

0
θ (x, t) dx ≤ β0, ∀(x, t) ∈ [0, 1] × [0,∞). (2.1)

Here, the positive constants α0,β0 are the roots of

y – ln y – 1 = E1 :=
1

min{1, a}
(

E0 + q
∫ 1

0
z0(x) dx

)

,

where

E0 = E(v0, u0, θ0) �
∫ 1

0

[

a(v0 – ln v0 – 1) +
u2

0
2

+ (θ0 – ln θ0 – 1)
]

dx.

Next, we adapt and modify an idea of Kazhikhov [3] (also cf. the survey article [21]) for
the polytropic ideal gas to give a representation of solutions of (1.1)–(1.4). In order to do
this, we define

σ (x, t) � –p(v, θ ) +
μux

v
, ψ(x, t) �

∫ t

0
σ (x, t) dτ +

∫ x

0
u0 dx.

Then we have ψx = u and ψt = σ . Thus ψ satisfies

ψt =
μ

v
ψxx – p(v, θ ). (2.2)

Multiplying (2.2) by v and using (1.1)1, we can see that

(vψ)t – (uψ)x = μψxx – vp – u2. (2.3)

Keeping in mind that ψx = u vanishes on the boundary and integrating (2.3) over (0, 1) ×
[0, t], one has

∫ 1

0
(vψ)(x, t) dx =

∫ 1

0
(vψ)(x, 0) dx –

∫ t

0

∫ 1

0

(
u2 + vp

)
(x, τ ) dx dτ := Ψ (t). (2.4)
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Applying the mean value theorem to (2.4), by Lemma 2.1, v > 0, we get that for each t ≥ 0
there exists x1(t) ∈ [0, 1] such that

ψ
(
x1(t), t

)
=

∫ 1

0
ψ(x, t)v(x, t) dx = Ψ (t).

Therefore, by the definition of ψ(x, t) and (2.4), we have

∫ 1

0
ψ

(
x1(t), τ

)
dτ = ψ

(
x1(t), t

)
–

∫ x1(t)

0
u0(ξ ) dξ = Ψ (t) –

∫ x1(t)

0
u0(ξ ) dξ

= –
∫ t

0

∫ 1

0

(
u2 + vp

)
dx dτ +

∫ 1

0
v0(x)

∫ x

0
u0(ξ ) dξ

–
∫ x1(t)

0
u0(ξ ) dξ (2.5)

and t ≥ 0. Thanks to (2.5), one can establish the following lemma.

Lemma 2.3 For system (1.1)–(1.4), we have the following representations:
(i) For any t ≥ 0, there exists x1(t) ∈ [0, 1] such that

v(x, t) = B(x, t)D(x, t) exp

(

–
1
μ

∫ t

0

∫ 1

0

(
u2 + aθ

)
dx dτ

)

, (2.6)

where

B(x, t) = v0(x) exp

{
1
μ

(∫ x

x1(t)
(u – u0)(ξ ) dξ –

∫ x1(t)

0
u0(ξ ) dξ

+
∫ 1

0
v0(x)

∫ x

0
u0(ξ ) dξ dx

)}

, (2.7)

D(x, t) = 1 +
a
μ

∫ t

0

θ (x, τ )
B(x, τ )

exp

(
1
μ

∫ τ

0

∫ 1

0

(
u2 + aθ

)
(x, s) dx ds

)

dτ .

Proof In view of the definition of σ , we rewrite (1.1)2 as follows:

ut + p(v, θ )x = (μ log v)xt . (2.8)

Integrating (2.8) over [0, t] × [x1(t), x] and by (2.5), we obtain

log v(x, t) –
1
μ

∫ 1

0
v0(x)

∫ x

0
u0(ξ ) dξ dx +

1
μ

∫ x1(t)

0
u0(ξ ) dξ –

1
μ

∫ x

x1(t)
(u – u0)(ξ ) dξ

= log v0(x) –
1
μ

∫ t

0

∫ 1

0

(
u2 + aθ

)
(x, τ ) dx dτ +

1
μ

∫ t

0

aθ

v
(x, τ ) dτ ,

which, upon taking the exponential, turns into

v(x, t) exp

{

–
1
μ

(∫ x

x1(t)
(u – u0)(ξ ) dξ –

∫ x1(t)

0
u0(ξ ) dξ +

∫ 1

0
v0(x)

∫ x

0
u0(ξ ) dξ dx

)}

= v0(x) exp

{

–
1
μ

∫ t

0

∫ 1

0

(
u2 + aθ

)
(x, τ ) dx dτ

}

exp

{
1
μ

∫ t

0

aθ

v
(x, τ ) dτ

}

,
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that is,

v(x, t) = B(x, t) exp

{

–
1
μ

∫ t

0

∫ 1

0

(
u2 + aθ

)
(x, τ ) dx dτ

}

exp

{
1
μ

∫ t

0

aθ

v
(x, τ ) dτ

}

. (2.9)

It follows from (2.7) and (2.9) that

aθ

μv
exp

{
1
μ

∫ t

0

aθ

v
(x, τ ) dτ

}

=
v(x, t)A(t)

B(x, t)
aθ

μv
,

where

A(t) = exp

{
1
μ

∫ t

0

∫ 1

0

(
u2 + aθ

)
(x, τ ) dx dτ

}

.

Integrating the above identity over (0, t), one has

exp

{
1
μ

∫ t

0

aθ

v
(x, τ ) dτ

}

= 1 +
a
μ

∫ t

0

θ (x, τ )A(τ )
D(x, τ )

dτ . (2.10)

Inserting (2.10) into (2.9), we get (2.6). �

With the aid of Lemma 2.3, we can obtain the following important lemma about the
uniform upper and lower bounds of v.

Lemma 2.4 For any t ≥ 0, we have

M–1 ≤ v(x, t) ≤ M,
1

M(1 + t)
≤ θ (x, t), ∀(x, t) ∈ [0, 1] × [0,∞).

The proofs of Lemma 2.4 and the below lemma are in the same way as in the paper [1,
20], here we omit them.

Lemma 2.5 The following estimates hold:

sup
t∈[0,∞)

(∥
∥(vx, vt)

∥
∥2

L2 +
∥
∥(u, θ – θ )

∥
∥2

H1
)

+
∫ ∞

0

(∥
∥(vx, vxt)

∥
∥2

L2 +
∥
∥(ux, θx)

∥
∥2

H1 +
∥
∥(ut , θt)

∥
∥2

L2
)

dt ≤ M,

sup
t∈[0,∞)

‖z‖2
H1 + λ

∫ ∞

0
‖zx‖2

H1 dt +
∫ ∞

0

∫ 1

0
kφ(θ )

(
z2 + z2

x
)

dx dt ≤ M.

(2.11)

By means of Lemma 2.5, we next establish the following estimates.

Lemma 2.6 For t ≥ 0, we have

∣
∣u(x, t)

∣
∣ ≤ M, θ (x, t) ≤ M, ∀(x, t) ∈ [0, 1] × [0,∞),

∫ ∞

0

(‖ux‖2
L∞ + ‖θx‖2

L∞
)

dt ≤ M.
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Proof By Hölder’s inequality, we obtain

u2 ≤
∫ x

0

(
u2)

x dx ≤ 2
(∫ 1

0
u2 dx

)1/2(∫ 1

0
u2

x dx
)1/2

≤ M.

With the aid of (2.1), by the mean value theorem, there exists x∗ ∈ (0, 1) such that

α0 ≤
∫ 1

0
θ (x, t) = θ

(
x∗, t

)
� β ≤ β0.

Then we define an auxiliary function g by

g(θ ) =
∫ θ

0

√
θ – 1 – ln θ dθ .

Thus we have

dg(θ )
dx

= g ′(θ )θx, g ′(θ ) =
√

θ – 1 – ln θ .

Integrating the above identity over (x∗, x), we obtain

g(θ )(x, t) =
∫ x

x∗
g ′(θ )θx dx + g(θ )

(
x∗, t

)
.

Next, we prove that g(θ )(x∗, t) is a bounded function. In fact

g(θ )
(
x∗, t

)
=

∫ θ (x∗ ,t)

0

√
s – 1 – ln s ds.

Notice that when θ ≥ 1, f (θ ) � θ – 1 – ln θ is a monotone increasing function, when 0 ≤
θ ≤ 1, f (θ ) is a monotone decreasing function. If θ (x∗, t) ≥ 1 (θ (x∗, t) ≤ 1 is similar)

g(θ )
(
x∗, t

)
=

∫ 1

0

√
s – 1 – ln s ds +

∫ θ (x∗,t)

0

√
s – 1 – ln s ds

≤ 1
2

∫ 1

0
s – 1 – ln s ds +

1
2

+ M ≤ M.

Therefore,

g(θ )(x, t) =
∫ x

0

√
θ – 1 – ln θ |θx|dx + M

≤ 1
2

∫ 1

0
θ – 1 – ln θ dx +

1
2

+ M
∫ 1

0
θ2

x dx + M

≤ M.

By the definition of g(θ ), we know that when θ → ∞, g(θ ) → ∞, this together with the
above inequality, there exists a constant M > 0 such that

θ (x, t) ≤ M.
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By virtue of the interpolation inequality, we have

‖ux‖2
L∞ ≤ M‖ux‖L2‖ux‖H1

≤ M
(‖ux‖2

L2 + ‖uxx‖2
L2

)
.

With the help of (2.11), we obtain

∫ ∞

0
‖ux‖2

L∞ dτ ≤ M.

By the same way, we get

∫ ∞

0
‖θx‖2

L∞ dτ ≤ M.

This completes the proof of Lemma 2.6. �

Next the large-time behavior of global generalized solutions is obtained.

Lemma 2.7 It holds that

lim
t→∞

(‖v – ṽ, u, θ – θ̃‖Ls (t) + ‖vx, ux, θx‖L2 (t)
)

= 0, ∀s ∈ [2,∞], x ∈ Ω ,

where ṽ and θ̃ are defined in Theorem 1.1.

Proof By Lemma 2.5, we have

∫ ∞

0

(‖ux‖2
L2 + ‖θx‖2

L2
)

dt ≤ M. (2.12)

We rewrite (1.1)3 as follows:

θt +
aθ

v
ux =

(
νθx

v

)

x
+

μu2
x

v
+ qkφ(θ )z. (2.13)

Multiplying both sides of (2.13) by θxx and using Lemma 2.1, we obtain

∣
∣
∣
∣

d
dt

‖θx‖2
L2(Ω)

∣
∣
∣
∣ =

∣
∣
∣
∣

∫ 1

0

aθ

v
uxθxx +

ν

v2 θxvxθxx –
ν

v2 θ2
xx –

μ

v
u2

xθxx – qkφ(θ )zθxx

∣
∣
∣
∣

≤ M‖θxx‖2
L2 + M

(‖θ‖2
L∞‖ux‖2

L2 + ‖θx‖2
L∞‖vx‖2

L2 + ‖ux‖2
L∞‖ux‖2

L2
)

+ M
∫ 1

0
k2φ(θ )2z2 dx.

Integrating it over (0,∞), with the aid of Lemma 2.5, we obtain

∫ ∞

0

∣
∣
∣
∣

d
dt

‖θx‖2
L2(Ω)

∣
∣
∣
∣dt

≤ M
∫ ∞

0
‖θxx‖2

L2 dt + M
∫ ∞

0

(‖ux‖2
L2 +

∥
∥θx‖2

L∞
∥
∥ + ‖ux‖2

L∞
)

dt
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+ M
∫ 1

0
kφ(θ )z2 dx

≤ M. (2.14)

Multiplying both sides of (1.1)2 by uxx and using Lemma 2.1, we derive

∣
∣
∣
∣

d
dt

‖ux‖2
L2(Ω)

∣
∣
∣
∣ + μ

∫ 1

0

u2
xx
v

dx =
∣
∣
∣
∣

∫ 1

0
a
(

θ

v

)

x
uxx + μ

ux

v2 vxuxx dx
∣
∣
∣
∣

≤ μ

4

∫ 1

0

u2
xx
v

dx + M
∫ 1

0

(
θ2v2

x + θ2
x + u2

xv2
x
)

dx.

Integrating the above inequality over (0,∞), with the aid of Lemma 2.5 and Lemma 2.6,
we obtain

∫ ∞

0

∣
∣
∣
∣

d
dt

‖ux‖2
L2(Ω)

∣
∣
∣
∣dt +

∫ ∞

0

∫ 1

0

u2
xx
v

dx dt

≤ μ

4

∫ ∞

0

∫ 1

0

u2
xx
v

dx dt + M
∫ ∞

0

∫ 1

0

(
θ2v2

x + θ2
x + u2

xv2
x
)

dx dt

≤ M +
μ

4

∫ ∞

0

∫ 1

0

u2
xx
v

dx dt + M
∥
∥ux(·, t)

∥
∥2

L∞ + M max
[0,1]×[0,∞]

θ

∫ ∞

0

∫ 1

0
θ2v2

x dx dt

≤ M +
μ

2

∫ ∞

0

∫ 1

0

u2
xx
v

dx dt. (2.15)

With the aid of (2.12), (2.14), and (2.15), one has

lim
t→∞

(∥
∥ux(·, t)

∥
∥

L2(Ω) +
∥
∥θx(·, t)

∥
∥

L2(Ω)

)
= 0.

By virtue of Lemma 2.5, we deduce

∫ ∞

0

(
∥
∥vx(·, t)

∥
∥2

L2(Ω) +
∣
∣
∣
∣

d
dt

∥
∥vx(·, t)

∥
∥2

L2(Ω)

∣
∣
∣
∣

)

dt ≤ M,

then

lim
t→∞

∥
∥vx(·, t)

∥
∥

L2(Ω) = 0.

Using the interpolation inequality, we have

lim
t→∞

∥
∥(v – v, u, θ – θ )(·, t)

∥
∥

L2(Ω) = 0.

The proof of Lemma 2.7 is thus complete. �

Thanks to Lemma 2.6, one can deduce the uniform lower bounds of temperature θ (x, t).

Lemma 2.8 It holds that

M–1 ≤ θ (x, t) ≤ M, ∀(x, t) ∈ [0, 1] × [0,∞).
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Proof With the aid of Lemma 2.7, and by using the interpolation inequality, we have

‖θ – θ̃‖2
C(Ω) ≤ M‖θx‖2

L2 .

Taking the limit on both sides of the above inequality, we have

lim
t→∞

∥
∥(θ – θ̃ )(·, t)

∥
∥

C(Ω) = 0.

Hence, there exists some T0 such that

M–1 ≤ θ (x, t) ≤ M, ∀(x, t) ∈ [0, 1] × [T0,∞).

On the other hand, from Lemma 2.5, we get

θ (x, t) ≥ 1
M(1 + T0)

, ∀(x, t) ∈ [0, 1] × [0, T0].

This completes the proof of Lemma 2.8. �

Lemma 2.9 For any t ≥ 0, it holds that

sup
t∈[0,∞)

(‖ut‖2
L2 + ‖uxx‖2

L2
)

+
∫ ∞

0

∫ 1

0
u2

xt(x, t) dx dt ≤ M. (2.16)

Proof Differentiating (1.1)2 with respect to t, multiplying it by ut , and integrating the re-
sulting equation over [0, 1], by using (1.1)1 and ut|x=0,1 = 0, we get

1
2

d
dt

∫ 1

0
u2

t dx =
∫ 1

0

(
μux

v

)

tx
ut dx –

∫ 1

0

(
aθ

v

)

tx
ut dx

= –
∫ 1

0

(
μux

v

)

t
uxt dx +

∫ 1

0

(
aθ

v

)

t
uxt dx

=
∫ 1

0

μ

v2 u2
xuxt dx –

∫ 1

0

μ

v
u2

xt dx +
∫ 1

0

(
aθ

v

)

t
uxt dx.

By the Cauchy–Schwarz inequality, we obtain

1
2

d
dt

∫ 1

0
u2

t dx +
∫ 1

0

μ

v
u2

xt dx

=
∫ 1

0

μ

v2 u2
xuxt dx +

∫ 1

0

(
aθ

v

)

t
uxt dx

≤ ε

∫ 1

0
u2

xt dx + Cε‖ux‖2
L∞

∫ 1

0
u2

x dx + Cε

∫ 1

0

(
u2

x + θ2
t
)

dx.

Taking ε > 0 suitably small and applying Gronwall’s inequality, we get

∫ 1

0
u2

t dx +
∫ ∞

0

∫ 1

0
u2

xt dx ≤ M
∫ T

0

(‖ux‖2
L∞ + ‖ux‖2

L2 + ‖θt‖2
L∞

)
dt ≤ M. (2.17)
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Next, we show the boundedness of ‖uxx(t)‖L2 . (1.1)2 can be rewritten as follows:

μ

v
uxx = ut +

(
aθ

v

)

x
+

μ

v2 vxux,

then

∫ 1

0
u2

xx dx ≤ M
∫ 1

0

(
u2

t + θ2
t + v2

x
)

dx + M‖ux‖2
L∞

∫ 1

0
v2

x dx ≤ M, (2.18)

where the Cauchy–Schwarz inequality and the following interpolation inequality have
been used:

‖ux‖2
L∞ ≤ C‖ux‖H1‖ux‖L2 ≤ ε‖uxx‖2

L2 + Cε‖ux‖2
L2 .

From inequalities (2.17) and (2.18), we obtain (2.16). �

Lemma 2.10 It holds that

sup
t∈[0,∞)

‖vxx‖2
L2 +

∫ ∞

0

∫ 1

0
v2

xx(x, t) dx dt ≤ M. (2.19)

Proof It follows from (1.1)1 and (1.1)2 that

μ

v
vxt +

a
v2 θvx = ut +

a
v
θx +

μ

v2 vxux. (2.20)

Differentiating (2.20) with respect to x, multiplying it by vxx, and integrating the resulting
equation over [0, 1], by (1.1)1, we have

1
2

d
dt

∫ 1

0
v2

xx dx +
∫ 1

0
v2

xx dx

≤ M
∫ 1

0

(∣
∣uxv2

xx
∣
∣ + |vxvxtvxx| +

∣
∣v2

xθvxx
∣
∣ + |θxvxvxx|

)
dx

+ M
∫ 1

0

(|uxtvxx| + |θxxvxx| + |vxvxxuxx| +
∣
∣v2

xuxvxx
∣
∣dx

)
dx

≤ ε

∫ 1

0
v2

xx dx + Cε‖ux‖2
L∞

∫ 1

0
v2

xx dx + Cε‖vx‖2
L∞

∫ 1

0

(
v2

xt + v2
x + u2

xx + u2
x + v2

xx
)

dx

+ Cε‖θx‖2
L∞

∫ 1

0
v2

x dx + Cε

∫ 1

0

(|uxt|2 + θ2
xx

)
dx. (2.21)

Notice that

‖vx‖2
L∞ ≤ ε‖vxx‖2

L2 + Cε‖vx‖2
L2 . (2.22)

Taking ε > 0 appropriately small, inserting (2.22) into (2.21), with the help of Gronwall’s
inequality and Lemma 2.9, we obtain (2.19). �
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Lemma 2.11 For any t ≥ 0, it holds that

sup
t∈[0,∞)

‖zxx‖2
L2 +

∫ ∞

0

∫ 1

0
kφ(θ )z2

xx(x, t) dx dt + λ

∫ ∞

0

∫ 1

0
z2

xxx(x, t) dx dt ≤ M. (2.23)

Proof Differentiating (1.1)4 with respect to x and setting h = zx, we obtain

ht + kφ(θ )h + kφ′(θ )θxzh =
(

λ

v2 h
)

xx
. (2.24)

Differentiating (2.24) with respect to x, multiplying it by hx, and integrating the resulting
equation over [0, 1], we have

1
2

d
dt

∫ 1

0
h2

x dx +
∫ 1

0
kφ(θ )h2

x dx +
∫ 1

0

λ

v2 h2
xx dx

≤
∫ 1

0

∣
∣
∣
∣

((
λ

v2

)

xx
h dx + 2

(
λ

v2

)

x
hx

)

hxx

∣
∣
∣
∣dx +

∫ 1

0

∣
∣kφ′(θ )θxhhx

∣
∣dx

+
∫ 1

0

∣
∣
(
kφ′(θ )θxzh

)

xhx
∣
∣dx

=
3∑

i=1

Ii. (2.25)

With the help of the Cauchy–Schwarz inequality and Sobolev’s imbedding theorem, we
have

I1 ≤ ελ

∫ 1

0
h2

xx dx + Cε

∫ 1

0

(
v4

x + v2
xx

)
h2 + v2

xh2
x dx

≤ ελ

∫ 1

0
h2

xx dx + Cε‖h‖2
L∞

(

‖vx‖2
L∞

∫ 1

0
v2

x dx +
∫ 1

0
v2

xx dx
)

+ Cε‖vx‖2
L∞

∫ 1

0
h2

x dx

≤ ελ

∫ 1

0
h2

xx dx + Cε

(‖vxx‖2
L2 + ‖vx‖2

L2
)
∫ 1

0
h2

x dx, (2.26)

and

I2 ≤
∫ 1

0

∣
∣kφ′(θ )θxhhx

∣
∣dx ≤ M

∫ 1

0
h2

x dx + M‖θx‖2
L∞

∫ 1

0
h2 dx.

By h|x=0,1 = 0, zx = h, the interpolation inequality and the Cauchy–Schwarz inequality, we
have

I3 ≤
∫ 1

0

∣
∣
((

kφ′(θ )θx
)

xzh + kφ′(θ )θxh2 + kφ′(θ )θxzhx
)
hx

∣
∣dx

≤ M
(
1 + ‖θx‖2

L∞
)
∫ 1

0
h2

x dx + M‖h‖2
L∞

(

‖θx‖2
L∞

∫ 1

0

(
θ2

x + h2)dx +
∫ 1

0
θ2

xx dx
)

≤ M
(

1 + ‖θx‖2
L∞ +

∫ 1

0
θ2

xx dx
)∫ 1

0
h2

x dx. (2.27)

Thanks to (2.26), (2.27), and (2.25), take ε > 0 suitably small, by Gronwall’s inequality and
zx = h, we can get (2.23). �
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2.2 Global estimates of (1.5)–(1.8)
For simplicity, in this section, we still use (v, u, θ , z) to denote the solution of (1.5)–(1.8).
The following elementary estimates of the solution of (1.5)–(1.8) can be deduced by the
same way as the above section. Here we do not repeat it.

Lemma 2.12 Under the conditions of Theorem 1.1, assume that (v, u, θ , z) is the solution
of (1.5)–(1.8) defined on [0, 1] × [0,∞). Then

M–1 ≤ v(x, t), θ (x, t) ≤ M for all x ∈ [0, 1], t ∈ [0,∞),

sup
t∈[0,∞)

(∥
∥(v – ṽ, u, z)(t)

∥
∥2

H2 + ‖θ – θ̃‖2
H1 +

∥
∥(vt , ut)

∥
∥2

L2
)

+
∫ ∞

0

(∥
∥(vt , ut , θt , zt)

∥
∥2

L2
)

dt +
∫ ∞

0

(∥
∥(vx, ux, θx)

∥
∥2

H1 +
∥
∥(vxt , uxt)

∥
∥2

L2
)

dt

+
∫ ∞

0

∫ 1

0
kφ(θ )

(
z2 + z2

x + z2
xx

)
dx dt ≤ M.

2.3 Species diffusion limit and convergence rates
In this section, we use the previous estimates to prove the species diffusion limit and con-
vergence rates. Assume that (v, u, θ , z) and (v, u, θ , z) are the solutions of problems (1.1)–
(1.4) and (1.5)–(1.8) defined on [0, 1] × [0,∞), respectively. Let

v̂ = v – v, û = u – u, θ̂ = θ – θ , ẑ = z – z.

Thus, by (1.1) and (1.5), one can derive

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

v̂t – ûx = 0,

ût + ( aθ̂
v )x + ( μux

v
v̂
v )x = ( μûx

v )x + ( aθ
v

v̂
v )x,

θ̂t + aθ̂ux
v + aθ ûx

v + ( νθx
v

v̂
v )x + μu2

x
v

v̂
v = aθux

v
v̂
v

+ ( νθ̂x
v )x + μû2

x
v + qk(φ(θ )z – φ(θ )z),

ẑt + k(φ(θ )z – φ(θ )z) = ( λzx
v2 )x.

(2.28)

Next, we use the following four lemmas to show species diffusion limit and convergence
rates with L2-norm and H1-norm, respectively, and this can be illustrated by Theorem 1.3.

Lemma 2.13 Under the conditions of Theorem 1.3, for any fixed 0 < T < ∞, let (v̂, û, θ̂ , ẑ),
which is defined on (0, 1) × [0, T), be the solution of problem (2.28). Then

sup
t∈[0,T)

∥
∥(v̂, û, θ̂ , ẑ)(·, t)

∥
∥2

L2 +
∫ T

0
(‖(ûx‖2

L2 + ‖θ̂x‖2
L2

)
dt ≤ Nλ1/2, (2.29)

where N is a constant independent of λ.

Proof Multiplying (2.28)1, (2.28)2, (2.28)3, and (2.28)4 by v̂, û, θ̂ , and ẑ, respectively, and
integrating over [0, 1], by the Cauchy–Schwarz inequality, we can deduce

1
2

d
dt

(∥
∥(v̂, û, θ̂ , ẑ)

∥
∥2

L2
)

+ μ‖ûx‖2
L2 + ν‖θ̂x‖2

L2
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≤ ε
(‖ûx‖2

L2 + ‖θ̂x‖2
L2

)
+ Cε

(
1 + ‖ux‖2

L∞ + ‖θx‖2
L∞

)‖v̂‖2
L2

+ Cε

(
1 + ‖ux‖2

L∞ + ‖ux‖2
L∞

)‖θ̂‖2
L2 + Cε‖ẑ‖2

L2 + λ1/2Cε

(
λ‖zx‖2

L2 + ‖zx‖2
L2 dx

)
.

By virtue of v̂0(x) = û0(x) = θ̂0(x) = ẑ0(x) = 0, the previous estimates in the above sections
and Gronwall’s inequality, we can verify inequality (2.29). That is, we arrive at the species
diffusion limit and convergence rate with L2-norm. �

Next, by Lemma 2.13, one can establish the following lemma which gives the species
diffusion limit and convergence rate with H1-norm.

Lemma 2.14 Under the conditions of Theorem 1.3, for any fixed 0 < T < ∞, let (v̂, û, θ̂ , ẑ),
which is defined on (0, 1) × [0, T), be the solution of problem (2.28). Then

sup
t∈[0,T)

(‖v̂x‖2
L2 + ‖ûx‖2

L2 + ‖θ̂x‖2
L2

)
+

∫ T

0

(‖ûxx‖2
L2 + ‖ût‖2

L2 + ‖θ̂t‖2
L2

) ≤ Nλ1/2,

where N is a constant independent of λ.

Proof Striving for equation (2.28)1 about the derivative of x, multiplying by v̂x, and inte-
grating over [0, 1], by the Cauchy–Schwarz inequality, we obtain

1
2

d
dt

∫ 1

0
v̂2

x dx =
∫ 1

0
ûxxv̂x dx ≤ ε

∫ 1

0
û2

xx dx + Cε

∫ 1

0
v̂2

x dx. (2.30)

Multiplying (2.28)2 by ût , integrating over [0, 1] on x, using the Cauchy–Schwarz in-
equality, we have

1
2

d
dt

‖ûx‖2
L2 dx + ‖ût‖d

L2 x

≤ ε‖ût‖2
L2 + Cε

(
1 + ‖ux‖2

L∞
)‖ûx‖2

L2 + Cε

(‖θ̂x‖2
L2 +

(‖θ̂x‖2
L2 + ‖θ̂‖2

L2
)‖vx‖2

L2
)

+ Cε

(‖θx‖2
L∞ + ‖vx‖2

L2 + ‖vx‖2
L2 + ‖uxx‖2

L2 + ‖ux‖2
L∞‖vx‖2

L2
)‖v̂‖2

L2

+ Cε

(
1 + ‖vx‖2

L2 + ‖vx‖2
L2 + ‖uxx‖2

L2 + ‖ux‖2
L∞ + ‖ux‖2

L∞‖vx‖2
L2

+ ‖ux‖2
L∞‖vx‖2

L2
)‖v̂x‖2

L2 . (2.31)

On the other hand, it follows from (2.28)2 that

‖ûxx‖2
L2 dx

≤ M
(‖ût‖2

L2 + ‖θ̂x‖2
L2 + ‖θ̂‖2

L∞‖vx‖2
L2 + ‖ux‖2

L∞‖v̂‖2
L∞

(‖vx‖2
L2 + ‖vx‖2

L2
))

+ M
(‖v̂‖2

L∞‖uxx‖2
L2 + ‖ux‖2

L∞‖v̂x‖2
L2 + ‖ûx‖2

L2
)

+ M
(‖v̂‖2

L∞
(‖vx‖2

L2 + ‖vx‖2
L2

)
+ ‖θx‖2

L∞‖v̂‖2
L2 + ‖v̂x‖2

L2
)
. (2.32)

Inserting (2.32) into (2.31) and taking ε > 0 sufficiently small, one obtains

d
dt

‖ûx‖2
L2 + ‖ûxx‖2

L2 + ‖ût‖2
L2



Zhang Advances in Difference Equations        (2019) 2019:319 Page 18 of 26

≤ M
(‖θx‖2

L∞ + ‖vx‖2
L2 + ‖vx‖2

L2 + ‖uxx‖2
L2 + ‖ux‖2

L∞
)‖v̂‖2

L2

+ M
(
1 + ‖vx‖2

L2 + ‖vx‖2
L2 + ‖uxx‖2

L2 + ‖ux‖2
L∞ + ‖ux‖2

L∞
)‖v̂x‖2

L2

+ M
(‖θ̂x‖2

L2 + ‖θ̂‖2
L2‖vx‖2

L2 +
(
1 + ‖ux‖2

L∞
)‖ûx‖2

L2
)
. (2.33)

Combining (2.33) and (2.30) and noticing that v̂0x = û0x = 0, by Lemma 2.13 and Gronwall’s
inequality, for any fixed 0 < T < ∞, one has

sup
t∈[0,T)

(‖v̂x‖2
L2 + ‖ûx‖2

L2
)

+
∫ T

0

(‖ûxx‖2
L2 + ‖ût‖2

L2
)

dt

≤ N
(

Mλ1/2 + λ1/2
∫ T

0
‖vx‖2

L2 dt +
∫ T

0
‖θ̂x‖2

L2 dt
)

≤ Nλ1/2, (2.34)

where N is a constant independent of λ.
Multiplying (2.28)3 by θ̂t , integrating over [0, 1] on x, by the Cauchy–Schwarz inequality,

we get

1
2

d
dt

‖θ̂x‖2
L2 + ‖θ̂t‖2

L2 dx

≤ ε‖θ̂t‖2
L2 + Cε

(
1 + ‖ux‖2

L∞
)‖θ̂x‖2

L2

+ Cε

(‖ux‖2
L∞‖θ̂‖2

L2 + ‖ûx‖2
L2 +

(‖v̂‖2
L2 + ‖v̂x‖2

L2
)‖θxx‖2

L2
)

+ Cε

(‖θx‖2
L∞‖v̂x‖2

L2 + ‖θx‖2
L∞

(‖v̂‖2
L2 + ‖v̂x‖2

L2
)(‖vx‖2

L2 + ‖vx‖2
L2

))

+ Cε

(‖ux‖2
L2‖ux‖2

L∞
(‖v̂‖2

L2 + ‖v̂x‖2
L2

)
+

(‖v̂‖2
L2 + ‖v̂x‖2

L2
)‖ux‖2

L2
)

+ Cε

(‖ûx‖2
L∞‖ûx‖2

L2 + ‖ẑ‖2
L2

)
.

Taking ε > 0 sufficiently small, by the L2-estimates, (2.34), and Gronwall’s inequality, for
any fixed 0 < T < ∞, we have

sup
t∈[0,T)

‖θ̂x‖2
L2 +

∫ T

0
‖θ̂t‖2

L2 dt

≤ Nλ1/2 + M‖ûx‖2
L2

∫ T

0

(‖ux‖2
L∞ + ‖ux‖2

L∞
)

dt ≤ Nλ1/2,

where N is a positive constant independent of λ. �

Lemma 2.15 Under the conditions of Theorem 1.3, for any fixed 0 < T < ∞, let (v̂, û, θ̂ , ẑ),
which is defined on (0, 1) × [0, T), be the solution of problem (2.28). Then it holds that

sup
t∈[0,T)

∥
∥ẑx(t)

∥
∥

L2 ≤ Nλ1/2.

Proof Differentiating (2.28)4 with respect to x, multiplying it by ẑx, and integrating the
resulting equation over [0, 1], one has

1
2

d
dt

‖ẑx‖2
L2 dx = –

∫ 1

0

(
kφ′(θ )θxz – kφ′(θ )θxz + kφ(θ )zx – kφ(θ )zx

)
ẑx dx
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+
∫ 1

0

(
λ

v2 zx

)

xx
ẑx dx =:

2∑

i=1

Ii. (2.35)

By the Cauchy–Schwarz inequality, we have

I1 ≤ M
∫ 1

0
ẑ2

x dx + M
(‖θx‖2

L∞ + ‖θx‖2
L∞

)
∫ 1

0
ẑ2 dx. (2.36)

With the help of Lemmas 2.1–2.11 and the Cauchy–Schwarz inequality, we obtain

I2 ≤ M
∫ 1

0

∣
∣
∣
∣
λ

v2 zxxx +
λ

v4 v2
xzx –

λ

v3 vxxzx –
λ

v3 vxzxx

∣
∣
∣
∣

2

dx + M
∫ 1

0
ẑ2

x dx

≤ Mλ

(

λ

∫ 1

0
z2

xxx dx
)

+ Mλ

(

λ

∫ 1

0
z2

xx dx
)

+ Mλ2
∫ 1

0
v2

xx dx + M
∫ 1

0
ẑ2

x dx. (2.37)

Combining with (2.35), (2.36), and (2.37), one has

1
2

d
dt

∫ 1

0
ẑ2

x dx ≤ M
∫ 1

0
ẑ2

x dx + M
(‖θx‖2

L∞ + ‖θx‖2
L∞

)
∫ 1

0
ẑ2 dx

+ Mλ

(

λ

∫ 1

0
z2

xx dx + λ

∫ 1

0
z2

xxx dx
)

+ Mλ2
∫ 1

0
v2

xx dx.

By Gronwall’s inequality and ẑ – L2 norm estimates, we deduce

sup
t∈[0,T)

‖ẑx‖2
L2 dx

≤ Mλ

(

λ

∫ T

0

∫ 1

0

(
z2

xx + z2
xxx + v2

xx
)

dx dt
)

+ Mλ1/2
∫ T

0

(‖θx‖2
L∞ + ‖θx‖2

L∞
)

dt

≤ Mλ1/2 + Mλ + Mλ2 ≤ Mλ1/2. �

3 The species diffusion and the rate of reactant limits
3.1 Global λ, k-independent estimates of (1.1)–(1.4)
Based on Sect. 2, the global well-posedness of solutions to problem (1.1)–(1.4) can be
shown in the same way as in [1, 18, 20]. Our main purpose, in this section, is to obtain
the global λ, k-independent estimates of solutions, which will be used to justify the van-
ishing rate of reactant limit. In order to get our results, we assume that the conditions
of Theorem 1.2 hold, and (vλ,k , uλ,k , θλ,k , zλ,k), defined on (0, 1) × [0,∞), is a solution of
problems (1.1)–(1.4). For simplicity, we still use (v, u, θ , z) to denote the solution of prob-
lems (1.1)–(1.4), use M∗ to denote the generic positive constant which may depend on
a,μ,ν, q,‖φ‖L∞ , but not on λ, k, and t.

From equation (1.1)4, we know that

∫ 1

0
z(x, t) dx + k

∫ ∞

0

∫ 1

0
φ(θ )z(x, t) dx dτ =

∫ 1

0
z0(x) dx. (3.1)

On the other hand, the rate function φ(θ ) is smooth, we have

k2
∫ 1

0
φ(θ )2z2 dx ≤ k

∫ 1

0
φ(θ )z2 dx. (3.2)
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From (3.1)–(3.2), and based on Sect. 2, we know that the global λ, k-independent estimates
of solutions (v, u, θ ) are similar to the estimates of problems (1.1)–(1.4) in Sect. 2. Our main
purpose in this section is to obtain the global λ, k-independent estimates of z.

Multiplying (1.1)4 by z and integrating over Ω , we have

sup
t∈[0,∞)

‖z‖2
L2 + λ

∫ ∞

0
‖zx‖2

L2 dt + k
∫ ∞

0

∫ 1

0
φ(θ )z2 dx dt ≤ M∗. (3.3)

Next, multiplying both sides of (1.1)4 by zxx, it follows

1
2

d
dt

∫ 1

0
z2

x dx + k
∫ 1

0
φ(θ )z2

x dx + λ

∫ 1

0
z2

xx dx

≤ εk
∫ 1

0
z2

x dx + Cε

∫ 1

0
θ2

x dx +
1
2
λ

∫ 1

0
z2

xx dx + M∗λ
∫ 1

0
z2

x dx.

Taking ε > 0 suitably small, by the Cauchy–Schwarz inequality and (3.3), we have

∫ 1

0
z2

x dx + λ

∫ ∞

0

∫ 1

0
z2

xx dx dτ + k
∫ ∞

0

∫ 1

0
φ(θ )z2

x dx dτ ≤ M∗. (3.4)

Finally, differentiating (1.1)4 with respect to x and setting ω = zx, we get

ωt + kφ(θ )ω + kφ′(θ )θxzω =
(

λ

v2 ω

)

xx
. (3.5)

Differentiating (3.5) with respect to x, multiplying it by ωx, and integrating the resulting
equation over [0, 1], then

1
2

d
dt

∫ 1

0
ω2

x dx + k
∫ 1

0
φ(θ )ω2

x dx +
∫ 1

0

λ

v2 ω2
xx dx

≤
∫ 1

0

∣
∣
∣
∣

((
λ

v2

)

xx
ω dx + 2

(
λ

v2

)

x
ωx

)

ωxx

∣
∣
∣
∣dx

+ k
∫ 1

0

∣
∣φ′(θ )θxωωx

∣
∣dx + k

∫ 1

0

∣
∣
(
φ′(θ )θxzω

)

xωx
∣
∣dx �

3∑

i=1

Ji. (3.6)

With the help of the estimates in Sect. 2, the Cauchy–Schwarz inequality, and Sobolev’s
imbedding theorem, we have

J1 ≤ ελ

∫ 1

0
ω2

xx dx + Cε

∫ 1

0

(
v4

x + v2
xx

)
ω2 + v2

xω
2
x dx

≤ ελ

∫ 1

0
ω2

xx dx + Cε‖ω‖2
L∞

(

‖vx‖2
L∞

∫ 1

0
v2

x dx +
∫ 1

0
v2

xx dx
)

+ Cε‖vx‖2
L∞

∫ 1

0
ω2

x dx

≤ ελ

∫ 1

0
ω2

xx dx + Cε

(‖vxx‖2
L2 + ‖vx‖2

L2
)
∫ 1

0
ω2

x dx. (3.7)

By the Cauchy–Schwarz inequality, one has

J2 ≤ k
∫ 1

0

∣
∣φ′(θ )θxωωx

∣
∣dx ≤ εk

∫ 1

0
ω2

x dx + Cε‖θx‖2
L∞

∫ 1

0
ω2 dx. (3.8)
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Noticing that ω|x=0,1 = 0 and by the interpolation inequality, we deduce

J3 ≤ k
∫ 1

0

∣
∣
((

φ′(θ )θx
)

xzω + φ′(θ )θxω
2 + φ′(θ )θxzωx

)
ωx

∣
∣dx

≤ εk
∫ 1

0
ω2

x dx + Cε

(

‖θx‖2
L∞ +

∫ 1

0
θ2

xx dx
)∫ 1

0
ω2

x dx. (3.9)

With the aid of (3.3)–(3.4), taking ε > 0 suitably small and applying Gronwall’s inequality
for (3.6), we obtain

sup
t∈[0,∞)

‖ωx‖2
L2 + k

∫ ∞

0

∫ 1

0
φ(θ )ω2

x(x, t) dx dt + λ

∫ ∞

0

∫ 1

0
ω2

xx(x, t) dx dt ≤ M∗, (3.10)

which implies

sup
t∈[0,∞)

‖zxx‖2
L2 + k

∫ ∞

0

∫ 1

0
φ(θ )z2

xx(x, t) dx dt + λ

∫ ∞

0

∫ 1

0
z2

xxx(x, t) dx dt ≤ M∗. (3.11)

With the help of (3.1)–(3.11) and Sect. 2, we have the following results, which imply
Theorem 1.2(i).

Lemma 3.1 Suppose that

0 < v0, 0 < θ0, (v0, u0, θ0, z0)(x) ∈ H1.

Then, for each fixed λ, k > 0, there exists a unique global solution (v, u, θ , z) to the initial-
boundary value problem (1.1)–(1.4) on (0, 1) × [0,∞) such that

M∗–1 ≤ v(x, t), θ (x, t) ≤ M∗ for all (x, t) ∈ [0, 1] × [0,∞),

sup
t∈[0,∞)

(∥
∥(v – ṽ, u)

∥
∥2

H2 + ‖θ – θ̃‖2
H1 +

∥
∥(vt , ut)

∥
∥2

L2
)

+
∫ ∞

0

(∥
∥(vx, ux, θx)

∥
∥2

H1 +
∥
∥(vxt , uxt)

∥
∥2

L2
)

dt +
∫ ∞

0

(∥
∥(vt , ut , θt , zt)

∥
∥2

L2
)

dt ≤ M∗,

sup
t∈[0,∞)

∥
∥z(t)

∥
∥2

H2 + λ

∫ ∞

0
‖zx‖2

H2 dt + k
∫ ∞

0

∫ 1

0
φ(θ )

(
z2 + z2

x + z2
xx

)
dx dt ≤ M∗,

where the positive constants v and θ are defined in Theorem 1.1, and M∗ denotes the generic
positive constant which may depend on a,μ,ν, q,‖φ‖L∞ , but not depend on λ, k, and t.

3.2 Global estimates of (1.9)–(1.12)
In this section, our purpose is to derive the global estimates of the solutions to the initial-
boundary value problem of (1.9)–(1.12) under the conditions of Theorem 1.2. For sim-
plicity, in this section, we still use (v, u, θ , z) to denote the solution of problem (1.9)–(1.12),
M∗ denotes the generic positive constant which may depend on a,μ,ν, q,‖φ‖L∞ , but not
on λ, k, and t.

The following elementary estimates are easily derived from (1.9)–(1.12) by the same way
as Lemmas 2.1–2.11.
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Lemma 3.2 Under the conditions of Theorem 1.2, assume that (v, u, θ , z) is the solution of
(1.9)–(1.12) defined on [0, 1] × [0,∞). Then

M∗–1 ≤ v(x, t), θ (x, t) ≤ M∗ for all x ∈ [0, 1], t ∈ [0,∞),

and

sup
t∈[0,∞)

(∥
∥(v – ṽ, u, θ – θ̃ , z)(t)

∥
∥2

H1 + ‖vt‖2
L2 + ‖ut‖2

L2
)

+
∫ ∞

0

(‖vx‖2
L2 + ‖ux‖2

L2 + ‖θx‖2
L2 + ‖zx‖2

L2
)

dt ≤ M∗,

where the positive constants ṽ and θ̃ are defined in Theorem 1.1.

Lemma 3.3 Let the conditions of Theorem 1.2 be in force. Assume that (v, u, θ , z) is the
solution of (1.9)–(1.12) defined on [0, 1] × [0,∞). Then

sup
t∈[0,∞)

∥
∥(vx, ux, zx)(t)

∥
∥2

H1 +
∫ ∞

0

(‖vt‖2
L2 + ‖ut‖2

L2 + ‖θt‖2
L2 + ‖zt‖2

L2
)

dt

+
∫ ∞

0

(‖vxx‖2
L2 + ‖uxx‖2

L2 + ‖θxx‖2
L2 + ‖vxt‖2

L2 + ‖uxt‖2
L2

)
dt ≤ M∗.

3.3 The species diffusion and rate of reactant limits and convergence rates
In this section, we use the previous estimates to prove the species diffusion and rate of
reactant limit and the convergence rates. Assume that (v, u, θ , z) and (v, u, θ , z) are the so-
lutions of problems (1.1)–(1.4) and (1.9)–(1.12) defined on [0, 1] × [0,∞), respectively.
Let

v̂ = v – v, û = u – u, θ̂ = θ – θ , ẑ = z – z.

Then (v̂, û, θ̂ , ẑ) satisfies

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

v̂t – ûx = 0,

ût + ( aθ̂
v )x + ( μux

v
v̂
v )x = ( μûx

v )x + ( aθ
v

v̂
v )x,

θ̂t + aθ̂ux
v + aθ ûx

v + ( νθx
v

v̂
v )x + μu2

x
v

v̂
v = aθux

v
v̂
v + ( νθ̂x

v )x + μû2
x

v + qkφ(θ )z,

ẑt + kφ(θ )z = ( λzx
v2 )x.

(3.12)

Next, we have the following four lemmas to show the species diffusion and rate of reac-
tant limits, and the convergence rates with L2-norm and H1-norm, respectively, and this
can be illustrated by Theorem 1.4.

Lemma 3.4 Under the conditions of Theorem 1.4, for any fixed 0 < T < ∞, let (v̂, û, θ̂ , ẑ),
defined on (0, 1) × [0, T), be the solution of problem (3.12). Then

sup
t∈[0,T)

∥
∥(v̂, û, θ̂ , ẑ)(·, t)

∥
∥2

L2 +
∫ T

0
(‖(ûx‖2

L2 + ‖θ̂x‖2
L2

)
dt ≤ N∗(λ1/2 + k1/2), (3.13)

where N∗ is a positive constant independent of λ, k.



Zhang Advances in Difference Equations        (2019) 2019:319 Page 23 of 26

Proof Multiplying (3.12)1 and (3.12)2 by v̂ and û, respectively and integrating it over [0, 1],
by the Cauchy–Schwarz inequality, we can deduce

1
2

d
dt

∫ 1

0
û2 + v̂2 dx + μ

∫ 1

0
û2

x dx ≤ ε

∫ 1

0
û2

x dx + Cε

(‖ux‖2
L∞ + 1

)
∫ 1

0
v̂2 dx. (3.14)

Multiplying both sides of (3.12)3 by θ̂ and integrating it over [0, 1], by the Cauchy–
Schwarz inequality, we have

1
2

d
dt

∫ 1

0
θ̂2 dx + ν

∫ 1

0
θ̂2

x dx

≤ M∗k2
∫ 1

0
ẑ2 dx + M∗‖ux‖2

L∞

∫ 1

0
v̂2 dx + M∗

∫ 1

0
θ̂2 dx + ε

∫ 1

0
û2

x dx

+ Cε

(‖ux‖2
L∞ + ‖ux‖2

L∞
)
∫ 1

0
θ̂2 dx + Cε

∫ 1

0
θ̂2 dx + ε

∫ 1

0
θ̂2

x dx

+ Cε‖θx‖2
L∞

∫ 1

0
v̂2 dx + M∗‖ux‖2

L∞

∫ 1

0

(
v̂2 + θ̂2)dx.

Multiplying (3.12)4 by ẑ, integrating it over [0, 1], by the Cauchy–Schwarz inequality, we
obtain

1
2

d
dt

∫ 1

0
ẑ2 dx = –

∫ 1

0

λ

v2 zx(z – z)x dx – k
∫ 1

0
φ(θ )z(z – z) dx

≤ M∗λ1/2
(

λ

∫ 1

0
z2

x dx +
∫ 1

0
z2

x dx
)

+ M∗k1/2
(

k
∫ 1

0
z2 dx +

∫ 1

0
z2 dx

)

. (3.15)

Combining (3.14)–(3.15) and taking ε > 0 sufficiently small, noticing that v̂0(x) = û0(x) =
θ̂0(x) = ẑ0(x) = 0, by previous estimates and Gronwall’s inequality, we can obtain (3.13). �

Next, by using Lemma 3.4, one can establish the species diffusion and rate of reactant
limit and convergence rate with H1-norm as follows.

Lemma 3.5 Under the conditions of Theorem 1.4, for any fixed 0 < T < ∞, let (v̂, û, θ̂ , ẑ),
defined on (0, 1) × [0, T), be the solution of problem (3.12). Then

sup
t∈[0,T)

(‖v̂x‖2
L2 + ‖ûx‖2

L2 + ‖θ̂x‖2
L2

)
+

∫ T

0

(‖ûxx‖2
L2 + ‖ût‖2

L2 + ‖θ̂t‖2
L2

) ≤ N∗(λ1/2 + k1/2),

where N∗ is a positive constant independent of λ, k.

Proof By (2.30) and (2.33) and Lemma 3.4, we have

sup
t∈[0,∞)

(‖v̂x‖2
L2 + ‖ûx‖2

L2
)

+
∫ ∞

0

(‖ûxx‖2
L2 + ‖ût‖2

L2
)

dt

≤ N∗
(

M∗λ1/2 + λ1/2
∫ ∞

0
‖vx‖2

L2 dt +
∫ ∞

0
‖θ̂x‖2

L2 dt
)
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≤ N∗(λ1/2 + k1/2).

Next, multiplying both sides of (3.12)3 by θ̂t and integrating it over [0, 1], using the
Cauchy–Schwarz inequality, we deduce

1
2

d
dt

∫ 1

0
θ̂2

x dx +
∫ 1

0
θ̂2

t dx

≤ ε‖θ̂t‖2
L2 + Cεk

∫ 1

0
φ(θ )z2 dx + M∗(1 + ‖ux‖2

L∞
)‖θ̂x‖2

L2

+ Cε

(‖ux‖2
L∞‖θ̂‖2

L2 + ‖ûx‖2
L2 +

(‖v̂‖2
L2 + ‖v̂x‖2

L2
)‖θxx‖2

L2
)

+ Cε

(‖θx‖2
L∞‖v̂x‖2

L2 + ‖θx‖2
L∞

(‖v̂‖2
L2 + ‖v̂x‖2

L2
)(‖vx‖2

L2 + ‖vx‖2
L2

))

+ Cε

(‖ux‖2
L2‖ux‖2

L∞
(‖v̂‖2

L2 + ‖v̂x‖2
L2

)
+

(‖v̂‖2
L2 + ‖v̂x‖2

L2
)‖ux‖2

L2
)

+ Cε

(‖ûx‖2
L∞‖ûx‖2

L2
)
.

Taking ε > 0 sufficiently small and using Gronwall’s inequality, for any fixed 0 < T < ∞, it
follows

sup
t∈[0,T)

‖θ̂x‖2
L2 +

∫ T

0
‖θ̂t‖2

L2 dt ≤ N∗λ1/2 + M∗‖ûx‖2
L2

∫ T

0

(‖ux‖2
L∞ + ‖ux‖2

L∞
)

dt

≤ N∗(λ1/2 + k1/2). �

Lemma 3.6 Under the conditions of Theorem 1.4, for any fixed 0 < T < ∞, let (v̂, û, θ̂ , ẑ),
defined on (0, 1) × [0, T), be the solution of problem (3.12). Then it holds that

sup
t∈[0,T)

∥
∥ẑx(t)

∥
∥

L2 ≤ M∗(λ1/2 + k1/2).

Proof Differentiating (3.12)4 with respect to x, multiplying it by ẑx, and integrating the
resulting equation over [0, 1], we obtain

1
2

d
dt

∫ 1

0
ẑ2

x dx = –k
∫ 1

0
φ′(θ )θxzẑx dx – k

∫ 1

0
φ(θ )zxẑx dx +

∫ 1

0

(
λ

v2 zx

)

xx
ẑx dx =

3∑

i=1

Ji.

By the Cauchy–Schwarz inequality, we have

J1 = –k
∫ 1

0
φ′(θ )θxzẑx dx ≤ M∗

∫ 1

0
ẑ2

x dx + M∗k2‖θx‖2
L∞

∫ 1

0
ẑ2 dx (3.16)

and

J2 = –k
∫ 1

0
φ(θ )z2

x dx + k
∫ 1

0
φ(θ )zxzx dx

≤
∫ 1

0
k3/4|zx|k1/4|zx|dx ≤ M∗k1/2

(

k
∫ 1

0
z2

x dx +
∫ 1

0
z2

x dx
)

.
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With the help of Lemmas 2.1–2.11 and Young’s inequality, we deduce

J3 ≤ M∗
∫ 1

0

∣
∣
∣
∣
λ

v2 zxxx +
λ

v4 v2
xzx –

λ

v3 vxxzx –
λ

v3 vxzxx

∣
∣
∣
∣

2

dx + M∗
∫ 1

0
ẑ2

x dx

≤ M∗λ2
∫ 1

0

(
z2

xx + z2
xxx + v2

xx
)

dx + M∗λ2‖vx‖2
L2

∫ 1

0
z2

xx dx + M∗
∫ 1

0
ẑ2

x dx

≤ M∗λ
(

λ

∫ 1

0
z2

xxx dx
)

+ M∗λ
(

λ

∫ 1

0
z2

xx dx
)

+ M∗λ2
∫ 1

0
v2

xx dx + M∗
∫ 1

0
ẑ2

x dx. (3.17)

Combining with (3.16)–(3.17), we have

1
2

d
dt

∫ 1

0
ẑ2

x dx ≤ M∗k1/2
(

k
∫ 1

0
z2

x dx +
∫ 1

0
z2

x dx
)

+ M∗k2‖θx‖2
L∞

∫ 1

0
ẑ2 dx

+ M∗λ
(

λ

∫ 1

0
z2

xx dx + λ

∫ 1

0
z2

xxx dx
)

+ M∗λ2
∫ 1

0
v2

xx dx.

By Gronwall’s inequality and ẑ – L2 norm estimates, we obtain

sup
t∈[0,∞)

‖ẑx‖2
L2 dx ≤ M∗λ1/2 + M∗λ + M∗λ2 + M∗k1/2 + M∗k2

≤ M∗(λ1/2 + k1/2).

This completes the proof of Lemma 3.6. �

With the help of Lemmas 3.4–3.6, we can obtain Theorem 1.4.
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