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Abstract
In this paper, a non-selective harvesting Lotka–Volterra amensalism discrete model
incorporating partial closure for the populations is proposed and studied. By applying
the relevant conclusions of difference inequality and some calculation technique,
sufficient conditions are obtained to ensure the permanence and extinction of the
system. By constructing a suitable Lyapunov function, sufficient conditions that
ensure the global attractivity of the system are obtained. Finally, numerical
simulations show the feasibility of our results.
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1 Introduction
During the last decade, the study of dynamic behaviors of the amensalism model has be-
come one of the most important research topics, see [1–12]; here, amensalism means that
a species inflicts harm on other species without any costs or benefits received by the other.
Such topics as the stability of the equilibrium [1, 3–5, 8], the existence of the positive pe-
riodic solution [2, 9, 11], the extinction of the species [8, 10], the influence of the cover
[8, 12], the influence of the functional response [10], etc. have been extensively studied.
Recently, Xiong et al. [1] proposed the following amensalism model:

⎧
⎨

⎩

dN1
dt = r1N1(1 – N1

P1
– u N2

P1
),

dN2
dt = r2N2(1 – N2

P2
),

(1.1)

where u, ri, Pi, i = 1, 2, are all positive constants. They investigated the local stability prop-
erty of the equilibria of system (1.1).

On the other hand, as was pointed out by Chakraborty et al. [13], the study of resource
management, including fisheries, forestry, and wildlife management, is very important.
They argued that it is necessary to harvest the population, but harvesting should be reg-
ulated so that both the ecological sustainability and conservation of the species can be
implemented in a long run. Already, they proposed a non-selective harvesting predator-
prey system incorporating partial closure for the populations, they investigated the local
and global stability property of the system, and some interesting results related to the op-
timal harvesting were obtained. Recently, Chen [3] proposed the following non-selective
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harvesting Lotka–Volterra amensalism model incorporating partial closure for the popu-
lations:

⎧
⎨

⎩

dN1
dt = r1N1(1 – N1

P1
– u N2

P1
) – q1EmN1,

dN2
dt = r2N2(1 – N2

P2
) – q2EmN2.

(1.2)

They investigated the local and global stability of the boundary and interior equilibria.
They proved that depending on the fraction of the stock available for harvesting, the sys-
tem maybe extinction, partial survival, or two species may coexist in a stable state.

As we all know, though most dynamic behaviors of population models are based on the
continuous models governed by differential equations, the discrete time models governed
by difference equation are more appropriate than the continuous ones when the size of the
population is rarely small or the population has non-overlapping generations. It has been
found that the dynamic behaviors of the discrete system is rather complex and contains
richer dynamics than the continuous ones [14]. Recently, more and more scholars pay
attention to studying the discrete population models (see [14–19] and the references cited
therein).

However, to the best of our knowledge, to this day, seldom did scholars propose and
consider the influence of harvesting on the discrete amensalism model. This motivates us
to propose and study the discrete system of (1.2). The aim of this paper is to investigate
the permanence, extinction, and global attractivity of the following system:

⎧
⎨

⎩

x1(n + 1) = x1(n) exp{r1(n)(1 – x1(n)
p1(n) – μ(n)

p1(n) x2(n)) – q1(n)Em},
x2(n + 1) = x2(n) exp{r2(n)(1 – x2(n)

p2(n) ) – q2(n)Em},
(1.3)

where x1(n), x2(n) denote the population densities of the two species at any time n. ri(pi)
represents the intrinsic growth rate (environmental carrying capacity) of the ith species,
qi is the catchability co-efficient of the two species. E is the combined fishing effort used to
harvest, and m (0 < m < 1) is the fraction of the stock available for harvesting. One could
refer to [1, 13, 20] for more background and the adjustment of system (1.3). Throughout
this paper, we assume that {μ(n)}, {ri(n)}, {pi(n)}, {qi(n)} are bounded non-negative almost
sequences such that

0 < μl ≤ μ(n) ≤ μu, 0 < rl
i ≤ ri(n) ≤ ru

i ,

0 < pl
i ≤ pi(n) ≤ pu

i , 0 < ql
i ≤ qi(n) ≤ qu

i , i = 1, 2.
(H)

Here, for any bounded sequence {a(n)}, au = supn∈N {a(n)}, al = infn∈N {a(n)}.
From the point of view of biology, we assumed that xi(0) > 0, (i = 1, 2). Then it is easy

to see that the solutions of (1.3) with the above initial condition remain positive for all
n ∈ N+ = {0, 1, 2, . . .}.

The organization of this paper is as follows. In Sect. 2, we give some useful lemmas.
Sufficient conditions for the permanence and extinction of (1.3) are given in Sect. 3 and
Sect. 4. Then, in Sect. 5, we establish sufficient conditions for the global attractivity of (1.3).
Some examples together with their numeric simulations are presented in Sect. 6. We end
this paper with a brief discussion.
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2 Preliminaries
In this section, we will introduce several useful lemmas.

Lemma 2.1 ([21]) Assume that {x(k)} satisfies x(k) > 0 and

x(k + 1) ≤ x(k) exp
{

a(k) – b(k)x(k)
}

for k ∈ N , where a(k) and b(k) are non-negative sequences bounded above and below by
positive constants. Then

lim sup
k→+∞

x(k) ≤ 1
bl exp

(
au – 1

)
.

Lemma 2.2 ([22]) Assume that {x(k)} satisfies

x(k + 1) ≥ x(k) exp
{

a(k) – b(k)x(k)
}

, k ≥ N0,

lim supk→+∞ x(k) ≤ x∗ and x(N0) > 0, where a(k) and b(k) are non-negative sequences
bounded above and below by positive constants and N0 ∈ N . Then

lim inf
k→+∞

x(k) ≥ min

{
al

bu exp
(
al – bux∗),

al

bu

}

.

3 Permanence
Theorem 3.1 Assume that

m < min

{
rl

1pl
1 – ru

1μuM2

qu
1pl

1E
,

rl
2

qu
2E

}

. (H1)

Then system (1.3) is permanent.

Proof From the equations of system (1.3), it follows that

xi(n + 1) ≤ xi(n) exp

{

ri(n) –
ri(n)xi(n)

pi(n)

}

, (i = 1, 2).

It follows from Lemma 2.1 that

lim sup
n→+∞

xi(n) ≤ pu
i

rl
i

exp
(
ru

i – 1
)
� Mi (i = 1, 2).

So, for small enough ε > 0, there exists n1 > 0, for all n > n1, we have

rl
1pl

1 – ru
1μu(M2 + ε) > qu

1pl
1Em,

x2(n) ≤ M2 + ε, rl
2 – qu

2Em > 0.

Then, for n > n1, we have

x1(n + 1) ≥ x1(n) exp

{

r1(n) –
r1(n)
p1(n)

x1(n) –
μ(n)r1(n)

p1(n)
(M2 + ε) – qu

1Em
}

.
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From Lemma 2.2 and letting ε → 0, we have

lim inf
n→+∞ x1(n) ≥ m1,

where

m1 = min

{

� exp

{

rl
1 –

ru
1μuM2

pl
1

– qu
1Em –

ru
1 M1

pl
1

}

,�
}

,

� =
rl

1pl
1 – μuru

1 M2 – pl
1qu

1Em
ru

1
.

From the second equation of system (1.3) it follows that

x2(n + 1) ≥ x2(n) exp

{

rl
2 –

ru
2

pl
2

x2(n) – qu
2Em

}

.

From Lemma 2.2 we have

lim inf
n→+∞ x2(n) ≥ m2,

where

m2 = min

{
rl

2pl
2 – pl

2qu
2Em

ru
2

exp

{

rl
2 – qu

2Em –
ru

2 M2

pl
2

}

,
rl

2pl
2 – pl

2qu
2Em

ru
2

}

.

So the proof of Theorem 3.1 is completed. �

4 Extinction
Theorem 4.1 Assume that

m > max

{
ru

1

ql
1E

,
ru

2

ql
2E

}

, (H2)

let (x1(n), x2(n))T be any positive solution of system (1.3), then

lim
n→∞ xi(n) = 0, i = 1, 2.

Proof From (1.3) we have

xi(n + 1) ≤ xi(n) exp
{

ru
i – ql

iEm
}

, i = 1, 2. (4.1)

By using (4.1), we get

n–1∏

p=0

xi(p + 1) ≤
n–1∏

p=0

xi(p) exp
{

ru
i – ql

iEm
}

, i = 1, 2.

That is,

xi(n) ≤ xi(0) exp
{

n
(
ru

i – ql
iEm

)}
, i = 1, 2.
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For xi(0) > 0, i = 1, 2. So it is easy to get that xi(n) > 0, i = 1, 2. Since (H2) holds, we have

lim
n→∞ xi(n) = 0, i = 1, 2.

The proof of Theorem 4.1 is completed. �

In this section, we will use the analysis technique of [14].

Theorem 4.2 Assume that

rl
2 – qu

2Em > 0,

ru
1 – ql

1Em > 0,

ru
1 – ql

1Em
rl

2 – qu
2Em

<
rl

1μ
lpl

2
ru

2 pu
1

(H3)

holds, let (x1(n), x2(n))T be any positive solution of system (1.3), then the species x2 is per-
manent, while x1 will be driven to extinction.

Proof By (H3) we can choose positive constants α and β such that

ru
1 – ql

1Em
rl

2 – qu
2Em

<
β

α
<

rl
1μ

lpl
2

ru
2 pu

1
. (4.2)

Thus

α
(
ru

1 – ql
1Em

)
< β

(
rl

2 – qu
2Em

)
,

βru
2

pl
2

<
αrl

1μ
l

pu
1

,
(4.3)

and there exists δ > 0

β
(
rl

2 – qu
2Em

)
– α

(
ru

1 – ql
1Em

)
> δ > 0. (4.4)

Let (x1(n), x2(n))T be any positive solution of system (1.3). For any k ∈ N , we can get

ln
x1(k + 1)

x1(k)
= r1(k)

(

1 –
x1(k)
p1(k)

–
μ(k)
p1(k)

x2(k)
)

– q1(k)Em

≤ ru
1 –

rl
1

pu
1

x1(k) –
rl

1μ
l

pu
1

x2(k) – ql
1Em, (4.5)

ln
x2(k + 1)

x2(k)
= r2(k)

(

1 –
x2(k)
p2(k)

)

– q2(k)Em

≥ rl
2 –

ru
2

pl
2

x2(k) – qu
2Em. (4.6)
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Then, inequalities (4.3)–(4.6) lead to

α ln
x1(k + 1)

x1(k)
– β ln

x2(k + 1)
x2(k)

≤ α
(
ru

1 – ql
1Em

)
– α

rl
1

pu
1

x1(k) – α
rl

1μ
l

pu
1

x2(k) – β
(
rl

2 – qu
2Em

)
+ β

ru
2

pl
2

x2(k)

=
[
α
(
ru

1 – ql
1Em

)
– β

(
rl

2 – qu
2Em

)]
+

(
βru

2

pl
2

–
αrl

1μ
l

pu
1

)

x2(k) – α
rl

1
pu

1
x1(k)

< –δ

< 0. (4.7)

Summating both sides of (4.7) from 0 to n – 1, we obtain

α ln
x1(n)
x1(0)

– β ln
x2(n)
x2(0)

< –nδ. (4.8)

Then

x1(n) < x1(0)
(

x2(n)
x2(0)

) β
α

exp

{

–
n
α

δ

}

. (4.9)

Theorem 3.1 implies that x2(n) is bounded eventually. Then the above inequality (4.9)
shows that limn→∞ x1(n) = 0. Since rl

2 – qu
2Em > 0, then the species x2 is permanent.

The proof of Theorem 4.2 is completed. �

5 Globally attractive
Theorem 5.1 Assume that m > ru

2
ql

2E
(H4) holds and there exists a positive constant η > 0

such that

min

{
rl

1
pu

1
,

2
M1

–
ru

1

pl
1

}

> η (H5)

holds, then species x1 is globally attractive while x2 will be driven to extinction.

Proof Suppose that (x1(n), x2(n))T , (x∗
1(n), x∗

2(n))T are any two positive solutions of sys-
tem (1.3). Under the assumption condition (H4), it follows from Theorem 4.1 that
limn→+∞ x2(n) = 0. Since lim supn→∞ x1(n) < M1, then for small enough ε > 0, there ex-
ists N0 > 0, for all n > N0, we have

x1(n) < M1 + ε, x2(n) < ε, min

{
rl

1
pu

1
,

2
M1 + ε

–
ru

1

pl
1

}

> η.

To end the proof of Theorem 5.1, it is enough to show that limn→+∞(x1(n) – x∗
1(n)) = 0.

Let V (n) = | ln x1(n) – ln x∗
1(n)|. From (1.3) we have

∣
∣ln x1(n + 1) – ln x∗

1(n + 1)
∣
∣ =

∣
∣
∣
∣ln x1(n) – ln x∗

1(n) –
r1(n)
p1(n)

(
x1(n) – x∗

1(n)
)

–
μ(n)r1(n)

p1(n)
(
x2(n) – x∗

2(n)
)
∣
∣
∣
∣
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≤
∣
∣
∣
∣ln x1(n) – ln x∗

1(n) –
r1(n)
p1(n)

(
x1(n) – x∗

1(n)
)
∣
∣
∣
∣

+
μ(n)r1(n)

p1(n)
∣
∣x2(n) – x∗

2(n)
∣
∣.

Since ln x1(n) – ln x∗
1(n) = 1

ξ1(n) (x1(n) – x∗
1(n)), where min{x1(n), x∗

1(n)} ≤ ξ1(n) ≤ max{x1(n),
x∗

1(n)} ≤ M1 + ε. So we can get

�V (n) ≤ –
(

1
ξ1(n)

–
∣
∣
∣
∣

1
ξ1(n)

–
r1(n)
p1(n)

∣
∣
∣
∣

)
∣
∣x1(n) – x∗

1(n)
∣
∣

+
μuru

1

pl
1

∣
∣x2(n) – x∗

2(n)
∣
∣

≤ – min

{
rl

1
pu

1
,

2
M1 + ε

–
ru

1

pl
1

}
∣
∣x1(n) – x∗

1(n)
∣
∣ + 2

μuru
1

pl
1

ε

≤ –η
∣
∣x1(n) – x∗

1(n)
∣
∣ + 2

μuru
1

pl
1

ε.

Letting ε → 0, it follows that

�V (n) ≤ –η
∣
∣x1(n) – x∗

1(n)
∣
∣,

then

n∑

p=N0

(
V (p + 1) – V (p)

) ≤ –η

n∑

p=N0

∣
∣x1(p) – x∗

1(p)
∣
∣,

that is,

V (n + 1) – V (N0) ≤ –η

n∑

p=N0

∣
∣x1(p) – x∗

1(p)
∣
∣,

therefore

n∑

p=N0

∣
∣x1(p) – x∗

1(p)
∣
∣ ≤ V (N0)

η
< +∞.

So it is easy to know that limn→+∞(x1(n) – x∗
1(n)) = 0.

The proof of Theorem 5.1 is completed. �

Similarly, we can get the following theorem.

Theorem 5.2 Assume that there exists a positive constant γ > 0 such that

min

{
rl

2
pu

2
,

2
M2

–
ru

2

pl
2

}

> γ (H6)

holds, then the species x2 is globally attractive.
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Figure 1 Dynamic behaviors of system (6.1) with initial condition
(x1(t), x2(t))T = (0.1, 0.45)T , (0.25, 0.25)T , (0.35, 0.1)T

6 Examples and numeric simulations
The following examples lend credence to the plausibility of the main results.

Example 6.1 Corresponding to system (1.3), we assume that

r1(n) = 0.05
(
sin2 n + 1

)
, p1(n) = 0.1(sin n + 2),

q1(n) = 0.05
(
cos2 n + 1

)
, r2(n) = 0.8 cos2 n + 0.2,

p2(n) = 0.04(cos n + 1.5), q2(n) = 2(cos n + 1.5),

m = 0.1, μ(n) = 0.05, E = 1.

(6.1)

It is easy to see that rl
2

qu
2 E = 0.4, M2 = pu

2
rl
2

exp(ru
2 – 1) = 0.5, rl

1pl
1–ru

1 μuM2
qu

1 pl
1E

= 0.25, m = 0.1 <

min{0.4, 0.25}. Then the conditions of Theorem 3.1 are satisfied (see Fig. 1).

Example 6.2 Corresponding to system (1.3), we assume that

r1(n) = 0.05
(
sin2 n + 1

)
, p1(n) = p2(n) = 1,

q1(n) = 0.05
(
cos2 n + 1

)
, μ(n) = 0.05,

r2(n) = 0.5 cos2 n + 0.2, m = 0.8,

q2(n) = 0.2(cos n + 1.5), E = 10.

(6.2)

It is easy to see that ru
1

ql
1E

= 0.2, ru
2

ql
2E

= 0.7, m = 0.8 > max{0.2, 0.7}. Then the conditions of

Theorem 4.1 are satisfied (see Fig. 2).

Example 6.3 Corresponding to system (1.3), we assume that

r1(n) = 0.05
(
sin2 n + 1

)
, p1(n) = 0.004(cos n + 1.5),

q1(n) = 0.02
(
cos2 n + 1

)
, r2(n) = 0.8 cos2 n + 0.3,

q2(n) = 0.2(cos n + 1.5), p2(n) = sin n + 3,

m = 0.5, μ(n) = 1, E = 1.

(6.3)
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Figure 2 Dynamic behaviors of system (6.2) with initial condition
(x1(t), x2(t))T = (0.1, 0.3)T , (0.25, 0.6)T , (0.35, 0.1)T

Figure 3 Dynamic behaviors of system (6.3) with initial condition
(x1(t), x2(t))T = (0.1, 0.3)T , (0.25, 0.6)T , (0.35, 0.1)T

It is easy to see that ru
1 – ql

1Em = 0.09 > 0, rl
2 – qu

2Em = 0.05 > 0, ru
1 –ql

1Em
rl
2–qu

2 Em
= 1.8 < rl

1μlpl
2

ru
2 pu

1
≈

9.09. Then the conditions of Theorem 4.2 are satisfied (see Fig. 3).

Example 6.4 Corresponding to system (1.3), we assume that

r1(n) = p1(n) = p2(n) = 1, q1(n) = 0.05
(
cos2 n + 1

)
,

r2(n) = 0.5 cos2 n + 0.2, q2(n) = 0.2(cos n + 1.5),

μ(n) = 1, m = 0.8, E = 10.

(6.4)

It is easy to see that m = 0.8 > ru
2

ql
2E

= 0.7, min{ rl
1

pu
1

, 2
M1

– ru
1

pl
1

= min{1, 1}} > 0, M1 = pu
1

rl
1

exp(ru
1 –

1) = 1. Then the conditions of Theorem 5.1 are satisfied (see Fig. 4).

7 Discussion
With the aim of the ecological sustainability and conservation of the species to be imple-
mented in a long run, in this paper, we have attempted to study the dynamic behaviors of a
non-selective harvesting Lotka–Volterra discrete amensalism model. We have proved that
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Figure 4 Dynamic behaviors of system (6.4) with initial condition
(x1(t), x2(t))T = (0.1, 0.8)T , (0.25, 0.6)T , (0.35, 0.3)T

if (H1) holds, then the system is permanent, which means that if m, which is the fraction
of the stock available for harvesting, is small enough, the system will coexist. Theorem 4.1
implies that if m is large enough, then the system will be driven to extinction. Theorem 4.2
gives some threshold on m, which ensures that the species x2 is permanent while x1 will
be driven to extinction. In Sect. 5, sufficient conditions for the global attractivity of (1.3)
are given, which means that if m is larger than a certain value and satisfies (H5), then the
species x1 is globally attractive while x2 will be driven to extinction. The results obtained
in this paper maybe useful in designing the natural protection area.
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