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Abstract
We extend the (integer-order) Halanay inequality with distributed delay to the
fractional-order case between one and two. The main feature is the passage from
integer order to noninteger order between one and two. This case of order between
one and two is more delicate than the case between zero and one because of several
difficulties explained in this paper. These difficulties are encountered, in fact, in
general differential equations. Here we show that solutions decay to zero as a power
function in case the delay kernel satisfies a general (integral) condition. We provide a
large class of admissible functions fulfilling this condition. The even more
complicated nonlinear case is also addressed, and we obtain a local stability result of
power type. Finally, we give an application to a problem arising in neural network
theory and an explicit example.

Keywords: Hopfield neural network; Power-type stability; Caputo fractional
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1 Introduction
The Halanay inequality is one of the most important inequalities used to prove the bound-
edness or stability of solutions of some functional differential equations. It contains a dis-
sipative term, which tends to stabilize the system in an exponential manner, and a delayed
term, which, on the contrary, usually has a destructive character. It is proved that when
the dissipation coefficient dominates the discrete delayed term coefficient, then we get an
exponential decay. Namely, we have the following [11]:

Lemma 1 Assume that w(t) is a nonnegative solution of

w′(t) ≤ –Aw(t) + B sup
t–τ≤s≤t

w(s), τ > 0, t ≥ a.

If 0 < B < A, then there exist M > 0 and α > 0 such that

w(t) ≤ Me–α(t–a), t ≥ a.
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This inequality has been used in many engineering applications and extended to the
variable delay and distributed delay cases [3, 13, 28, 32, 33, 38]:

w′(t) ≤ –A(t)w(t) + B(t)
∫ ∞

0
k(s)w(t – s) ds, t ≥ 0.

It has been proved that solutions decay exponentially for kernels satisfying

∫ ∞

0
eβsk(s) ds < ∞

for some β > 0, provided that

B(t)
∫ ∞

0
k(s) ds ≤ A(t) – b, b > 0, t ≥ 0.

Artificial neural networks (ANNs) are one of the many products of artificial intelligence.
They have been applied successfully in many areas such as combinatorial optimization,
cryptography, parallel computing, signal theory, image processing, biological, biomedi-
cal, medical (epidemiology), polymer composite, and geology [10, 12, 14–17, 20, 21, 27,
29, 36, 40]. In particular, in petroleum engineering, the characterization of a hydrocarbon
reservoir depends on many static and dynamic parameters such as permeability, porosity,
fluid saturation, and pressure in the reservoir. The lack of accuracy or the unavailability of
certain parameters affect negatively the oil production performance. Unlike the existing
conventional ways, ANNs have the ability of connecting input data to output without im-
posing a prior understanding of the fluid flow or the medium. They are also robust enough
to deal with noisy, distorted, fuzzy, and even incomplete data [1, 4, 19, 31].

For material and processes that exhibit memory and hereditary effects, it has been
shown that fractional derivatives describe better the phenomena [2, 5–8, 23].

Most of the existing results are concerned with the case of a fractional order between 0
and 1 and for the case of discrete delays only. Unfortunately, the arguments there do not
work for the present case. For general fractional systems of order between zero and one,
several stability results (including the Mittag–Leffler stability) have been obtained with
explicit decay rates [7, 8, 13, 23–26, 35–37, 39, 43].

The stability for the linear system

Dαx(t) = Ax(t), t > t0,

with 1 < α < 2, has been treated in [23, 42]. The stability in the cases of Riemann–
Liouville and Caputo fractional derivatives has been established under the condition
| arg(spec(A))| > απ/2. In fact, the stability is of type t–α–1 in the case of Riemann–Liouville
fractional derivative and of type t–α+1 in the case of Caputo fractional derivative.

For the equation

Dαx(t) = Ax(t) + B(t)x(t), t > t0,

the zero solution is proved to be stable [41] if, in addition,

∫ ∞

t0

∥∥B(t)
∥∥dt
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is bounded, in case of both fractional derivatives. The stability is asymptotic if ‖B(t)‖ =
O(t – t0)γ or is bounded (–1 < γ < 1 – α). The authors in [36] assume that ‖B(t)‖ is non-
decreasing and B(t) = O(t – t0)θ (θ < –α).

The perturbed equation

Dαx(t) = Ax(t) + f
(
x(t)

)
, t > t0,

has been studied in [8, 24, 42], where asymptotic stability results are proved if

lim‖x‖→0

‖f (x(t))‖
‖x(t)‖ = 0, t ≥ t0, (1)

in addition to a condition on the spectrum of A.
We withdraw the attention of the reader to the work in [22], where the authors discussed

a similar (control) problem and proved a “global” asymptotic stability result after noticing
that the previous results were of “local” character because of condition (1).

The nonautonomous system

Dαx(t) = Ax(t) + f
(
t, x(t)

)
, t > t0,

has been the subject of investigation in [18, 30, 42]. Asymptotic stability results have been
established under the following conditions: f (t, x(t)) is Lipschitz continuous, ‖f (t, x(t))‖ ≤
γ (t)‖x(t)‖ with bounded

∫ ∞
t0

γ (t) dt, and

lim‖x‖→0

‖f (t, x(t))‖
‖x(t)‖ = 0, t ≥ t0.

Because of the size of the paper and our exclusive concern on the case 1 < α < 2, several
references on the case 0 < α < 1 have not been reported here. We note here that the pre-
viously used arguments for the case 0 < α < 1 are not valid for 1 < α < 2. In particular, the
use of the “one-sided” chain rule formula for fractional derivatives leads to uncontrollable
terms and seems useless. We opted for the variation of parameters formula, but even in
this framework, we faced considerable difficulties. The main difficulties were related to
the sign of the involved Mittag–Leffler functions and also to the uniform boundedness of
a convolution term. The formulas and properties found in the literature were not able to
solve these difficulties. Then we have been forced to prove a new integral inequality, which
may be useful in other contexts as well.

Our objective here is two-fold: we extend the distributed Halanay inequality from the
integer-order case to the fractional-order case (1 < α < 2) and from the linear case to the
nonlinear case. We impose a general condition on the kernels and provide a class of ad-
missible kernels, as an example, showing that this condition can be met. The decay we
find is of power type. Once established, our results will be applied to a fractional neural
network system of Hopfield type. Namely, we consider (discrete and distributed delayed)
systems of the form

⎧⎪⎪⎨
⎪⎪⎩

Dα
Cxi(t) = –cixi(t) +

∑n
j=1 aijfj(xj(t)) +

∑n
j=1 bijgj(xj(t – τ ))

+
∑n

j=1 dij
∫ ∞

0 kj(s)hj(xj(t – s)) ds + Ii, t > 0,

xi(t) = χi(t), t ≤ 0,
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for i = 1, 2, . . . , n, 0 < α < 1, where
n is the number of units in the network,
xi is the state of the ith neuron at time t,
ci > 0 are the passive delay rates,
aij, bij, dij are the connection weight matrices,
Ii are external constant inputs,
fj, gj, hj are the signal transmission functions (activation functions),
kj is the delay feedback (delay kernel function),
τ > 0 is the transmission delay, and
χi is the prehistory of the ith state.

Our argument is flexible and may be applied to more general systems than this one. The
next section contains some preliminaries. In Sect. 3, we extend the Halanay inequality to
the order 1 < α < 2 and provide a large class of kernels for which our result applies. The
nonlinear case is treated in Sect. 4. An application to a problem arising in neural network
theory is given in Sect. 5 together with a numerical example.

2 Preliminaries
In this section, we give the definitions of the fractional integral and fractional derivative
(of Riemann–Liouville and Caputo types) and the Mittag–Leffler functions.

Definition 2 The Riemann–Liouville fractional integral of order α > 0 is defined by

Iαf (t) =
1

Γ (α)

∫ t

0
(t – s)α–1f (s) ds, α > 0,

for any measurable function f , provided that the right-hand side exists. Here Γ (α) is the
usual gamma function.

Definition 3 The fractional derivative of order α in the sense of Caputo is defined by

Dγ

Cf (t) =
1

Γ (n – γ )

∫ t

0
(t – τ )n–γ –1f (n)(τ ) dτ , n = [γ ] + 1,γ > 0,

whereas the fractional derivative of order α in the sense of Riemann–Liouville is defined
by

Dγ f (t) =
1

Γ (n – γ )

(
d
dt

)n ∫ t

0
(t – τ )n–γ –1f (τ ) dτ , n = [γ ] + 1,γ > 0,

provided that the integrals exist.

The one-parametric and two-parametric Mittag–Leffler functions Eα(z) and Eα,β (z) are
defined by

Eα(z) :=
∞∑

n=0

zn

Γ (αn + 1)
, �(α) > 0,
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and

Eα,β (z) :=
∞∑

n=0

zn

Γ (αn + β)
, �(α) > 0,�(β) > 0,

respectively.

3 Fractional distributed Halanay inequality
Here we extend the standard (integer-order) Halanay inequality to the fractional case 1 <
α < 2. We prove that the decay is of power type. Part of the difficulties encountered here is
due to the fact that the properties of the Mittag–Leffler functions for 1 < α < 2 are different
from those for 0 < α < 1, and therefore the methods used in the case 0 < α < 1 are not
applicable anymore.

Theorem 4 Let u(t) be a nonnegative solution of

⎧⎨
⎩

Dα
Cu(t) ≤ –au(t) +

∫ t
0 k(t – s)u(s) ds, 1 < α < 2, t > 0,

u(0) = u0, u′(0) = u1,
(2)

where a > 0, and k is a nonnegative summable function satisfying

tα–1
∫ t

0
(t – s)α–1∣∣Eα,α

(
–a(t – s)α

)∣∣
(∫ s

0
k(s – σ )σ 1–α dσ

)
ds < 1, t > 0. (3)

Then there exists a positive constant A such that

u(t) ≤ A/tα–1, t > 0.

Proof We compare solutions of (2) to those of
⎧⎨
⎩

Dα
Cw(t) = –aw(t) +

∫ t
0 k(t – s)w(s) ds, 1 < α < 2, t > 0,

w(0) = w0 = u0, w′(0) = w1 = u1.
(4)

Applying the Laplace transform to (4), we obtain the variation-of-parameters formula (see
[42] and [43])

w(t) = Eα

(
–atα

)
w0 + tEα,2

(
–atα

)
w1

+
∫ t

0
(t – s)α–1Eα,α

(
–a(t – s)α

)(∫ s

0
k(s – σ )w(σ ) dσ

)
ds, t ≥ 0.

In view of the boundedness of Eα,β (–atα), 0 < α < 2, β > 0, a ≥ 0, t ≥ 0 ([34, Thms. 1.4 and
1.6, pp. 33, 34]),

∣∣Eα,β
(
–atα

)∣∣ ≤ M(α,β)/atα (5)

for some M(α,β) > 0, and we may write

w(t) ≤ ∣∣Eα

(
–atα

)∣∣w0 + M1(α, a)t1–α|w1|
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+
∫ t

0
(t – s)α–1∣∣Eα,α

(
–a(t – s)α

)∣∣
(∫ s

0
k(s – σ )w(σ ) dσ

)
ds, t ≥ 0,

or

tα–1w(t)

≤ tα–1∣∣Eα

(
–atα

)∣∣w0 + M1(α, a)|w1|

+ tα–1
∫ t

0
(t – s)α–1∣∣Eα,α

(
–a(t – s)α

)∣∣
(∫ s

0
k(s – σ )w(σ ) dσ

)
ds, t ≥ 0, (6)

where M1(α, a) = M(α, 1)/a is coming from (5). Multiplying by σ 1–ασ α–1 inside the inner
integral in (6),

tα–1w(t)

≤ tα–1∣∣Eα

(
–atα

)∣∣w0 + M1(α, a)|w1|

+ tα–1
∫ t

0
(t – s)α–1∣∣Eα,α

(
–a(t – s)α

)∣∣
(∫ s

0
k(s – σ )σ 1–ασ α–1w(σ ) dσ

)
ds, t ≥ 0

and taking the supremum, we find

tα–1w(t)

≤ tα–1∣∣Eα

(
–atα

)∣∣w0 + M1(α, a)|w1|

+ tα–1φ(t)
∫ t

0
(t – s)α–1∣∣Eα,α

(
–a(t – s)α

)∣∣
(∫ s

0
k(s – σ )σ 1–α dσ

)
ds, t ≥ 0, (7)

where φ(t) := sup0≤σ≤t σ
α–1w(σ ). The expression tα–1|Eα(–atα)| is uniformly bounded (by

C1 > 0) nearby zero as Eα(–atα) is itself bounded, and it is also bounded far away from
zero as |Eα(–atα)| is decaying as t–α (see [34, 39]).

Assuming that

tα–1
∫ t

0
(t – s)α–1∣∣Eα,α

(
–a(t – s)α

)∣∣
(∫ s

0
k(s – σ )σ 1–α dσ

)
ds ≤ B < 1,

it follows from (7) that

tα–1w(t) ≤ C1w0 + M1(α, a)|w1| + Bφ(t), t > 0. (8)

Then, taking supremum in (8), we find

(1 – B)φ(t) ≤ C1w0 + M1(α, a)|w1|, t > 0,

or

w(t) ≤ C1w0 + M1(α, a)|w1|
(1 – B)tα–1 , t > 0.

This completes the proof. �
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Lemma 5 If ν ∈ C satisfies απ
2 < | arg(ν)| ≤ π , then there exists a constant A(α,ν) > 0 (in-

dependent of t) such that

∫ t

0

∣∣(t – s)α–1Eα,α
(
ν(t – s)α

)∣∣ds < A(α,ν), ∀t > 0.

Proof This lemma is proved in [9] when 0 < α < 1. The case 1 < α < 2 may be proved
similarly. �

A class of admissible kernels. Condition (3) may be simplified considerably to

∫ t

0
k(t – σ )σ 1–α dσ ≤ Ct1–α , t ≥ 0, (9)

for some C > 0. To see this, we prove the following lemma.

Lemma 6 For 1 < α < 2, we have

tα–1
∫ t

0
(t – s)α–1∣∣Eα,α

(
–a(t – s)α

)∣∣s1–α ds ≤ D, a > 0, t ≥ 0,

for some D > 0.

Proof Clearly,

tα–1
∫ t

0
(t – s)α–1∣∣Eα,α

(
–a(t – s)α

)∣∣s1–α ds

= tα–1
∫ t

0
(t – s)1–αsα–1|Eα,α(–as)α)|ds

=
∫ 1

0
(1 – ξ )1–αξα–1tα–1∣∣Eα,α

(
–atαξα

)∣∣t dξ

= tα

∫ 1

0
(1 – ξ )1–αξα–1∣∣Eα,α

(
–atαξα

)∣∣dξ , t > 0,

where ξ := s/t and ds = t dξ . For 0 ≤ ξ < 1/2, we have

tα

∫ 1/2

0
(1 – ξ )1–αξα–1∣∣Eα,α

(
–atαξα

)∣∣dξ

≤ max
(
1, 2α–1)tα

∫ 1/2

0
ξα–1∣∣Eα,α

(
–atαξα

)∣∣dξ

≤ max
(
1, 2α–1)t

∫ 1/2

0
(tξ )α–1∣∣Eα,α

(
–atαξα

)∣∣dξ ,

and putting σ := tξ and dσ := t dξ , we see that

tα

∫ 1/2

0
(1 – ξ )1–αξα–1∣∣Eα,α

(
–atαξα

)∣∣dξ

≤ max
(
1, 2α–1)tα

∫ 1/2

0
ξα–1∣∣Eα,α

(
–atαξα

)∣∣dξ
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≤ max
(
1, 2α–1)∫ t/2

0
σα–1∣∣Eα,α

(
–aσα

)∣∣dσ . (10)

This last expression in (10) is bounded by Lemma 5.
For 1/2 ≤ ξ < 1, it is clear that

tα

∫ 1

1/2
(1 – ξ )1–αξα–1∣∣Eα,α

(
–atαξα

)∣∣dξ

≤ 2
∫ 1/2

0
(1 – ξ )1–αtαξα

∣∣Eα,α
(
–atαξα

)∣∣dξ ,

and, as the expression tαξα|Eα,α(–atαξα)| is bounded by M(α,α)/a (see (5)), we find

tα

∫ 1

1/2
(1 – ξ )1–αξα–1∣∣Eα,α

(
–atαξα

)∣∣dξ

≤ 2
M(α,α)

a

∫ 1

1/2
(1 – ξ )1–α dξ =

2α–1M(α,α)
(2 – α)a

.

The lemma is proved. �

This lemma also gives us an idea about a class of kernels satisfying (9).

Example 7 Consider the class of nonnegative summable functions satisfying 0 ≤ k(t) ≤
C2tα–1|Eα,α(–btα)| with C2 and b > 0. This class encompasses, of course, the well-known
class of kernels k(t) = C2tα–1e–bt used frequently in applications. By selecting appropriate
constants C2 and/or b we see that it satisfies all the requirements of the theorem.

4 Nonlinear case
Here we consider the nonlinear case. This case is not only important from the mathemat-
ical point of view, but it is also very useful in applications. In neural network theory, for
instance, activation functions are usually assumed to be Lipschitz continuous, so that we
can pass from the nonlinear case to the linear case and use the linear Halanay inequality.
Therefore the present nonlinear case of Halanay inequality allows dealing with the non-
Lipschitz case. The price to pay is that we obtain a local stability result.

The inequality of concern is

⎧⎨
⎩

Dα
Cu(t) ≤ –au(t) +

∫ t
0 k(t – s)h(u(s)) ds, 1 < α < 2, t > 0,

u(0) = u0, u′(0) = u1,
(11)

where h is a nonlinear function.

Theorem 8 Assume that u(t) is a solution of (11), h(u) ≤ uh̃(u) for some continuous non-
negative nondecreasing function h̃(u), and k(t) is a nonnegative summable function such
that

(i)

∫ t

0
(t – s)α–1∣∣Eα,α

(
–a(t – s)α

)∣∣
(∫ s

0
k(s – σ )σ 1–α dσ

)
ds ≤ B1, t > 0, (12)
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for some B1 > 0 and ς > 0 such that B1h̃(ς ) ≤ 1/2, and
(ii)

∫ t

0
(t – s)α–1∣∣Eα,α

(
–a(t – s)α

)∣∣
(∫ s

0
k(σ ) dσ

)
ds ≤ B2, t > 0,

for some B2 > 0 and ξ > 0 such that B2h̃(ξ ) ≤ 1/2.
Then

∣∣u(t)
∣∣ ≤ C

(|u0| + |u1|
)
t1–α , t ≥ 0,

for some positive constant C and small initial data.

Proof Let us compare solutions of (11) with those of

⎧⎨
⎩

Dα
Cw(t) = –aw(t) +

∫ t
0 k(t – s)h(w(s)) ds, 1 < α < 2, t > 0,

w(0) = w0 = u0, w′(0) = w1 = u1.
(13)

The corresponding variation-of-parameters formula is

w(t) = Eα

(
–atα

)
w0 + tEα,2

(
–atα

)
w1

+
∫ t

0
(t – s)α–1Eα,α

(
–a(t – s)α

)(∫ s

0
k(s – σ )h

(
w(σ )

)
dσ

)
ds, t ≥ 0. (14)

Therefore from (5) and the assumption on h we have

∣∣w(t)
∣∣ ≤ ∣∣Eα

(
–atα

)∣∣|w0| + M2(α, a)t1–α|w1|

+
∫ t

0
(t – s)α–1∣∣Eα,α

(
–a(t – s)α

)∣∣
(∫ s

0
k(s – σ )

∣∣w(σ )
∣∣h̃(∣∣w(σ )

∣∣)dσ

)
ds

and

tα–1∣∣w(t)
∣∣ ≤ tα–1Eα

(
–atα

)|w0| + M2(α, a)|w1|

+ tα–1
∫ t

0
(t – s)α–1∣∣Eα,α

(
–a(t – s)α

)∣∣

×
(∫ s

0
k(s – σ )

∣∣w(σ )
∣∣h̃(∣∣w(σ )

∣∣)dσ

)
ds (15)

for t ≥ 0. We multiply inside the inner integral in (15) by the expression σα–1σ 1–α :

tα–1∣∣w(t)
∣∣ ≤ C1(α, a)|w0| + M2(α, a)|w1|

+ tα–1
∫ t

0
(t – s)α–1∣∣Eα,α

(
–a(t – s)α

)∣∣

×
(∫ s

0
k(s – σ )σα–1∣∣w(σ )

∣∣σ 1–αh̃
(∣∣w(σ )

∣∣)dσ

)
ds.
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Clearly,

tα–1∣∣w(t)
∣∣ ≤ C1(α, a)|w0| + M2(α, a)|w1|

+ tα–1φ(t)
∫ t

0
(t – s)α–1∣∣Eα,α

(
–a(t – s)α

)∣∣

×
(∫ s

0
k(s – σ )σ 1–αh̃

(∣∣w(σ )
∣∣)dσ

)
ds, t ≥ 0, (16)

where

φ(t) = sup
0≤σ≤t

σα–1∣∣w(σ )
∣∣, t ≥ 0.

If the initial data satisfy

C1(α, a)|w0| + M2(α, a)|w1| < ς/4

and |w(t)| ≤ ς for all 0 ≤ t ≤ t̄, then

tα–1∣∣w(t)
∣∣

≤ C1(α, a)|w0| + M2(α, a)|w1|

+ tα–1φ(t)h̃(ς )
∫ t

0
(t – s)α–1∣∣Eα,α

(
–a(t – s)α

)∣∣
(∫ s

0
k(s – σ )σ 1–α dσ

)
ds. (17)

Now if

tα–1h̃(ς )
∫ t

0
(t – s)α–1∣∣Eα,α

(
–a(t – s)α

)∣∣
(∫ s

0
k(s – σ )σ 1–α dσ

)
ds

≤ B1h̃(ς ) ≤ 1/2 (18)

for some B1 > 0, then from (17) we deduce that

tα–1∣∣w(t)
∣∣ ≤ C1(α, a)|w0| + M2(α, a)|w1| +

φ(t)
2

, 0 ≤ t ≤ t̄, (19)

and taking the supremum in (19), we get

∣∣w(t)
∣∣ ≤ 2

(
C1(α, a)|w0| + M2(α, a)|w1|

)
t1–α , 0 ≤ t ≤ t̄. (20)

The difficulty here is to make the process continue forever to get this last estimate (20)
valid for all t.

If t̄ ≥ 1, then

∣∣w(t̄)
∣∣ ≤ 2

(
C1|w0| + M|w1|/a

)
< ς/2,

and we can continue the process.
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If t̄ < 1, then we go back to (14) and proceed as follows. We get

∣∣w(t)
∣∣ ≤ M3(α, a)

(|w0| + |w1|
)

+
∫ t

0
(t – s)α–1∣∣Eα,α

(
–a(t – s)α

)∣∣
(∫ s

0
k(s – σ )

∣∣w(σ )
∣∣h̃(∣∣w(σ )

∣∣)dσ

)
ds. (21)

Next,

∣∣w(t)
∣∣ ≤ M3(α, a)

(|w0| + |w1|
)

+ ψ(t)

×
∫ t

0
(t – s)α–1∣∣Eα,α

(
–a(t – s)α

)∣∣
(∫ s

0
k(s – σ )h̃

(∣∣w(σ )
∣∣)dσ

)
ds, (22)

where

ψ(t) = sup
0≤σ≤t

∣∣w(σ )
∣∣.

If M3(α, a)(|w0| + |w1|) < ξ /4 and |w(t)| ≤ ξ for all 0 ≤ t ≤ t̄, then we get

∣∣w(t)
∣∣ ≤ M3(α, a)

(|w0| + |w1|
)

+ h̃(ξ )ψ(t)
∫ t

0
(t – s)α–1∣∣Eα,α

(
–a(t – s)α

)∣∣
(∫ s

0
k(s – σ ) dσ

)
ds.

Notice that the expression

∫ t

0
(t – s)α–1∣∣Eα,α

(
–a(t – s)α

)∣∣
(∫ s

0
k(s – σ ) dσ

)
ds

is uniformly bounded in view of Lemma 5 and the fact that k is summable.
Now, assuming that

h̃(ξ )
∫ t

0
(t – s)α–1∣∣Eα,α

(
–a(t – s)α

)∣∣
(∫ s

0
k(σ ) dσ

)
ds ≤ B2h̃(ξ ) < 1/2

for some B2 > 0, we find

∣∣w(t)
∣∣ ≤ M3(α, a)

(|w0| + |w1|
)

+
ψ(t)

2
, 0 ≤ t ≤ t̄.

Passing to the supremum, we obtain

∣∣w(t)
∣∣ ≤ 2M3(α, a)

(|w0| + |w1|
)
, 0 ≤ t ≤ t̄, (23)

and therefore

∣∣w(t)
∣∣ ≤ 2M3(α, a)

(|w0| + |w1|
)

< ξ /2, 0 ≤ t ≤ t̄. (24)

Relation (24) shows that the process can be continued. The proof is complete. �
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5 Application to neural network theory
In this section, we present an application to neural network theory. For simplicity, we
consider the problem

⎧⎪⎪⎨
⎪⎪⎩

Dα
Cxi(t) = –cixi(t) +

∑n
j=1 aijfj(xj(t)) +

∑n
j=1

∫ t
0 kij(s)gj(xj(t – s)) ds + Ii,

t > 0, i = 1, . . . , n,

xi(0) = xi0, x′
i(0) = xi1, i = 1, . . . , n,

where 0 < α < 1, ci > 0, aij ∈ R, Ii, and xi0, xi1, i, j = 1, . . . , n, are given data. From our argu-
ment it will be clear that similar results hold for more general problems such as the case
of additional discrete delays

∑n
j=1 bijfj(xj(t – τ )) and also the case of different activation

functions fj. Notice that we consider the finite distributed delay case.
We start with the following assumptions:
(A1) The functions fi are Lipschitz continuous on R with Lipschitz constants Li,

i = 1, 2, . . . , n, that is,

∣∣fi(x) – fi(y)
∣∣ ≤ Li|x – y|, ∀x, y ∈ R, i = 1, 2, . . . , n.

(A2) The functions gi are Lipschitz continuous on R with Lipschitz constants Gi,
i = 1, 2, . . . , n, that is,

∣∣gi(x) – gi(y)
∣∣ ≤ Gi|x – y|, ∀x, y ∈ R, i = 1, 2, . . . , n.

(A3) The delay kernel functions kij are nonnegative summable functions (κij :=∫ ∞
0 kij(s) ds < ∞) satisfying (3) or simply (9).
We denote

u(t) = x(t) – x∗,

where x∗ is an equilibrium for problem (13). Then the stability of x∗ is shifted to
the stability of the 0 state for the system

⎧⎪⎪⎨
⎪⎪⎩

Dα
Cui(t) = –ciui(t) +

∑n
j=1 aijf̄j(uj(t)) +

∑n
j=1

∫ t
0 kij(t – s)ḡj(uj(s)) ds,

t > 0, i = 1, 2, . . . , n,

ui(0) = ψi := xi0 – x∗
i , u′

i(0) = ψ ′
i := xi1 – x∗

i , i = 1, 2, . . . , n,

where

f̄j
(
uj(t)

)
= fj

(
uj(t) + x∗

j
)

– fj
(
x∗

j
)
, j = 1, 2, . . . , n, t ≥ 0,

and

ḡj
(
uj(t)

)
= gj

(
uj(t) + x∗

j
)

– gj
(
x∗

j
)
, j = 1, 2, . . . , n, t ≥ 0,
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so that, in view of assumptions (A1) and (A2), we obtain

⎧⎨
⎩

Dα
Cui(t) ≤ –ciui(t) +

∑n
j=1 aijLi|ui(t)| +

∑n
j=1 Gj

∫ t
0 kij(t – s)|uj(s)|ds,

t > 0, i = 1, 2, . . . , n.

We can apply the first theorem to get a global power-type stability result.
For the nonlinear case, we assume:

(A4) The functions gi are such that

∣∣gi(x) – gi(y)
∣∣ ≤ |x – y|h̃i

(|x – y|), ∀x, y ∈ R, i = 1, 2, . . . , n

for some continuous nondecreasing functions h̃i. The second theorem may be
applied to get a local stability of power type.

Example Consider the example

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dα
Cx1(t) = –c1x1(t) + a11f1(x1(t)) + a12f2(x2(t))

+
∫ t

0 k11(s)f1(x1(t – s)) ds +
∫ t

0 k12(s)f2(x2(t – s)) ds + I1,

Dα
Cx2(t) = –c2x2(t) + a21f1(x1(t)) + a22f2(x2(t))

+
∫ t

0 k21(s)f1(x1(t – s)) ds +
∫ t

0 k22(s)f2(x2(t – s)) ds + I2,

xi(0) = xi0, i = 1, 2,

with α = 3/2, fi(x) = tanh x, i = 1, 2, kij(t) = Kijtμij–1e–bijt , i, j = 1, 2. The initial data may be
any values. The rest of the coefficients and parameters are such that the conditions of the
first theorem (see also the first example) are satisfied.

The equilibrium solution satisfies

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 = –c1x∗
1 + (a11 +

∫ ∞
0 k11(s) ds)f1(x∗

1)

+ (a12 +
∫ ∞

0 k12(s) ds)f2(x∗
2) + I1,

0 = –c2x∗
2 + (a21 +

∫ ∞
0 k21(s) ds)f1(x∗

1)

+ (a22 +
∫ ∞

0 k22(s) ds)f2(x∗
2) + I2.

Having all the conditions in the first theorem satisfied, we conclude the power-type sta-
bility.
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