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1 Introduction
The equations of one-dimensional compressible viscous and heat-conductive Navier—
Stokes equations for a reacting mixture in the Lagrange coordinates are of the following
form (see [1-3]):

Ve — U, =0,
Uy + (), = (M),
(O + ) + (20), = (s 4 Vs 4 gk,

14
A
z + kpz = (25)s,

(1.1)

where x € £2 := (0,1) denotes the Lagrange mass coordinate, ¢ > 0 is time, the unknown

functions v > 0,u,6 > 0,z are the specific volume, the fluid velocity, the absolute temper-

ature, and the mass fraction of the reactant; the constants u,v,q, A, and k are the coeffi-

cients of bulk viscosity, the heat conduction, the difference in the heats of formation of the

reactant and the product, the species diffusion, and the rate of reactant, respectively.
The total specific energy has the form

Freos X
=e+ — +qz
5 q

where e is the specific internal energy.

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, pro-

L]
@ Sprlnger vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and

indicate if changes were made.


https://doi.org/10.1186/s13662-019-2205-2
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-019-2205-2&domain=pdf
http://orcid.org/0000-0001-9018-5333
mailto:myuzhang@126.com

Zhang Advances in Difference Equations (2019) 2019:319 Page 2 of 26

For a perfect gas mixture with the same y-gas laws, the pressure p = p(v,0) and the in-
ternal energy e = e(v, 0) are related with the specific volume and the absolute temperature
which have the following form:

6
p,0) = “, e(v,0) = R
1% y—-1

where a = RM > 0, R is Boltzmann’s gas constant and M is the molecular weight.
The rate function ¢(9), which describes the intensity of a chemical reaction, is typically
determined by the Arrhenius law (see [1, 4, 5]):

¢(9) — eae—A/Q’

where the positive constant A is the activation energy, o > 0 is a physical number.
When species diffusion A > 0, the initial boundary value problems for (1.1) with the
initial data are as follows:

(V(x’ 0)! u(x, 0)’ Q(x, 0)! Z(x7 0)) = (VO(x)’ M()(x), GO(x)! Zo(?C)), X € [0: 1]:
0<mo<w(x),  bolx) <Mp<oo, 0=z =<1, (1.2)

fol vox)dx =1,

and the impermeably insulated boundary conditions

w(0,8) = u(1,¢) = 0,
0,(0,2) = 6,(1,£) = 0, (1.3)
2:(0,8) = Z,(1,£) = 0,

with the compatibility conditions

(40, B0x> Zox)1x=0,1 = 0,

0
(‘1_00 - (w‘j%)x)bc:o,l =0.

(1.4)

The existence and behavior of steady plane wave solutions to the compressible Navier—
Stokes equations for a reacting gas have been investigated by Gardner (see [6]) and Wagner
(see [7]), and they confirmed some phenomena observed in numerical calculations and
predicted by the ZND theory, which has been developed independently by Zeldovich, von
Neumann, and Doéring (see [8]). In [9] and the references cited therein, lots of theoretical
and computational properties regarding the structure and stability of reacting shock waves
of (1.1) are analyzed. For recent developments and strategies, see [10, 11] and [12, 13], the
authors also gave the mathematical theory of combustion.

The existence of global solutions to the one-dimensional nonsteady equations of a vis-
cous compressible gas was first studied in [14, 15]. The global existence and large-time
behavior of solutions for the one-dimensional models of compressible, viscous, and heat-
conductive fluids have been studied by many researchers. In particular, the case A > 0 was
treated in [1, 2, 16, 17] and the references therein. For the binary-mixture case A = 0, we
can find in [18, 19]. In [1], when ¢(6) is discontinuous, existence theorems are established
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for global generalized solutions to the compressible Navier—Stokes equations for a reacting
mixture. So, it is of great importance to understand how the model changes when A — 0
and A, k — 0. The convergence rates need some careful analysis, based on the elementary
energy methods and the application of Sobolev’s inequality.

In this paper, the initial-boundary value problems (1.1) with the vanishing species dif-
fusion and rate of reactant limits are considered. With the help of global-2 and global-A, k
independent estimates, we obtain the convergence rates.

Formally, if the species diffusion A = 0, then system (1.1) turns into the binary-mixture

form

Ve — Uy =0,
u+ (2), = (M),
2
(O + %)+ (40, = (M 4 2 4 gkopz,

z; + k¢pz =0,
which is equipped with the following initial data:

(v(x,0), u(x, 0),0(x,0),z(x, 0)) = (Vo(x), uo(x), 6o(x), 20(%)), x€[0,1],
0 < my < vo(x), Bo(x) < My < 00, 0<z(x) <1, (1.6)

fol volx)dx =1,

and boundary conditions

u(0,t) = u(1,t) =0,

(1.7)
Ox(or t) = ex(li t) = 01
with the compatibility conditions
%0, 0ox)|x=0,1 = 0,
(10, B0x) | x=0,1 (L.8)

(% = () lx=01 = 0.
Compared with the large literature body for compressible reacting mixture equations,
for system (1.1) with initial-boundary conditions (1.2), (1.3), (1.4) and system (1.5) with
initial-boundary conditions (1.6), (1.7), (1.8), we also assume that the reacting rate func-
tion ¢ () is a smooth function.
In the other case, if the coefficients of the species diffusion A = 0 and the rate of reactant

k =0, then system (1.1) turns into the following form:

Ve— Uy =0,
6

w4 (), = (M),

(0+ ), + (M) = (1ts 4 )
2/t v /X v v /X

z; =0,
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which is equipped with the following initial data:

(V(xr O)r u(x, 0)’ Q(xr 0)1 Z(x: 0)) = (VO(x)r MO(x)r 9()(96), ZO(x))! X € [07 1]!
0 < mg < vo(x), Oo(x) < My < 00, 0<zx)<1, (1.10)

fol vo(x)dx =1,

and boundary conditions

u(0,t) = u(1,t) =0,
0,(0,1) = 0,(1,£) = 0,

(1.11)

with the compatibility conditions

(40, 60x)1x=0,1 = 0,

0
(ﬂv_oo - (%)x”x:O,l =0.

(1.12)

Our main results are as follows.

Theorem 1.1 (i) Suppose that
0< Vo,o < 90, (V(), U, 90, Zo)(x) (S Hl. (113)

Then, for each fixed ) > 0, there exists a unique global solution (v,u,0,z) to the initial-
boundary value problem (1.1)—(1.4) on (0,1) x [0, 00) such that

M <v(xt), O(x,t) <M forallx € [0,1],t € [0,00), (1.14)

sup (| v=0) 12 + 10 = 012 + | (v )] }2)
€[0,00)
o0 2 2 e 2
+/ (||(Vx1ux;9x)HH1 + “(th,lfixt)”Lz)dt"'/ (H(Vt¢ut»9:,zt)||Lz)dtSM, (1.15)
0 0

9] 00 1
sup |z() ||i[2 + A/ Izl dt + / / kp(0)(2* + 22 + z2,) dxdt < M, (1.16)
te[0,00) 0 o Jo
where v = /01 v(x, t) dx, and the constant 6 is determined by

-~ 1 1
e(v,0)=Eg:= / <€(Vo,90) + 5’4%) dx.
0

(ii) Assume that (vo, uo, 00, 20) satisfies (1.6). Then there exists a unique global solution
(v,u,0,z) to problem (1.5)—(1.8) on (0,1) x [0, 00) such that

M <v(xt), O(x,t) <M forallx € [0,1],t € [0,00), (1.17)

sup (|(v=7,u,2) 0| + 16 = 6120 + | )| 12)
te[0,00)

o0 o0
+ / (| ue,00,20) 1) it + / (et 0 11 + | Vs ) 12)
0 0

Page 4 of 26
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e} 1
+/ / ke (0)(z* + z + z2,) dxdt < M. (1.18)
o Jo

Here, the letter M denotes the generic positive constant which depends on a, u, v, q, k, ||¢|| o,
but noton ) and t.

In terms of (1.1)—(1.4) and (1.9)—(1.12), the second important theorem is as follows.

Theorem 1.2 (i) Under the conditions of Theorem 1.1, for each fixed A,k > 0, there exists
a unique global solution (v,u,0,z) to the initial-boundary value problem (1.1)-(1.4) on
(0,1) x [0, 00) such that

M1 <v(x, ¢), O(x,t) <M* forall (x,t) € [0,1] x [0, 00),

sup (| =9, + 16 812 + | o) | 2)
te[0,00)
o0 2 2 e 2
+/ (” (Vx1 Mxigx)HHl + ”(th1 Mxt)||L2)dt+f (H(Vb Mtrgttzt)HLZ)dtSM*1
0 0

oo oo 1
sup |z() ||i[2 + A/ Izl 72 dt + k/ / $(0)(2* + 23 + 22,) dxdt < M*.
te[0,00) 0 o Jo

(ii) Assume that (vo, ug, 09, zo) satisfies (1.10). Then there exists a unique global solution
(v,u,0,z) to problem (1.9)—(1.12) on (0,1) x [0, 00) such that

ML <v(x,8), O(x,t) < M*, z(x,t) = zo(x), forallx € [0,1],¢ € [0,00),

sup )(nw— Bu)(8)|| 3+ 16 =120 + | (ves ) | 22)
te(0,00

e [ 00 + o) e+ [ (J00m00]) de <
0 0

Here, the letter M* denotes the generic positive constant which may depend on
a, 4, v,q, |||l L, but does not depend on A, k, and ¢.

It was pointed out in [1, 18] that the justification of (1.1) with vanishing species diffusion
limit is still open. Indeed, the study of the vanishing species diffusion and rate of reactant
limits relies on the global uniform-in-A estimates and the global uniform-in-A, k estimates
of the solutions respectively of problem (1.1)—(1.4), which are more difficult to achieve
than those for problem (1.5)—(1.8) and (1.9), (1.10), (1.11), and (1.12) due to the presence
of reacting-diffusion equation. Our third and fourth results of this paper are concerned
with the vanishing species diffusion and rate of reactant limit, which are shown by making
a full use of some strong condition of the heat-conductive Navier—Stokes equations for a

reacting mixture.

Theorem 1.3 Under the conditions of Theorem 1.1, for any fixed 0 < T < oo, let (v*, u*, 6%,
Z") and (v,u,0,z2), defined on (0,1) x [0, T), be the solutions of problems (1.1)—(1.4) and
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(1.5)—(1.8), respectively. Then

T
sup ([[(V* v, ~u,6* = 6,2 =) 1) 1) +f (e = w7 + 6" =) ) a
t€l0,T) 0

T
o [ 16 -6t -0), 7 de <217,
0

where N is a generic positive constant independent of \.

Theorem 1.4 Under the condition of Theorem 1.1, for any fixed 0 < T < 0o, let (VK u*,
0k, %) and (v,u,0,z), defined on (0,1) x [0, T), be the solutions of problems (1.1)—(1.4)
and (1.9)-(1.12), respectively. Then

sup (| (VK —v,u —u, 00 9,2k — z)(t) ||i11)
te[0,T)

T
o [ = ull € = 0)]) e
T
[ w0 ) [ de =N k12),
0

where N* is a generic positive constant independent of A and k.

The rest of this paper is organized as follows. In Sect. 2, we establish the global X-
independent estimates of the solutions (v*,u*,6%,2") to problem (1.1)—(1.4), the global
estimates of the solutions (v, 4,0, z) to problem (1.5)—(1.8), respectively. With the help of
global (uniform) estimates at hand, we justify the vanishing species diffusion limit and ob-
tain the convergence rates. In Sect. 3, we establish the global 1, k-independent estimates
of the solutions (v, u’*,6**, 2K} to problem (1.1)—(1.4), the global estimates of the so-
lutions (v, u,0,z) to problem (1.9), (1.10), (1.11), and (1.12), respectively. With the help of
global (uniform) estimates, we justify the vanishing species diffusion and rate of reactant
limit and obtain the convergence rates.

2 The vanishing species diffusion limit
2.1 Global A-independent estimates of (1.1)-(1.4)
Based on the standard local existence results and the global 4 priori estimates, the global
well-posedness of the solutions to (1.1)—(1.4) can be shown in the same way as that in
[1, 18, 20]. Our main purpose is to obtain the global A-independent estimates of solu-
tions, which are used to justify the vanishing species diffusion limit. For simplicity, in this
section, we use (v, 4,6, z) to denote the solutions of (1.1)—(1.4), the letter M denotes the
generic positive constant which depends on a, i1, v, ¢, k, ||¢|| ., but not on X and ¢.

We begin with the following elementary estimates.

Lemma 2.1 Under the conditions of Theorem 1.1,
1 1
/ v(x, t) dx = / vow)dx =1, Vte[0,00),
0 0

/lz(x,t)dx+ /Ow/01k¢(9)z(x, t)ydxdt = ‘/Olzo(x)dx,

0
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1 2 1 w2
/ (9+—+qz)dx=/ (90+—0+qzo)dx,
0 2 0 2

o pl 2 92
E(v,u,9)+/ / Rty D
0 0 7 V@z

where E(v,u,0) is defined as

and

)dxdr <M,

1 2
E(v,u,0) é/ [d(v—lnv— D+ +(O-no- 1)} dx.
0
The proof of Lemma 2.1 is the same as in [1, Lemma 1]; here, we omit it for simplic-

ity. With the help of Lemma 2.1, similar to the proof in [1, 20], it is easy to establish the
following lemma, we omit its proof as well.

Lemma 2.2 The following inequalities hold:
1
0<zxt) <1, oy < / O(x,t)dx < Bo, V(x,t)€[0,1] x [0, 00). (2.1)
0

Here, the positive constants ay, By are the roots of

1 1
y-Iny-1=E;:= ——— E0+q/ zo(x) dx |,
min{1, a} 0

where
1 iy
Ey = E(vo, ug, 0p) £ / [a(vo —Invg—-1)+ 70 +(6g —1In6y — 1)i| dx.
0
Next, we adapt and modify an idea of Kazhikhov [3] (also cf. the survey article [21]) for

the polytropic ideal gas to give a representation of solutions of (1.1)—(1.4). In order to do
this, we define

t X
o(x,8) 2 —p(v,0) + % W t) 2 f o (x,t)dr + / o dx.
0 0
Then we have ¥, = u and ¥, = 0. Thus y satisfies

Wy = %wm —p(n,0). (2.2)

Multiplying (2.2) by v and using (1.1);, we can see that

W) — () = uilx — vp — u’, (2.3)

Keeping in mind that ¥, = u vanishes on the boundary and integrating (2.3) over (0,1) x
[0, £], one has

1 1 S
_ _ 2 .
‘/O(Vw)(x,t)dx—/o (vir)(x,0) dx /0/0 (4 + vp) (%, 7) dxdr := W (). (2.4)
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Applying the mean value theorem to (2.4), by Lemma 2.1, v > 0, we get that for each £ >0
there exists x;(¢) € [0, 1] such that

1
¥ (x1(0),8) = /0 U (x, Ov(x, £) dx = W (£).

Therefore, by the definition of v (x, £) and (2.4), we have

x1(8)

1
/ Y (x1(8), T) dt = ¥ (%1 (0),8) — /
0

/f u* +vp dxdt+/ vo()/ uo(&)dé

x1(t)
_ /0 uo(E) de (2.5)

wo(E) d = W (1) - / (&) di

and ¢ > 0. Thanks to (2.5), one can establish the following lemma.

Lemma 2.3 For system (1.1)—(1.4), we have the following representations:
(i) For any t > 0, there exists x1(t) € [0, 1] such that

~ 1 t 1 )
V(x,t)—B(x,t)D(x,t)exp<—;/(; /0 (u +a9) dxdt), (2.6)

where

x x1(8)
Bx0) =m(x)exp{1( [ e~ [ e ae
M\ Jxq(0) 0
1 X
dé d , 2.7
+ fo o(x) f uolE) dé x)} 27)
a x,r)
D(x,t):1+;/0 x,r) ( / / u® +ab (x, dxds)

Proof In view of the definition of o, we rewrite (1.1), as follows:

e+ p(1,0), = (1t Tog V). (2.8)

Integrating (2.8) over [0,¢] x [x1(£),x] and by (2.5), we obtain

1 1 x 1 x1(¢) 1 x
logv(z, )~ /O vol®) /0 (@) de dx s - /0 o) - /xl(t)(u—uoxs)ds

L[t 1 (tab
=logvo(x) — — (u + a@)(x, T)dxdt + — —(x, 7)dT,
K“Jo Jo KnJo Vv

which, upon taking the exponential, turns into

1
v(m)exp{—;(fxm(u 1) (§) dE / wo(&) d + f () f uolE dsdx)}
_ 1 2 1 [fad }
—vo(x)exp{ M/<; /0 (u +a9)(x,r)dxdt}exp{'u/0 - (x,7)dt ¢,



Zhang Advances in Difference Equations (2019) 2019:319 Page 9 of 26

that is,

12 1 12
V(x,t):B(x,t)exp{—%/o /0 (u2+a9)(x,t)dxdt}exp{i‘/(; ?(x,r)dr}. (2.9)

It follows from (2.7) and (2.9) that

ab 1 [tab v(x, 1)A(t) ad
% exp —/ Y x7)dr b = AW AT
wv wlo v B(x,t) pv

where

) 1,
A(t)—exp{ﬁfo /0 (u +a0)(x,r)dxdr}.

Integrating the above identity over (0, ¢), one has

1 (tad "O(x,7)A
exp{—/ ﬂ—(x,t)dr} =1+ ﬁ/ Mdr. (2.10)

wlo v wto Dx 1)
Inserting (2.10) into (2.9), we get (2.6). O

With the aid of Lemma 2.3, we can obtain the following important lemma about the

uniform upper and lower bounds of v.

Lemma 2.4 For any t > 0, we have

M1 <v(xt) <M, <0(x,t), Vxt) e€l0,1] x [0,00).

M1 +¢) —

The proofs of Lemma 2.4 and the below lemma are in the same way as in the paper [1,

20], here we omit them.

Lemma 2.5 The following estimates hold:
2 =12
sup ([ (v vl 12 + | @6 =) )
te[0,00)
+ /0 (10w v 2 + [ Gaas 0 [ + [ 40, 00) | 12) e < M, (211)

oo oo 1
sup 1zl + 2 / 2l de + / / k(6)(2 + 22) dxdt < M.
0 0 0

te[0,00)

By means of Lemma 2.5, we next establish the following estimates.
Lemma 2.6 Fort >0, we have
’u(x, t)’ <M, O(x,t) <M, V(xt)e€[0,1] x [0,00),

o0
/ (letllZo + 16x11700 ) dt < M.
0
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Proof By Holder’s inequality, we obtain

x 1 12, 01 172
u? < / (uz)x dx < 2([ u? dx) (/ u? dx) <M.
0 0 0

With the aid of (2.1), by the mean value theorem, there exists #* € (0, 1) such that

1
o) E/O G(x,t) :G(x*,t) éﬂ < ,3().

Then we define an auxiliary function g by

6
g(e):/ Vo —1-1n6do.
0

Thus we have

df{(x@) =g’(9)9x, g’(@) = m

Integrating the above identity over (x*,x), we obtain
X
2O 0) = [ ¢Odrs g0
x*

Next, we prove that g(6)(x*, t) is a bounded function. In fact

0(x*,t)
g(@)(x*,t) = vs—1-1Insds.

0

Notice that when 6 > 1, f(0) £ 0 —1-1n6 is a monotone increasing function, when 0 <
0 <1, £(0) is a monotone decreasing function. If 6 (x*,t) > 1 (8(x*,£) < 1 is similar)

0 (xc,t

1 )
g(9)(x*,t)=/ Vs—1—Insds+ vs—1—Insds
0

0
1 [t 1
< - s—1-Insds+—-+M <M.
2 /o 2
Therefore,

g(0)(x,8) = / VO —1-1n6|6| dx + M
0

=

1 1 1
/ 0—1—ln9dx+—+M/ 02 dx + M
0 2 0

IA
g N =

By the definition of g(0), we know that when 6 — oo, g(0) — o0, this together with the
above inequality, there exists a constant M > 0 such that

O(x,t) < M.
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By virtue of the interpolation inequality, we have

2
ot llzoo < Mluaell 2 |24 || 1

2 2
SM(Hux”LZ + ””xx”Lz)»

With the help of (2.11), we obtain

oo
/ )2 dT < M.
0

By the same way, we get

/MM§MSM
0

This completes the proof of Lemma 2.6. O
Next the large-time behavior of global generalized solutions is obtained.

Lemma 2.7 It holds that

lim ([|v = 7,1,0 — 0|1 (&) + Vi th, x| 2(8) = 0, Vs €[2,00],x € 2,

t—00
whereV and 6 are defined in Theorem 1.1.

Proof By Lemma 2.5, we have

/ (2l + 16:11%) de < M. 2.12)
0

We rewrite (1.1)3 as follows:

6 6, 2
0+ L, = (”—) + M |k (0)z. (2.13)
12 14 x 14

Multiplying both sides of (2.13) by 6,, and using Lemma 2.1, we obtain

1
ab v v "
= ‘/ » UyOpx + ﬁexvxexx - _20939: - ;ufﬂm — qke(0)z0sx
0

2
‘E”Hx”LZ(_Q) Vv

2 2 2 2 2 2 2
< M1sxll7s + M(I01 oo llstall 7o + 1621100 1Vell72 + ot Zoo 241 72)

1
+M / K¢ (0)°2" dx.
0
Integrating it over (0, o), with the aid of Lemma 2.5, we obtain

r

o0 o0
SMf 1B 172 dt+Mf (a2 + | BellZoo | + Nl2ael7oo )
0 0

dt

d 2
E”Gx”LZ(Q)
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1
+ M/ ke(0)z* dx
0
<M. (2.14)
Multiplying both sides of (1.1); by u,, and using Lemma 2.1, we derive

Yu2 /o Uy
+ X dx = a\ = | Uxx + U Vallxx dx
0 14 0 12 x 1%

w1l 1
< —/ ﬂdx+M/ (0%v2 + 67 + uv2) dx.
4Jo v 0

d 2
‘% ”ux”LZ(Q)

Integrating the above inequality over (0, 00), with the aid of Lemma 2.5 and Lemma 2.6,

we obtain

d 00 1 uZ

— Nl dt+/ / = dxdt
dt #AHD) 0 o V

[e¢]
J
m 0 lu2 oo rl
5—/ / ﬁdxdt+M/ / (02 + 07 + uvy) dxdt
4Jo Jo v o Jo

i o0 1 M2 9 [ee] 1
<M+ —/ / — dx dt +M”ux(~,t) ||Loo +M max 6/ / 0*v2 dx dt
4Jo Jo v o Jo

[0,1]x[0,00]
oo 1 M2
M+ﬁ/ /ﬂdxdt. (2.15)
2 0 o V

With the aid of (2.12), (2.14), and (2.15), one has

IA

Jim (ux,0)] o  + 16020 ) = -

By virtue of Lemma 2.5, we deduce

* 2 d 2
A (T o P PO o P
then
t]L"QO vl 2) ”L2(Q) =0.
Using the interpolation inequality, we have
tl_i)r(r)loH(v—v, u,0 —5)(-,t)||L2(m =0.
The proof of Lemma 2.7 is thus complete. O

Thanks to Lemma 2.6, one can deduce the uniform lower bounds of temperature 6 (x, £).

Lemma 2.8 It holds that

M1 <0(x,t) <M, Vxt) el0,1] x [0,00).

Page 12 of 26
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Proof With the aid of Lemma 2.7, and by using the interpolation inequality, we have
16— 8112 g, < MlI6x ] 72.

Taking the limit on both sides of the above inequality, we have
)ggo “ (0 -0)(-1) ”c@ =0.

Hence, there exists some Ty such that
M <6(xt) <M, Y(xt)e0,1] x [To,00).

On the other hand, from Lemma 2.5, we get

O(x,t) > Y, Y(x,t) € [0,1] x [0, Tp].

(1 + T()) ’
This completes the proof of Lemma 2.8. d

Lemma 2.9 Forany t > 0, it holds that

e8] 1
sup (||Mt||i2 + ||Mxx||i2) +/ / ”ﬁt(x’ t)dxdt < M. (2.16)
o Jo

te[0,00)

Proof Differentiating (1.1), with respect to ¢, multiplying it by u;, and integrating the re-

sulting equation over [0, 1], by using (1.1); and #;|,-01 = 0, we get
1d ! 1 ’ L/ a0
—— ufdxzf i utdx—/ i u; dx
2 dt 0 0 1% P 0 14 x
1 » 1 0

—/ <ﬂ) uxtdx+/ (d—) Uy dx

0 v t 0 v t

1 1 1/ a6
/ %uiuﬂ dx —/ Euit dx + / (a_) Uy dX.

oV o Vv 0 V /e

By the Cauchy—Schwarz inequality, we obtain

1d 1 1
- ufdx+/ ﬁu,zcta,’x
2dt 0 o V

1 1
af
:/ %uiuxtdx+/ (—) Uy AX
oV 0 V /s

1 1 1
fEf uitdx+C€|luxII%w/ uidx+CE/ (u? +67) dx.
0 0 0

Taking € > 0 suitably small and applying Gronwall’s inequality, we get

1 00 1 T
/ ufdx+/ / uitdfo‘/ (ol Foo + lloxll? + 116el1 7o ) dE < M. (2.17)
0 0 0 0
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Next, we show the boundedness of ||z, (£)||;2. (1.1), can be rewritten as follows:

" af I
TUgx = Up+ | |+ 5 Valhy,
v v /), Vv

then

1 1 1
/0 w2 dx <M \ (uf+9t2+vi)dx+M||uxllfoc‘/.0 v2dx < M, (2.18)

where the Cauchy—Schwarz inequality and the following interpolation inequality have

been used:
l2txll7o0 < Cllallp gl 2 < EHMxx”iz +Ce ||ux||§2~
From inequalities (2.17) and (2.18), we obtain (2.16). O

Lemma 2.10 [t holds that

sup ||vxx||L2 +/ f Vxx(x,t)dxdt<M (2.19)

te[0,00)
Proof 1t follows from (1.1); and (1.1), that

vaﬁ —Ove=u; + 9 + vaux (2.20)
v V2 V2

Differentiating (2.20) with respect to x, multiplying it by v,,, and integrating the resulting
equation over [0, 1], by (1.1);, we have

1d !
vxdx+/ V2 dx
2dt 0

1
S M/ (’uxvgzcx‘ + |VxthVxx| + ‘Vievxx} + |0xVxVxx|) dx
0
+M/ (|”xtvxx| + OxxVax| + [VaVixlhan| + |V;2¢”xvxx| dx) dx
0

1 1 1
2 2 2 2 2 .22 22
56/ Vxxdx+C€||ux||Loc/ Vxxdx+C€||Vx||Loc/ (Vo + Vo + o + 1 + V2, ) dx
0 0 0

1 1
+ ce||9x||§oo/ V2 dx + CG/ (e + 62,) . (2.21)
0 0
Notice that
Vel 7o < €llVasll}z + Cellvell?a. (2.22)

Taking € > 0 appropriately small, inserting (2.22) into (2.21), with the help of Gronwall’s
inequality and Lemma 2.9, we obtain (2.19). (]
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Lemma 2.11 For any t > 0, it holds that

e8] 1
sup ||zxx||L2 +/ ] kd)(@)z (x, ) dxdt + A/ ] zfm(x, dxdt <M. (2.23)
o Jo

te[0,00)

Proof Differentiating (1.1)4 with respect to x and setting / = z,, we obtain
, A
h + k(0)h + k' (0)0,zh = <—2h) . (2.24)
4 XX

Differentiating (2.24) with respect to x, multiplying it by /,, and integrating the resulting
equation over [0, 1], we have

2 2 2
2dt_/ hdx+/ ko(6 hdx+/ 2l/zxxdac

A
< / — | hdx+2 * hy ) By
0 v2 xx Vz x

1
- / | (k' (6)6x2h) | dx
0

1
dx+/ ‘k¢’(6)9xhhx|dx
0

=31 (2.25)

With the help of the Cauchy—Schwarz inequality and Sobolev’s imbedding theorem, we
have

L < ek/ W2 dx + C, / (vVi+vi)H +vikldx

1 1 1
56,\/ hfmdx+Cgllhllioo(llvxllioo/ v,%dx+/ vixdx>+CE||Vx||%oof W2 dx
0 0 0
1
<e,\/ I dx + Ce(lvaell? + ||vx||§2)/ 1 dx, (2.26)
0
and
1 1 1
125/ |k¢’(9)0xhhx|dx§M/ hgdx+M||9x||§oo/ W dx.
0 0 0

By hl4-0,1 = 0, z, = h, the interpolation inequality and the Cauchy—Schwarz inequality, we
have

1
I; < / |((k¢’(9)9x)xzh + ko' (0)0,1* + k¢>’(9)9xzhx)hx| dx
0

1 1 1
SM(1+||9x||§oo)/ hidx+M||h||%oo(||0xllfocf (e§+h2)dx+/ efxdx)
0 0 0

1 1
5M<1+||9x||§w+/ efxdx>/ 1 dx. (2.27)
0 0

Thanks to (2.26), (2.27), and (2.25), take € > 0 suitably small, by Gronwall’s inequality and
z, = h, we can get (2.23). O

Page 15 of 26
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2.2 Global estimates of (1.5)-(1.8)

For simplicity, in this section, we still use (v,4,0,z) to denote the solution of (1.5)—(1.8).
The following elementary estimates of the solution of (1.5)—(1.8) can be deduced by the
same way as the above section. Here we do not repeat it.

Lemma 2.12 Under the conditions of Theorem 1.1, assume that (v,u,0,z) is the solution
of (1.5)-(1.8) defined on [0,1] x [0,00). Then
M1 <vy(xt), O(x,t) <M forallx € [0,1],t € [0, 00),

sup )(H(v— 72O + 10 =012 + |(ve ) |2)
te(0,00

+ / (|2 42, 61,20) | 22) it + / (|0 1, 02) [ 3 + | s 120) | 3 it
0 0
00 1
+/ / k(0)(* + z; + z2,) dxdt < M.
0 0

2.3 Species diffusion limit and convergence rates
In this section, we use the previous estimates to prove the species diffusion limit and con-

vergence rates. Assume that (v,u4,6,z) and (v,4,0,%) are the solutions of problems (1.1)—
(1.4) and (1.5)—(1.8) defined on [0, 1] x [0, 00), respectively. Let

Thus, by (1.1) and (1.5), one can derive

f/t—itxzo,

oy, (uEed i 7

e+ (5 )+ (55 D) = (55 ) + (5 D)

§, + WDua | @iy (Vx Dy | MG abiy (2.28)
t v v v oy/x vy, v o ’

(M), 4 B gk (p(0)z - $(0)2),
2+ k(¢(0)z - $(0)2) = (2%)s.

Next, we use the following four lemmas to show species diffusion limit and convergence
rates with L2-norm and H'-norm, respectively, and this can be illustrated by Theorem 1.3.

Lemma 2.13 Under the conditions of Theorem 1.3, for any fixed 0 < T < oo, let (¥, 1,6, 2),
which is defined on (0,1) x [0, T), be the solution of problem (2.28). Then

T
A A A A 2 N A
sup |[(9,41,0,2)(, 8)] 2 + f (I (B2 + 11651122 ) de < NAM2, (2.29)
te[0,T) 0

where N is a constant independent of \.

Proof Multiplying (2.28);, (2.28),, (2.28)s, and (2.28)4 by ¥, i, §, and 2, respectively, and
integrating over [0, 1], by the Cauchy—Schwarz inequality, we can deduce

1d, ... ~. . N
5 7 (|G a0.D15) + wlitelF + v,
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A2 A 12 — 12 12 SN2
< E(||Mx||Lz + ||9x||Lz) + Ce (1 + [[7 1 7o + ||9x||Loo)||V||Lz
2 — 02 \nAn2 A2 172 2 = 2
# Co(1+ Nl Zoo + N 20) 16125 + CellZ2 + A2Cc Mzl + 1Z:l1% dx).
By virtue of Vo(x) = ito(x) = o(x) = 2o(x) = 0, the previous estimates in the above sections

and Gronwall’s inequality, we can verify inequality (2.29). That is, we arrive at the species
diffusion limit and convergence rate with L2-norm. O

Next, by Lemma 2.13, one can establish the following lemma which gives the species

diffusion limit and convergence rate with H'-norm.

Lemma 2.14 Under the conditions of Theorem 1.3, for any fixed 0 < T < oo, let (7, i1,6,2),
which is defined on (0,1) x [0, T), be the solution of problem (2.28). Then

T
~ 2 ~ 2 A 112 ~ 2 ~ 2 A2 1/2
sup (”Vx”Lz"'”ux”Lz"’||9x||L2)+/ (ke 72 + e 172 + 10:1172) < NAYZ,
te[0,T) 0

where N is a constant independent of \.

Proof Striving for equation (2.28); about the derivative of x, multiplying by 7,, and inte-
grating over [0, 1], by the Cauchy—Schwarz inequality, we obtain

1d (! 1 1 1
——/ f/fcdx:/ itxxf/xdxfe/ ﬁixdx+CE/ V2 dx. (2.30)
2dt Jo 0 0 0

Multiplying (2.28), by i, integrating over [0, 1] on x, using the Cauchy—Schwarz in-

equality, we have

~ 2 ~ d
5 g 1l dx + || it 2%

D) 2 A2 A 112 A2 A2 2
<elliulzs + Ce(1+ Nluallfoo) il fa + Ce (1651172 + (1651172 + 16172) 1val72)
7 112 =2 2 — 2 =12 15 12\ 1502
+ Ce(10xllz00 + 17l a + Nvell7a + 1Txll7a + 17l Foo [Vxl172) 11172

=2 2 — 2 2 =12 15 12
+ Ce (L4 1el7a + Ivall7a + 1Taxll o + Natl oo + 172l Foo V1172

Tl oo Vel 2) 1913 (231)
On the other hand, it follows from (2.28), that

~ 2
”Mxx”Lz dx
~ 2 H 112 A2 2 —= 2 ~2 = 112 2
< M(ll]172 + 16xl172 + 101700 Vel 72 + 17l Foc P10 (172172 + vl 72))
~i2 - 2 —= 12 ~ o2 ~ 2
+ M([IP0 700 1T 72 + N7l 7o [Vl 72 + i1 72)

An2 — 2 2 7 n2 A2 ~ 2
+ M1V (IVell72 + Vel 72) + 102 Zoc 17072 + 1711 72)- (2.32)

Inserting (2.32) into (2.31) and taking € > 0 sufficiently small, one obtains

~ 2 ~ 2 ~ 2
—Mtellza + Nitellz2 + lliell2

dt



Zhang Advances in Difference Equations (2019) 2019:319 Page 18 of 26

7012 2 =12 = 12 = 12 V11502
< M(110xlI700 + IVallza + 1P6l72 + 17asli 72 + 17l 700 ) D112
=12 2 = 2 2 = 12 Y15 (12
+ ML+ Vel o + 1VallZ2 + 17xxll72 + el 7o + N7xllZoc ) 19172
5112 A112 2 2 A2
+ M(116x1172 + 101172 11vall o + (L + Nl oo ) 22172 (2.33)

Combining (2.33) and (2.30) and noticing that ¥y, = ito, = 0, by Lemma 2.13 and Gronwall’s
inequality, for any fixed 0 < T < 0o, one has

T
A2 A2 A 2 A2
sup (1921172 + llkxll}) +/ (Nkallyz + Nlike ) dt
0

te(0,T)

T T
§N<Mk1/2 + A2 f vl 2, dt + / 1165112 dt) < N2, (2.34)
0 0

where N is a constant independent of A.
Multiplying (2.28)3 by ;, integrating over [0, 1] on x, by the Cauchy—Schwarz inequality,

we get

1d
2 dt
A2 2 A2
< €llOll7 + Ce (1 + el oo 162117
2 1H12 A2 A2 ~ 2 \1g 12
+ Ce(luxllFo 617 + NitallFa + (19172 + 172172) 10x172)

302 15 12 72 A2 A2 2 =2
(1620700 1921172 + 1021100 (IP11Z2 + 19072) (vl 72 + 1721172))

+C, (

2 2 a2 A2 ) A2\ 12
+ Ce(lluallZa sl Zoo (191172 + 191172) + (D172 + 19x]172) 17l 72)
+C€(

A2 A2
101172 + 1072 dx

A2 a2 2112
it Foo Nl 12 + 1121172)-

Taking € > 0 sufficiently small, by the L?-estimates, (2.34), and Gronwall’s inequality, for
any fixed 0 < T' < oo, we have

T
sup 10112, + / 16117, dt
te[0,T) 0

T
< NA'"? + M7 / (Il oo + Nutxll oo ) dt < NAYZ,
0
where N is a positive constant independent of X. d

Lemma 2.15 Under the conditions of Theorem 1.3, for any fixed 0 < T < 0o, let (V, it, é,%),
which is defined on (0,1) x [0, T), be the solution of problem (2.28). Then it holds that

sup ||2x(t) ||L2 < N2,
te[0,T)

Proof Differentiating (2.28), with respect to x, multiplying it by z,, and integrating the
resulting equation over [0, 1], one has

1
S Vel de = / (k¢! (0)6z — k! BB + kp(0)z. — kp(B)Z.) 2 dx
0
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1 A 2
+ / <—2zx> Gedx=:) I (2.35)
o \V xx i=1
By the Cauchy—Schwarz inequality, we have
1 B 1
I §M/ 22 dx + M(1|0x]l7 + ||9x||§m)/ 2% dx. (2.36)
0 0

With the help of Lemmas 2.1-2.11 and the Cauchy—Schwarz inequality, we obtain

1
bgM/
0
1 1 1 1
EMA(A / 2 dx> + M) <x f z dx) + MA? / v2odx+ M / 22dx.  (2.37)
0 0 0 0

Combining with (2.35), (2.36), and (2.37), one has

2 2

. A
i

Zx = 3 VaxZx = 3 VaZax
1% V

1
dx+M/ 22 dx
0

A
— Zxxx T
V2

1d !

1 1
= éﬁdng/ 22 dx + M(||0x] 7 + ||§x||§oo)/ 2% dx
2dt 0 0 0

1 1 1
+ MA <A / Z2.dx + A / 22 dx) +M)? / vy, dx.
0 0 0

By Gronwall’s inequality and Z — L? norm estimates, we deduce

2 12
sup [12x[I7» dx
te[0,T)

T 1 T
< Mx (x/o /0 (22, + Zopy + Vo) dxdt) +Mx“2f0 (11811700 + 1041170 ) dt
< MAY2 4 M+ MA* < MAY2, O

3 The species diffusion and the rate of reactant limits
3.1 Global A, k-independent estimates of (1.1)-(1.4)
Based on Sect. 2, the global well-posedness of solutions to problem (1.1)—(1.4) can be
shown in the same way as in [1, 18, 20]. Our main purpose, in this section, is to obtain
the global A, k-independent estimates of solutions, which will be used to justify the van-
ishing rate of reactant limit. In order to get our results, we assume that the conditions
of Theorem 1.2 hold, and (V™K u?*,0%%, z%), defined on (0,1) x [0, 00), is a solution of
problems (1.1)—(1.4). For simplicity, we still use (v,#,0,z) to denote the solution of prob-
lems (1.1)—(1.4), use M* to denote the generic positive constant which may depend on
a, 4, v,q, ||¢|lL~, but not on A, k, and £.

From equation (1.1)4, we know that

1 o pl 1
Az(x,t)dx+/</; /(;qﬁ(e)z(x,t)dxdr:/() Zo(x) dx. (3.1)

On the other hand, the rate function ¢ (@) is smooth, we have

1 1
k2/0 ¢(0)*2 dx < k/o 0(0)2* dx. (3.2)
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From (3.1)—(3.2), and based on Sect. 2, we know that the global 1, k-independent estimates

of solutions (v, 4, 0) are similar to the estimates of problems (1.1)—(1.4) in Sect. 2. Our main

purpose in this section is to obtain the global A, k-independent estimates of z.
Multiplying (1.1)4 by z and integrating over £2, we have

o] 00 1
sup ||z7 +x/ [EA[R2 dt+k/ f $(0)2” dxdt < M*. (3.3)
0 0 0

te[0,00)
Next, multiplying both sides of (1.1)4 by z,,, it follows

1d !
24t J,

1 1 1 ! 1
§ek/ zidx+C€/ 02 dx + —A/ zfcxdx+M*)»/ 22 dx.
0 0 2 Jo 0

1 1
z dx+k/ #(0)z> dx+A/ 22 dx
0 0

Taking € > 0 suitably small, by the Cauchy—Schwarz inequality and (3.3), we have

1 00 1 00 1
/ zfc dx+k/ / zﬁxdxdt +k/ / ¢(9)z§dxdt <M. (3.4)
0 o Jo o Jo

Finally, differentiating (1.1), with respect to x and setting o = z,, we get

w; +kp(0)w + ko' (0)0,z0 = (%w) . (3.5)

XX

Differentiating (3.5) with respect to x, multiplying it by w,, and integrating the resulting
equation over [0, 1], then

1d (! 1 L
55[0 a)fcdx+k/0 ¢(9)w§dx+f0 ﬁa)ﬁxdx
el A
5/ - wdx +2 — | ©x |Oux
0 V7 xx Vo x

1 1 3
k ' x x ' x x £ i .
+ (/0 ¢/ ()00 |dx+k/0 |(¢(0)6x20) x| dx 21:1 (3.6)

dx

With the help of the estimates in Sect. 2, the Cauchy—Schwarz inequality, and Sobolev’s
imbedding theorem, we have

1 1
S < 6)»/ w2 dx + C, / (Vi + Vi) + viw?dx
0 0
1 1 1 1
§ekf a)ﬁxdx+CE||a)||%oo<||Vx||%Do/ vfcdx+/ vﬁxdx> +c€||vx||§mf w? dx
0 0 0 0
1 1
<ex fo @, dx+ Ce (Vx| 72 + vl 72) fo ] dx. (37)

By the Cauchy—Schwarz inequality, one has

1 1 1
J> §k/ |¢/(0)9xwa)x|dx§6k/ Wl dx+cg||9x||§m/ w” dx. (3.8)
0 0 0
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Noticing that ®|,-01 = 0 and by the interpolation inequality, we deduce

1
Js <k / |((¢'(6)65) 200 + ¢ (0)6x0” + ¢’ (0)6rz05 ) w5 | dx
0

1 1 1
<ek f wﬁdx+C€(||OxII%w+ f Gfxdx) / w? dx. (3.9)
0 0 0

With the aid of (3.3)—(3.4), taking € > 0 suitably small and applying Gronwall’s inequality
for (3.6), we obtain

oo 1 oo 1
sup ||60x||iz +k/ / ¢(9)w§(x,t)dxdt+)»/ / wﬁx(x, t)dxdt < M*, (3.10)
o Jo o Jo

te[0,00)

which implies

00 1 00 1
sup ||zxx||iz +l</ / ¢(9)z§x(x, t)dxdt+A/ / zixx(x,t)dxdth*. (3.11)
o Jo o Jo

te[0,00)

With the help of (3.1)—(3.11) and Sect. 2, we have the following results, which imply
Theorem 1.2(i).

Lemma 3.1 Suppose that
0< Vo, 0< 90) (V0¢ uo, 90: ZO)(x) € Hl'

Then, for each fixed A,k > 0, there exists a unique global solution (v,u,0,z) to the initial-
boundary value problem (1.1)—(1.4) on (0,1) x [0, 00) such that

ML <v(x,8), O(x,t) <M*  forall (x,¢t) € [0,1] x [0,00),

sup (| =003 + 16 =120 + |(veo ) [ 2)
te[0,00)
+ A (” (Vx: Uy, gx) Hi[l + ” (th! uxt) HEZ) dt + /(; (H (Vt: Uy, et: Zt) Hiz) dt = M*:

oo o0 1
sup |z(¢) ||i[2 +A/ 1 Z17,2 dt+k/ / $(0)(2* + 2} + 22,) dudt < M*,
t€[0,00) 0 o Jo

where the positive constants v and 0 are defined in Theorem 1.1, and M* denotes the generic

positive constant which may depend on a, 1, v, q, ||@ ||, but not depend on A, k, and t.

3.2 Global estimates of (1.9)-(1.12)
In this section, our purpose is to derive the global estimates of the solutions to the initial-
boundary value problem of (1.9)—(1.12) under the conditions of Theorem 1.2. For sim-
plicity, in this section, we still use (v, 4,0, z) to denote the solution of problem (1.9)—(1.12),
M* denotes the generic positive constant which may depend on a, u, v, g, ||¢| 1o, but not
on A, k, and t.

The following elementary estimates are easily derived from (1.9)—(1.12) by the same way
as Lemmas 2.1-2.11.
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Lemma 3.2 Under the conditions of Theorem 1.2, assume that (v,u,0,z) is the solution of
(1.9)-(1.12) defined on [0,1] x [0, 00). Then

ML <v(x,8), O(x,t) <M* forallx€[0,1],¢ € [0,00),
and

sup (|| (v =910 8,20 1 + IvellZa + llaell?s)
te[0,00)

oo
2 2 2 2
+/ (IvxllZ + Nl 7o + 162017 + llzxll72) dt < M,
0

where the positive constants v and 0 are defined in Theorem 1.1.

Lemma 3.3 Let the conditions of Theorem 1.2 be in force. Assume that (v,u,0,z) is the
solution of (1.9)—(1.12) defined on [0,1] x [0, 00). Then

o0
2 2 2 2 2
sup || Var U Z2) (8) || 11 +/ (Ve ll2 + N2 + 16112 + N1ze112,) dt
te[0,00 0

oo
2 2 2 2 2
+/ (Ivsxllza + Netxll7a + 16xxlla + Vel 7o + llotaell ) dt < M.
0

3.3 The species diffusion and rate of reactant limits and convergence rates

In this section, we use the previous estimates to prove the species diffusion and rate of
reactant limit and the convergence rates. Assume that (v,u,0,z) and (v, 4, 9,7) are the so-
lutions of problems (1.1)—(1.4) and (1.9)—(1.12) defined on [0,1] x [0, 00), respectively.
Let

<>

Il
<

|
=
N3

Il
<

|
=
D>

Il
>

|
Nl
N>

Il
N

|
I

Then (¥, ﬁ,é,%) satisfies

IA/t—lftx:O,
o+ (D)4 (M), = (M) 4 (20),, 612
9 +a9ux +a6ux +(v9x V) +%g:a6uxv+(v0x)x 92‘+6]k¢(9)z, .

v v

2+ kp(0)z = (35),.

Next, we have the following four lemmas to show the species diffusion and rate of reac-
tant limits, and the convergence rates with LZ2-norm and H'-norm, respectively, and this
can be illustrated by Theorem 1.4.

Lemma 3.4 Under the conditions of Theorem 1.4, for any fixed 0 < T < 0o, let (,i1,6,2),
defined on (0,1) x [0, T), be the solution of problem (3.12). Then

T
sup ||(9, 2, 6,%)( HLZ +/ (I (Bl 25 + ||6Ax||i2)dt SN*(AW +k12), (3.13)
tel0,T)

where N* is a positive constant independent of A, k.
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Proof Multiplying (3.12); and (3.12), by ¥ and #, respectively and integrating it over [0, 1],
by the Cauchy—Schwarz inequality, we can deduce

1

1d 1 1 1
/ w+ Vdx+ ,u/ 02 dx < e/ i1 dx + Ce (||1l|700 + 1)/ 2 dx. (3.14)
0 0 0 0

2dt

Multiplying both sides of (3.12); by @ and integrating it over [0,1], by the Cauchy—
Schwarz inequality, we have

ld lA 1,\
——/ szx+vf 62 dx
2dt 0 0

1
§M*k2/ 22dx+M*||ﬂx||§oo/
0 0

1 1 1
f/de+M*/ 92dx+e/ 02 dx
0 0

1 1 1
+C€(||Ex||%oo+||ux||%oo)/ ézdx+C€/ ézdx+e/ éfdx
0 0 0
f— 1 1 A
+c€||9,c||§oo/ f/zdx+M*||ﬁx||%oo/ (¥? +6°) dx.
0 0

Multiplying (3.12)4 by 2, integrating it over [0, 1], by the Cauchy—Schwarz inequality, we
obtain

1d (!

l)\‘ 1
—— | 2°d =—/ —2z.(z2-2).d —k/ 0)z(z-2)d
2a ), z°dx \ 1/2z(z Z), dx ; ¢(0)z(z —z) dx

1 1
§M*A”2<A/ zﬁdx+/. Eﬁdx)
0 0
1 1
+M*k1/2<k/ zzdx+/ Z2dx>. (3.15)
0 0

Combining (3.14)—(3.15) and taking € > 0 sufficiently small, noticing that ¥o(x) = Zp(x) =
Bo(x) = 2o(x) = 0, by previous estimates and Gronwall’s inequality, we can obtain (3.13). [J

Next, by using Lemma 3.4, one can establish the species diffusion and rate of reactant
limit and convergence rate with H!-norm as follows.

Lemma 3.5 Under the conditions of Theorem 1.4, for any fixed 0 < T < 0o, let (,1,6,2),
defined on (0,1) x [0, T), be the solution of problem (3.12). Then

T
~o2 ~ 2 A 112 ~ 2 ~ 2 A2 1/2 1/2
sup (”Vx”Lz"'”Mx”Lz"'||9x||L2)+/ (ke 72 + N2l 72 + 16:1172) < N*(A2 + K12),
te[0,T) 0

where N* is a positive constant independent of A, k.

Proof By (2.30) and (2.33) and Lemma 3.4, we have

[o¢]
~o2 ~ 2 ~ 2 ~ 2
sup (II¥xl7 + ||ux||L2)+/ (ke 172 + 2221172 )
te[0,00) 0

o0 o0
<N (M*A“2 A2 / vala dt + / 101 dt)
0 0
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SN*(A.I/Z + k1/2).

Next, multiplying both sides of (3.12); by 6, and integrating it over [0,1], using the

Cauchy-Schwarz inequality, we deduce
1 d 1 R 1 R
——/ 93dx+/ 67 dx
2 dt 0 0
1
<eldils s Cok [ 9002 dr s M (1 ) 1B
0

+ Ce (el oo 1012 + Nkl + (1917 + 19x01%) 10xe 1)

+ Ce (101700 191172 + 101700 (19172 + 19072) (vl 22 + [1921172))
+ Ce (Il 22 sl Zoo (V122 + 1l 22) + (1112 + 1l 22) 72122 )
+ C, (

~ 2 ~ 2
e (1 oo N1 2211 72) -

Taking € > 0 sufficiently small and using Gronwall’s inequality, for any fixed 0 < T < 00, it

follows

T T
A n2 A n2 1/2 ~ 2 — 2 2
sup 18,112 + / 10012 dt < N*AV2 + M1 |12, / (s l12e + 5120 e
, T 0 0

te[0,T)

EN*(}\.I/Z + k1/2). 0

Lemma 3.6 Under the conditions of Theorem 1.4, for any fixed 0 < T < 0o, let (,1,6,2),
defined on (0,1) x [0, T), be the solution of problem (3.12). Then it holds that

sup ||2x(t)||L2 < M* (A2 + K1),
te[0,T)

Proof Differentiating (3.12)4 with respect to x, multiplying it by 2, and integrating the

resulting equation over [0, 1], we obtain
1d ! 5 1 1 17y 3
L4 /0 2dx=—k /0 §(6)0,22.dx — k /0 $(0)2c2cdx + /0 (;zx)mzx =3
By the Cauchy—Schwarz inequality, we have
1 1 1
Ji=—k / @' (0)6,22, dx < M* / 22 dx + MK 0x |70 / 22 dx (3.16)
0 0 0

and

1 1
J= —kf 4’(9)%% dx + k/ ¢(0)z,z, dx
0 0

1 1 1
< / k3/4|zx|k”4|2x|dxsM*k”z(k / Zdx + / zf;dx).
0 0 0
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With the help of Lemmas 2.1-2.11 and Young’s inequality, we deduce

A A A 2

2
—Zxxx T 7 ViZx — 3 VaxZx — —3 VaZxx
V2 v V3 V3

1
dx+M*/ 22dx
0

XXX

1 1
§M*A<A / 2 dx) + M*A ()\ f 2 dx)
0 0

1 1
+M*AZ/O Vixdx+M*‘/0 22 dx. (3.17)

1 1 1
SM*AZ/ (22, + Zoge + V2) dx+M*)L2||Vx||i2/ zﬁxdx+M*/ 22 dx
0 0 0

Combining with (3.16)—(3.17), we have

1d (!

1 1 1
- — éidxgm*k“z(k / Z2dx + / zﬁdx> + MAK| 0|70 / 22 dx
2dt 0 0 0 0

1 1 1
+M*A<A/ zfcxdx+)»[ zfmdx> +M*)»2/ vy, dx.
0 0 0

By Gronwall’s inequality and Z — L? norm estimates, we obtain
sup 12,17, dx < MF*AM? 4+ M+ M*Z* + MEKY? + MK
te[0,00)

< M (A2 4 K12),
This completes the proof of Lemma 3.6. O

With the help of Lemmas 3.4—3.6, we can obtain Theorem 1.4.
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