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Abstract
This paper aims to examine and establish the models for European option pricing
which include parameters of stochastic dividend yield and stochastic earning yield.
We generalize the Ornstein–Uhlenbeck process and define it as generalized
Ornstein–Uhlenbeck process. We have learned that the firm stocks, according to
Black–Scholes–Merton structure, obey the geometric Brownian motion process.
Under a stochastic earning yield, the dividend yield complies with the generalized
Ornstein–Uhlenbeck process. The firm dividend randomly deviates from the earning
yield flow because of the presence of stochastic components of dynamic Wiener
process of generalized Ornstein–Uhlenbeck. In this study, we model the stock price
with stochastic earning yield, and stochastic dividend yield to be taking account
stochastic market price of risk parameter which is mean-reverting as well. We
developed explicit formulae for European call option pricing calculations. From
numerical simulation, we could evaluate the performance of our new model that
could be compared with other notable option pricing models by using actual option
price data. The outcomes prove that our new model performance is best when
compared with others.
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1 Introduction
When making an investment decision, traders seek confidence in profit making. They con-
sider a derivative financial instrument: an option. In Black–Scholes–Merton structure,
many parameters are used to determine option price, such as dividend yield, volatility, in-
terest rates, and time maturity [1]. However, this option pricing model leaves out some
parameters and therefore does not reflect real world finance situation. Thus, the stochas-
tic parameters should be taken into the calculation of the option valuation model. It can
be seen that dividend yield is considered an important parameter that mainly makes an
impact on the option pricing models [2–4]. In the development of option pricing model,
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an Ornstein–Uhlenbeck process is conducted in the pricing model mathematically to cal-
culate the value of option [5–7].

In finance, both P/E ratio and dividend yield are the common information that can be
retrieved from our daily newspapers. Hence, we extend the Black–Scholes–Merton con-
cept by including the P/E ratio into the model. Here, the earning yield is a critical factor
in the dividend yield model. We set up stochastic differential equations to explain the
stock pricing situation by taking into consideration stochastic dividend yield. General-
ized process of Ornstein–Uhlenbeck is defined in order to explain option pricing models
when stochastic earning yield is an element of stochastic dividend yield. Inspired by the
approach used by Abraham Lioui [5], we characterize a Wiener process by generalizing
the economic situation with n risk parameters and explicitly obtain pricing formulae of
an option of European call. We can then provide the option pricing formulae taking into
account stochastic earning yield.

2 The setting
2.1 The definitions
A Wiener process is a random walk process in a continuous time. The Ornstein–
Uhlenbeck process is developed by having a character that the walk has the ability to
move back to a central value or mean reverting property.

Over the past years, option valuation models have utilized the Ornstein–Uhlenbeck pro-
cess which is an important main component for any economic study of valuation with
stochastic property [2, 5, 8]. Such a model is commonly used to describe the stochastic
behavior of many crucial variables in the real world of financial market such as interest
rates, dividends, volatility, currency exchange rates, and commodity prices [9].

Definition 1 A stochastic process x(t) is defined as the Ornstein–Uhlenbeck process:

dx(t) = ν
(
μ – x(t)

)
dt + σ dW (t)), (1)

where W (t) is a Wiener process on t ∈ [0,∞) and ν > 0, σ > 0, and μ are constant param-
eters.

As it is possible that a parameter can be dependent on itself or on other parameters
or both, in this study, we assume that the stochastic process emulates the Ornstein–
Uhlenbeck process which may be a part of other Ornstein–Uhlenbeck processes. Gen-
erally, it clarifies a concept of, for example, a movement of particles with friction. In situ-
ation like this, a process X(t), defined as a generalized Ornstein–Uhlenbeck process, may
be useful in explaining such situations.

Definition 2 A stochastic process X(t) is defined as the following generalized Ornstein–
Uhlenbeck process:

dX(t) = ν0
(
μ0 – X(t)

)
dt

+ ν1
(
μ1 – Y1(t)

)
dt + ν2

(
μ2 – Y2(t)

)
dt + · · · + νn

(
μn – Yn(t)

)
dt

+ σ0 dW0(t) + σ1 dW1(t) + σ2 dW2(t) + · · · + σn dWn(t)), (2)
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where Yi(t) denotes the generalized Ornstein–Uhlenbeck process, W (t) is the Wiener pro-
cess, on t ∈ [0,∞) and parameters ν0 > 0, μ0 > 0, σ0 > 0, νi ≥ 0, σi ≥ 0, and μi ∈ R, where
i = 1, 2, . . . , n are all constant.

We have an assumption that the precarious component is the risk factor that can impact
on the aforementioned underlying asset, for example, a stock price can be affected by the
market price of risks under the martingale measure Q. In this case, we can define market
price of risks in a form of generalized Ornstein–Uhlenbeck.

Definition 3 The generalized Ornstein–Uhlenbeck Wiener process is defined as

Ŵ (t) = W (t) +
∫ t

0
ν1(s) ds +

∫ t

0
ν2(s) ds + · · · +

∫ t

0
νn(s) ds, (3)

where W (t) is the Wiener process and νi(t) is the generalized Ornstein–Uhlenbeck process
when i = 1, 2, . . . , n.

The objective of this study is to form an option pricing model on the basis of real fi-
nancial situations. Every stochastic process and important condition will be taken into
consideration and will be included in the mathematical model. Thus, we define the pro-
cess as a process of generalized Ornstein–Uhlenbeck for the benefit of general situation
financial model construction.

Definition 4 The generalized X(t) is defined as a generalized Ornstein–Uhlenbeck pro-
cess:

dX̂(t) = ν0
(
μ0 – X(t)

)
dt + ν1

(
μ1 – Ŷ1(t)

)
dt + · · · + νn

(
μn – Ŷn(t)

)
dt

+ σ0 dŴ0(t) + σ1 dŴ1(t) + · · · + σn dŴn(t)), (4)

where Ŷi(t) is the generalized Ornstein–Uhlenbeck process, Ŵ (t) is the generalized
Ornstein–Uhlenbeck Wiener process, on t ∈ [0,∞) and parameters ν0 > 0, μ0 > 0, σ0 > 0,
νi ≥ 0, σi ≥ 0, and μi ∈R, where i = 1, 2, . . . , n are all constant.

In the following section, with all four definitions provided, we will illustrate the construc-
tion of the pricing models, under market price of risks, that includes proposed parameters,
stochastic earning yield, and stochastic dividend yield.

2.2 The models
When developing the option pricing models, we assume the financial market to be com-
pleted with no arbitrage opportunity. The pricing probability space is (Ω ,P,F) where Ω

is the pricing space with probability measure P and measurable events F. A fixed mar-
tingale measure Q also exists. We assume Q to be equal to the probability measure P

and dividends become martingale. We make such an assumption to guarantee no arbi-
trage opportunity in the market [10, 11]. The stochastic processes in any pricing nature
are adjusted to the filtration {Ft} provided by the Wiener process. It can be defined that
Ft-adapted processes ν1(t), ν2(t), and ν3(t) are multiple Brownian motions, according to
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Girsanov’s theorem. From the Radon–Nikodym derivative equation, the martingale mea-
sure and measurable probability with multiple Brownian motions can be defined as follows
[12]:

dQ
dP

∣
∣∣
Ft

= exp

(
–

∫ t

0
ν1(s) dW1(s) –

∫ t

0
ν2(s) dW2(s) –

∫ t

0
ν3(s) dW3(s)

–
1
2

∫ t

0

(
ν1(s)2 + ν2(s)2 + ν3(s)2)ds

)
, P-a.s. (5)

The Brownian motions dW1(s), dW2(s), and dW3(s) are uncorrelated Wiener processes
in one dimension which is described on a probability space (Ω ,P,F).

The prices of risky assets agree to a process of stocks which can be modeled as follows:

dS(t)
S(t)

=
(
μS

(
t, S(t), δ(t)

)
– δ(t)

)
dt + σS dW1(t), (6)

where S(0) > 0 and σS is a positive constant of volatility.
As we consider the P/E ratio to be related to the model of option pricing in this paper,

the dividend yield is a component to determine the P/E ratio.

δ(t) ≈ 1
P/E

·
(

Dividend
Earning Per Share

)

= (Earning Yield) ·
(

Dividend
Earning Per Share

)
. (7)

From this, we can presume the derivative of the dividend yield to depend on the earning
yield instead. The dividend model is proposed as follows.

dδ(t) = θδ

(
μδ – δ(t)

)
dt + θψ

(
μψ – ψ(t)

)
dt

+
(
σδ1 dW1(t) + σδ2 dW2(t) + σδ3 dW3(t)

)
, (8)

where δ(0) = 0 and parameters θδ , μδ , θψ , μψ , and σδi are all constants when i = 1, 2, 3.
As for earning yield ψ(t), we define it by the random fluctuations under the generalized

Ornstein–Uhlenbeck process as follows:

dψ(t) = θψ

(
μψ – ψ(t)

)
dt + σψ1 dW1(t) + σψ2 dW2(t) + σψ3 dW3(t), (9)

where setting ψ(0) = 0 and parameters θψ , μψ , and σψ i are all constants when i = 1, 2, 3.
It is to be noted that equation (8) can be applied to (7) and (7) is applied to (6). These

two conditions form the relationship among the related stochastic functions. In certain
cases, we can identify the correlation between two or more processes by letting σδi and/or
σψ i be equal to zero.

νi is the market price of risk (MPR) parameter by Definition 3 and is presumed to fit the
generalized Ornstein–Uhlenbeck process as follows.

dνi(t) = θνi
(
μνi – νi(t)

)
dt + σνi dWi(t), (10)

where constants ν(0) = 0, θνi , μνi , and σνi are all positive when i = 1, 2, 3.
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However, the MPR poses a consequence on the models in (6), (8), (9), and (10); therefore,
we remodel the pricing formulae so that the risk factors are capsulated, which is beneficial
to asset pricing in the real world.

3 The method
By applying Abraham Lioui’s analytic method [5], assuming arbitrage-free, we can develop
analytic proofs for European options formulas.

Considering the MPR, νi(t), the kernel of movement is changed, the result is that the
generalized Ornstein–Uhlenbeck Wiener process Ŵi(t) with MPR replaces the Wiener
processes Wi(t) of models (6)–(9). Once we get the risk movement parameter MPR, we
apply Definition 3, and the general Wiener process can be defined as follows:

Ŵi(t) = Wi(t) +
∫ t

0
νi(s) ds. (11)

When models (6)–(9) have been adapted, the equation for calculating the stock price is

dS(t)
S(t)

=
(
μS

(
t, S(t), δ(t)

)
– δ(t)

)
dt + σS dŴ1(t). (12)

Since MPR can influence the mean value of the asset, the value of asset satisfies the
following processes:

dδ(t) = θδ

(
μδ – δ(t)

)
dt + θψ

(
μψ – ψ(t)

)
dt

–
(
σδ1ν1(t) + σδ2ν2(t) + σδ3ν3(t)

)
dt

+
(
σδ1 dŴ1(t) + σδ2 dŴ2(t) + σδ3 dŴ3(t)

)
, (13)

where

dψ(t) = θψ

(
μψ – ψ(t)

)
dt –

(
σψ1ν1(t) + σψ2ν2(t) + σψ3ν3(t)

)
dt

+
(
σψ1 dŴ1(t) + σψ2 dŴ2(t) + σψ3 dŴ3(t)

)
(14)

as Ornstein–Uhlenbeck process can describe market price of risk:

dνi(t) = θ̄νi
(
μ̄νi – νi(t)

)
dt + σνi dŴi(t), (15)

where

θ̄νi = θνi(1 + σνi), (16)

μ̄νi =
μνi

1 + σνi
. (17)

First, we evaluate the European call option to acquire a formula of European put option
through the application of put-call parity concept. The European call option C(t) can then
be described as follows:

C(t) = EQ[
e–r(T–t)[S(T) – K

]+|Ft
]

(18)



Phewchean and Wu Advances in Difference Equations        (2019) 2019:277 Page 6 of 15

= e–r(T–t)EQ[
S(T)1S(T)>K |Ft

]
– Ke–r(T–t)EQ[1S(T)>K |Ft], (19)

when

1S(T)>K =

⎧
⎨

⎩
1 if S(T) > K ,

0 if otherwise,

where T , K , and r are times to maturity, strike price of an option, and interest rate respec-
tively.

It is noted that the stock price S(T) can be defined as

S(T) = S(t) exp

{
(r –

σ 2
S

2
(T – t) –

∫ T

t
δ(s) ds + σS

∫ T

t
dŴ1(S)

}
. (20)

∫ T
t δ(s) ds, which is the total dividend yield, can be modeled from (12) as follows:

∫ T

t
δ(s) ds

= μδ(T – t) –
1
θδ

(
δ(T) – δ(t)

)
+

θψ

θδ

μψ (T – t)

–
1
θδ

∫ T

t
ψ(s) ds –

1
θδ

∫ T

t

(
σδ1ν1(t) + σδ2ν2(t) + σδ3ν3(t)

)
ds

+
(

σδ1

θδ

∫ T

t
dŴ1(s) +

σδ2

θδ

∫ T

t
dŴ2(s) +

σδ3

θδ

∫ T

t
dŴ3(s)

)
. (21)

Working on (21) to solve the equations by using analytical techniques, δ(T) can be at-
tained as follows:

δ(T) = δ(t)e–θδ (T–t) + μδ

(
1 – e–θδ (T–t)) +

θψμψ

θδ

(
1 – e–θδ (T–t))

–
ψ(t)

θδ – θψ

(
e–θψ (T–t) – e–θδ (T–t)) –

μψ

θδ – θψ

(
1 – e–θψ (T–t))

+
θψμψ

θδ

(
1 – e–θδ (T–t))

–
σδ1μ̄ν1

θδ – θ̄ν1

(
θ̄ν1

θδ

(
1 – e–θδ (T–t)) –

(
1 – e–θ̄ν1(T–t))

)

+
σψ1μ̄ν1

(θδ – θψ )(θψ – θ̄ν1)

(
θ̄ν1

θψ

(
1 – e–θψ (T–t)) –

(
1 – e–θ̄ν1(T–t))

)

–
σψ1μ̄ν1

(θδ – θψ )(θδ – θ̄ν1)

(
θ̄ν1

θδ

(
1 – e–θψ (T–t)) –

(
1 – e–θ̄ν1(T–t))

)

–
σδ2μ̄ν2

θδ – θ̄ν2

(
θ̄ν2

θδ

(
1 – e–θδ (T–t)) –

(
1 – e–θ̄ν2(T–t))

)

+
σψ2μ̄ν2

(θδ – θψ )(θψ – θ̄ν2)

(
θ̄ν2

θψ

(
1 – e–θψ (T–t)) –

(
1 – e–θ̄ν2(T–t))

)

–
σψ2μ̄ν2

(θδ – θψ )(θδ – θ̄ν2)

(
θ̄ν2

θδ

(
1 – e–θψ (T–t)) –

(
1 – e–θ̄ν2(T–t))

)
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–
σδ3μ̄ν3

θδ – θ̄ν3

(
θ̄ν3

θδ

(
1 – e–θδ (T–t)) –

(
1 – e–θ̄ν3(T–t))

)

+
σψ3μ̄ν3

(θδ – θψ )(θψ – θ̄ν3)

(
θ̄ν3

θψ

(
1 – e–θψ (T–t)) –

(
1 – e–θ̄ν3(T–t))

)

–
σψ3μ̄ν3

(θδ – θψ )(θδ – θ̄ν3)

(
θ̄ν3

θδ

(
1 – e–θψ (T–t)) –

(
1 – e–θ̄ν3(T–t))

)

–
σδ1

θδ – θ̄ν1

(
e–θδ (T–t) – e–θ̄ν1(T–t))ν1(t)

+
σψ1

(θδ – θψ )(θψ – θ̄ν1)
(
e–θψ (T–t) – e–θ̄ν1(T–t))ν1(t)

+
σψ1

(θδ – θψ )(θδ – θ̄ν1)
(
e–θδ (T–t) – e–θ̄ν1(T–t))ν1(t)

–
σδ2

θδ – θ̄ν2

(
e–θδ (T–t) – e–θ̄ν2(T–t))ν2(t)

+
σψ2

(θδ – θψ )(θψ – θ̄ν2)
(
e–θψ (T–t) – e–θ̄ν2(T–t))ν2(t)

+
σψ2

(θδ – θψ )(θδ – θ̄ν2)
(
e–θδ (T–t) – e–θ̄ν2(T–t))ν2(t)

–
σδ3

θδ – θ̄ν3

(
e–θδ (T–t) – e–θ̄ν3(T–t))ν3(t)

+
σψ3

(θδ – θψ )(θψ – θ̄ν3)
(
e–θψ (T–t) – e–θ̄ν3(T–t))ν3(t)

+
σψ3

(θδ – θψ )(θδ – θ̄ν3)
(
e–θδ (T–t) – e–θ̄ν1(T–t))ν3(t)

+ σδ1

∫ T

t

(
e–θδ (T–s) –

σν1

θδ – θ̄ν1

(
e–θδ (T–s) – e–θ̄ν1(T–s))

)
dŴ1(s)

–
σψ1

θδ – θψ

∫ T

t

(
e–θψ (T–s) –

σν1

θδ – θ̄ν1

(
e–θψ (T–s) – e–θ̄ν1(T–s))

)
dŴ1(s)

+
σψ1

θδ – θψ

∫ T

t

(
e–θδ (T–s) –

σν1

θδ – θ̄ν1

(
e–θδ (T–s) – e–θ̄ν1(T–s))

)
dŴ1(s)

+ σδ2

∫ T

t

(
e–θδ (T–s) –

σν1

θδ – θ̄ν2

(
e–θδ (T–s) – e–θ̄ν2(T–s))

)
dŴ2(s)

–
σψ2

θδ – θψ

∫ T

t

(
e–θψ (T–s) –

σν2

θδ – θ̄ν2

(
e–θψ (T–s) – e–θ̄ν2(T–s))

)
dŴ2(s)

+
σψ1

θδ – θψ

∫ T

t

(
e–θδ (T–s) –

σν2

θδ – θ̄ν2

(
e–θδ (T–s) – e–θ̄ν2(T–s))

)
dŴ1(s)

+ σδ3

∫ T

t

(
e–θδ (T–s) –

σν3

θδ – θ̄ν3

(
e–θδ (T–s) – e–θ̄ν3(T–s))

)
dŴ3(s)

–
σψ3

θδ – θψ

∫ T

t

(
e–θψ (T–s) –

σν3

θδ – θ̄ν3

(
e–θψ (T–s) – e–θ̄ν3(T–s))

)
dŴ3(s)

+
σψ3

θδ – θψ

∫ T

t

(
e–θδ (T–s) –

σν3

θδ – θ̄ν3

(
e–θδ (T–s) – e–θ̄ν3(T–s))

)
dŴ3(s). (22)
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We can mathematically express the total earning yield
∫ T

t ψ(s) ds as follows:

∫ T

t
ψ(s) ds =

1
θψ

ψ(t)
(
1 – eθψ (T–t)) + μψ

(
(T – t) –

1
θψ

(
1 – e–θψ (T–t))

)

–
σψ1μ̄ν1

θψ

[
(T – t) –

1
θ̄ν1

(
1 – e–θ̄ν1(T–t))

–
θ̄ν1

θψ (θψ – θ̄ν1)
(
1 – e–θψ (T–t)) +

1
θψ – θ̄ν1

(
1 – e–θ̄ν (T–t))

]

–
σψ2μ̄ν2

θψ

[
(T – t) –

1
θ̄ν2

(
1 – e–θ̄ν2(T–t))

–
θ̄ν2

θψ (θψ – θ̄ν2)
(
1 – e–θψ (T–t)) +

1
θψ – θ̄ν2

(
1 – e–θ̄ν (T–t))

]

–
σψ3μ̄ν3

θψ

[
(T – t) –

1
θ̄ν3

(
1 – e–θ̄ν3(T–t))

–
θ̄ν3

θψ (θψ – θ̄ν3)
(
1 – e–θψ (T–t)) +

1
θψ – θ̄ν3

(
1 – e–θ̄ν (T–t))

]

+
σψ1

θψ

[
1

θψ – θ̄ν1

(
e–θψ (T–t) – e–θ̄ν1(T–t)) –

1
θ̄ν1

(
1 – e–θ̄ν1(T–t))

]
ν1(t)

+
σψ2

θψ

[
1

θψ – θ̄ν2

(
e–θψ (T–t) – e–θ̄ν2(T–t)) –

1
θ̄ν2

(
1 – e–θ̄ν2(T–t))

]
ν2(t)

+
σψ3

θψ

[
1

θψ – θ̄ν3

(
e–θψ (T–t) – e–θ̄ν3(T–t)) –

1
θ̄ν3

(
1 – e–θ̄ν3(T–t))

]
ν3(t)

+
σψ1

θψ

∫ T

t

[
1 –

σν1

θ̄ν1
+

σν1

θ̄ν1
e–θ̄ν1(T–s) – e–θψ (T–s)

+
σν1

θψ – θ̄ν1

(
e–θψ (T–s) – e–θ̄ν1(T–s))

]
dŴ1(s)

+
σψ2

θψ

∫ T

t

[
1 –

σν2

θ̄ν2
+

σν2

θ̄ν2
e–θ̄ν2(T–s) – e–θψ (T–s)

+
σν2

θψ – θ̄ν2

(
e–θψ (T–s) – e–θ̄ν2(T–s))

]
dŴ2(s)

+
σψ3

θψ

∫ T

t

[
1 –

σν3

θ̄ν3
+

σν3

θ̄ν3
e–θ̄ν3(T–s) – e–θψ (T–s)

+
σν3

θψ – θ̄ν3

(
e–θψ (T–s) – e–θ̄ν3(T–s))

]
dŴ3(s). (23)

The total MPR
∫ T

t νi(s) ds is derived as follows:

∫ T

t
νi(s) ds =

νi

t
(
1 – e–θ̄νi(T–t)) + μ̄νi(T – t) –

μ̄νi

θ̄νi

(
1 – e–θ̄νi(T–t))

+
∫ T

t

(
σνi

θ̄νi
–

σν i
θ̄νi

e–θ̄νi(T–s)
)

dŴi(s). (24)

By substitution, we can solve for S(T) and develop the formula for stock pricing.
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The structure of stock distribution is important because it shows that our proposed
stochastic parameters may be included when pricing the option for stocks. With this, we
can form a new stock valuation model using the analytical approach based on the rela-
tionship speculated. The following is our proposition.

Proposition 1 The formula for stock price can be considered as

S(T) = S(t) exp

{
(r –

σ 2
S

2
(T – t) – L0(t)δ(t) – L1(t) – M0(t)ψ(t) – M1(t) + O(t)

+ σδ1
(
L2(t) – L3(t)ν1(t)

)
+ σδ2

(
L4(t) – L5(t)ν2(t)

)

+ σδ3
(
L6(t) – L7(t)ν3(t)

)

+ σψ1
(
M2(t) – M3(t)ν1(t)

)
+ σψ2

(
M4(t) – M5(t)ν2(t)

)

+ σψ3
(
M6(t) – M7(t)ν3(t)

)

+
∫ T

t
ε1(s) dŴ1(s) +

∫ T

t
ε2(s) dŴ2(s) +

∫ T

t
ε3(s) dŴ3(s)

}
, (25)

where Ŵi(t) is the generalized Ornstein–Uhlenbeck Wiener process and Li(t), Mi(t), O(t),
and εi(s) are as follows:

L0(t) =
1
θδ

(
1 – e–θδ (T–t)),

L1(t) = μδ

[
(T – t) –

1
θδ

(
1 – e–θδ (T–t))

]
,

L2(t) =
μ̄ν1

θδ

[
(T – t) –

1
θ̄ν1

(
1 – e–θ̄ν1(T–t))

–
1

θδ – θ̄ν1

(
θ̄ν1

θδ

(
1 – e–θδ (T–t)) –

(
1 – e–θ̄ν1(T–t))

)]
,

L3(t) =
1
θδ

[
1

θδ – θ̄ν1

(
e–θδ (T–t) – e–θ̄ν1(T–t)) –

1
θ̄ν1

(
1 – e–θ̄ν1(T–t))

]
,

L4(t) =
μν2

θδ

[
(T – t) –

1
θ̄ν2

(
1 – e–θ̄ν2(T–t))

–
1

θδ – θ̄ν2

(
θ̄ν2

θδ

(
1 – e–θδ (T–t)) –

(
1 – e–θν2(T–t))

)]
,

L5(t) =
1
θδ

[
1

θδ – θ̄ν2

(
e–θδ (T–t) – e–θ̄ν2(T–t)) –

1
θ̄ν2

(
1 – e–θ̄ν2(T–t))

]
,

L6(t) =
μ̄ν3

θδ

[
(T – t) –

1
θ̄ν3

(
1 – e–θ̄ν3(T–t))

–
1

θδ – θ̄ν3

(
θ̄ν3

θδ

(
1 – e–θδ (T–t)) –

(
1 – e–θν3(T–t))

)]
,

L7(t) =
1
θδ

[
1

θδ – θ̄ν3

(
e–θδ (T–t) – e–θ̄ν3(T–t)) –

1
θ̄ν3

(
1 – e–θ̄ν3(T–t))

]
,

M0(t) =
1
θδ

[
1

θδ – θψ

(
e–θψ (T–t) – e–θδ (T–t)) –

1
θψ

(
1 – e–θψ (T–t))

]
,
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M1(t) =
μψ

θδ

[
1

θδ – θψ

(
1 – e–θψ (T–t)) –

2θψ

θδ

(
1 – e–θδ (T–t)) – (T – t) +

1
θψ

(
1 – e–θψ (T–t))

]
,

M2(t) =
μ̄ν1

θδ

[
1

(θδ – θψ )(θψ – θ̄ν1)

(
θ̄ν1

θψ

(
1 – e–θψ (T–t)) –

(
1 – e–θ̄ν1(T–t))

)

–
1

(θδ – θψ )(θδ – θ̄ν1)

(
θ̄ν1

θδ

(
1 – e–θψ (T–t)) –

(
1 – e–θ̄ν1(T–t))

)

+
1
θψ

(
(T – t) –

1
θ̄ν1

(
1 – e–θν1(T–t)) –

θ̄ν1

θψ (θψ – θ̄ν1)
(
1 – e–θψ (T–t))

)

+
1
θψ

(
1

θψ – θ̄ν1

(
1 – e1–e– θ̄ν1(T–t))

)]
,

M3(t) =
1
θδ

[
1

(θδ – θψ )(θδ – θ̄ν1)
(
e–θδ (T–t) – e–θν1(T–t))

–
1

(θδ – θψ )(θψ – θ̄ν1)
(
e–θψ (T–t) – e–θν1(T–t))

–
1
θψ

(
1

θψ – θ̄ν1

(
e–θψ (T–t) – e–θ̄ν1(T–t)) –

1
θ̄ν1

(
1 – e–θ̄ν1(T–t))

)]
,

M4(t) =
μ̄ν2

θδ

[
1

(θδ – θψ )(θψ – θ̄ν2)

(
θ̄ν2

θψ

(
1 – e–θψ (T–t)) –

(
1 – e–θ̄ν2(T–t))

)

–
1

(θδ – θψ )(θδ – θ̄ν2)

(
θ̄ν2

θδ

(
1 – e–θψ (T–t)) –

(
1 – e–θ̄ν2(T–t))

)

+
1
θψ

(
(T – t) –

1
θ̄ν2

(
1 – e–θν2(T–t)) –

θ̄ν2

θψ (θψ – θ̄ν2)
(
1 – e–θψ (T–t))

)

+
1
θψ

(
1

θψ – θ̄ν2

(
1 – e1–e– θ̄ν2(T–t))

)]
,

M5(t) =
1
θδ

[
1

(θδ – θψ )(θδ – θ̄ν2)
(
e–θδ (T–t) – e–θν2(T–t))

–
1

(θδ – θψ )(θψ – θ̄ν2)
(
e–θψ (T–t) – e–θν2(T–t))

–
1
θψ

(
1

θψ – θ̄ν2

(
e–θψ (T–t) – e–θ̄ν2(T–t)) –

1
θ̄ν2

(
1 – e–θ̄ν2(T–t))

)]
,

M6(t) =
μ̄ν1

θδ

[
1

(θδ – θψ )(θψ – θ̄ν3)

(
θ̄ν3

θψ

(
1 – e–θψ (T–t)) –

(
1 – e–θ̄ν3(T–t))

)

–
1

(θδ – θψ )(θδ – θ̄ν3)

(
θ̄ν3

θδ

(
1 – e–θψ (T–t)) –

(
1 – e–θ̄ν3(T–t))

)

+
1
θψ

(
(T – t) –

1
θ̄ν3

(
1 – e–θν3(T–t)) –

θ̄ν3

θψ (θψ – θ̄ν3)
(
1 – e–θψ (T–t))

)

+
1
θψ

(
1

θψ – θ̄ν3

(
1 – e1–e– θ̄ν3(T–t))

)]
,

M7(t) =
1
θδ

[
1

(θδ – θψ )(θδ – θ̄ν3)
(
e–θδ (T–t) – e–θν3(T–t))
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–
1

(θδ – θψ )(θψ – θ̄ν3)
(
e–θψ (T–t) – e–θν3(T–t))

–
1
θψ

(
1

θψ – θ̄ν3

(
e–θψ (T–t) – e–θ̄ν3(T–t)) –

1
θ̄ν3

(
1 – e–θ̄ν3(T–t))

)]
,

O(t) =
θψ

θδ

(T – t),

ε1(s) = σS –
[(

σδ1

θδ

–
σδ1σν1

θδθ̄ν1
–

σψ1

θψθδ

+
σψ1σν1

θψθδθ̄ν1

)

+
(

σδ1σν1

θδθ̄ν1
–

σδ1σν1

θδ(θδ – θ̄ν1)
–

σψ1σν1

θψθδθ̄ν1
+

σψ1σν1

θψθδ(θψ – θ̄ν1)

)
e–θ̄ν1(T–s)

+
(

σδ1σν1

θδ(θδ – θ̄ν1)
–

σδ1

θδ

–
σψ1

θδ(θδ – θψ )
+

σψ1σν1

θδ(θδ – θψ )(θδ – θ̄ν1)

)
e–θδ (T–s)

+
(

σψ1

θδ(θδ – θψ )
–

σψ1σν1

θδ(θδ – θψ )(θδ – θ̄ν1)
+

σψ1

θψθδ

–
σψ1σν1

θψθδ(θψ – θ̄ν1)

)
e–θψ (T–s)

]
,

ε2(s) = –
[(

σδ2

θδ

–
σδ2σν2

θδθ̄ν2
–

σψ2

θψθδ

+
σψ2σν2

θψθδθ̄ν2

)

+
(

σδ2σν2

θδθ̄ν2
–

σδ2σν2

θδ(θδ – θ̄ν2)
–

σψ2σν2

θψθδθ̄ν2
+

σψ2σν2

θψθδ(θψ – θ̄ν2)

)
e–θ̄ν2(T–s)

+
(

σδ2σν2

θδ(θδ – θ̄ν2)
–

σδ2

θδ

–
σψ2

θδ(θδ – θψ )
+

σψ2σν2

θδ(θδ – θψ )(θδ – θ̄ν2)

)
e–θδ (T–s)

+
(

σψ2

θδ(θδ – θψ )
–

σψ2σν2

θδ(θδ – θψ )(θδ – θ̄ν2)
+

σψ2

θψθδ

–
σψ2σν2

θψθδ(θψ – θ̄ν1)

)
e–θψ (T–s)

]
,

ε3(s) = –
[(

σδ3

θδ

–
σδ3σν3

θδθ̄ν3
–

σψ3

θψθδ

+
σψ3σν3

θψθδθ̄ν3

)

+
(

σδ3σν3

θδθ̄ν3
–

σδ3σν3

θδ(θδ – θ̄ν3)
–

σψ3σν3

θψθδθ̄ν3
+

σψ1σν3

θψθδ(θψ – θ̄ν3)

)
e–θ̄ν3(T–s)

+
(

σδ3σν3

θδ(θδ – θ̄ν3)
–

σδ3

θδ

–
σψ3

θδ(θδ – θψ )
+

σψ3σν1

θδ(θδ – θψ )(θδ – θ̄ν3)

)
e–θδ (T–s)

+
(

σψ3

θδ(θδ – θψ )
–

σψ3σν1

θδ(θδ – θψ )(θδ – θ̄ν3)
+

σψ3

θψθδ

–
σψ3σν3

θψθδ(θψ – θ̄ν3)

)
e–θψ (T–s)

]
.

We apply Ito’s calculus and explicit computation to the proposition above as we develop
the formulae for European options pricing.

4 The options pricing formula
From the preceding section, we provide definition for the specified Brownian process com-
ponent to resolve the European options formula as follows:

Σ(s)2 =
∫ T

t
ε1(s)2 dŴ1(s) +

∫ T

t
ε2(s)2 dŴ2(s) +

∫ T

t
ε3(s)2 dŴ3(s). (26)

From (18), solve for EQ[S(T)1S(T)>K |Ft] and EQ[1S(T)>K |Ft] by given

Φ(t) = L0(t)δ(t) + L1(t) + M0(t)ψ(t) + M1(t) + O(t)
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– σδ1
(
L2(t) – L3(t)ν1(t)

)
– σδ2

(
L4(t) – L5(t)ν2(t)

)
– σδ3

(
L6(t) – L7(t)ν3(t)

)

– σψ1
(
M2(t) – M3(t)ν1(t)

)
– σψ2

(
M4(t) – M5(t)ν2(t)

)

– σψ3
(
M6(t) – M7(t)ν3(t)

)
. (27)

From (24) when S(t) = K , η is defined as

η ≤ d2 =
1

Σ(t)

(
ln

S(t)
K

+
(

r –
σ 2

s
2

)
(T – t) – Φ(t)

)
. (28)

When η is assumed to be under normal distribution, then we get

EQ[1S(T)>K |Ft] = N(d2), (29)

where d2 = 1
Σ(t) (ln S(t)

K + (r – σ 2
s
2 )(T – t) – Φ(t)).

EQ[
S(T)1S(T)>K |Ft

]
= EQ[

S(T)1η>–d2 |Ft
]

(30)

= S(t) exp

{(
r –

σ 2
s

2

)
(T – t) – Φ(t)

}
EQ[

eΣ(t)η1η>–d2 |Ft
]

(31)

= S(t) exp

{(
r –

σ 2
s

2

)
(T – t) – Φ(t)

}
e

1
2 Σ(t)2

N(d1) (32)

when d1 = d2 + Σ(t).
With an application of (25) to (31), the formulas for European options are proposed as

follows.

4.1 European call option
Under an environment of stochastic dividend yield δ(t) and stochastic earning yield ψ(t),
European call option C(t) is formulated as follows.

Proposition 2 European call option C with stochastic earning yield ψ and stochastic div-
idend δ is formulated as

C(t) = S(t)e[–Φ(t)–
σ2

S
2 (T–t)– 1

2 Σ(t)2]N(d1) – Ke–r(T–t)N(d2), (33)

where d1, d2, Φ(t), L0(t) – L7(t), M0(t) – M7(t), and O(t) are given.

4.2 Put-call parity
Put-call parity for a stock, in financial mathematics, is a relationship between European
call and put option. It is assumed that the price is a frictionless market. Under an assump-
tion of arbitrage opportunities, the relationship between call and put option can be derived
as follows:

C(t) – P(t) = e–r(T–t)EQ[
S(T) – K |Ft

]
, (34)

where

EQ[
S(T)|Ft

]
= S(t) exp

{(
r –

σ 2
s

2

)
(T – t) – Φ(t)

}
EQ[

eΣ(t)η|Ft
]

(35)
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= S(t) exp

{(
r –

σ 2
s

2

)
(T – t) – Φ(t) +

1
2
Σ(t)2

}
. (36)

The formula of put-call parity, following the conditions of stochastic dividend yield and
stochastic earning yield, can be derived as follows.

Proposition 3 The put-call parity with stochastic earning yield ψ(t) and stochastic divi-
dend yield δ(t) is

C(t) – P(t) = S(t)e[–Φ(t)–
σ2

S
2 (T–t)– 1

2 Σ(t)2] – Ke–r(T–t), (37)

where Φ(t), L0(t) – L7(t), M0(t) – M7(t), and O(t) are given.

4.3 European put option
We can calculate the European put option formula P(t) from Propositions 2 and 3. Pro-
vided as such, we can now determine an explicit formula for put option taking into account
our proposed parameters.

Proposition 4 European put option P(t) with stochastic earning yield ψ and stochastic
dividend δ is

P(t) = Ke–r(T–t)N(–d2) – S(t)e[–Φ(t)–
σ2

S
2 (T–t)– 1

2 Σ(t)2]N(–d1), (38)

where d1, d2, Φ(t), L0(t) – L7(t), M0(t) – M7(t), and O(t) are given (as detailed above and
in the previous section).

With the component of stochastic dividend yield and stochastic earning yield as impor-
tant stochastic factors in real situations along with the market price of risk (MPR), we can
come up with four different models for the call option price (32), put-call parity relation-
ship (36), and put option price (37).

5 The simulation
The simulation is executed through the use of data that exists in the real world to check
the model consistency. The four models to be examined are the Black–Scholes model
(BSC), the Black–Scholes–Merton model with constant dividend yield (CDC), the Black–
Scholes–Merton model with stochastic dividend yield (SDC), and the Black–Scholes–
Merton model with stochastic earning yield (SEC). The models are analyzed by measuring
the mean squared errors. Hypothetically, small squared error means high consistency be-
tween the option pricing model and the data. Hence, the smaller the squared error, the
greater the consistency.

As we apply our model to the European option, four stock indexes are included in our
simulation. There are 1/100 Dow Jones Industrial Average, Standard and Poor 500, Russell
2000 and NASDAQ-100 as of the information from 2012 to 2017. Table 1 to Table 4 show
the results of mean squared errors of the simulation.

According to our simulation, we can conclude that our proposed option pricing model,
which considers the stochastic characteristics of dividend yield, earning yield, and mar-
ket price of risk, is preeminent among the others. This means that our model is better at
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Table 1 Mean squared errors of option prices obtained by four different models for the 1/100 Dow
Jones Industrial Average option prices

Model BSC CDC SDC SEC

Call options 40.2322 38.9655 39.4315 19.4551
Put options 8.1210 7.9447 8.0101 5.7794

Table 2 Mean squared errors of call option prices obtained by four different models for the Standard
and Poor 500 option prices

Model BSC CDC SDC SEC

Call options 33.2921 28.7806 28.1293 21.7287
Put options 756.4057 652.3046 717.5044 552.8234

Table 3 Mean squared errors of call option prices obtained by four different models for the Russell
2000 option prices

Model BSC CDC SDC SEC

Call options 6395.5434 5399.4494 6067.9173 2592.8771
Put options 1663.2853 1430.8668 1586.2697 361.0587

Table 4 Mean squared errors of call option prices obtained by four different models for the
NASDAQ-100 option prices

Model BSC CDC SDC SEC

Call options 2874.4643 2229.2508 4901.8061 214.9527
Put options 4218.2402 4051.7451 4356.3951 440.1807

enhancing the performance to valuate the fair price of option and improving the decision-
making process of the investors.

6 The conclusion
The data available in newspapers, apart from the dividend yield, is the P/E ratio that is
commonly used to aid investing decision. Considering finance fundamental concepts, it
is possible that the earning yield, which is a reciprocal of the P/E ratio, has an impact
on the pricing model. A generalized Ornstein–Uhlenbeck process is examined to math-
ematically model the option price driven by the earning yield. The market price of risk
is also defined as a part of the generalized Ornstein–Uhlenbeck process due to the com-
plex movements of market risks. Further investigation leads to four propositions: the new
stock pricing structure, the European call option formula, the put-call parity relationship,
and the European put option formula are proposed. Then, we inspect our proposed mod-
els by comparing their outputs to the real-world market data. The data are selected from
the source attribution on European option investments. Therefore, we use four stock in-
dexes, namely 1/100 Dow Jones Industrial Average, Standard and Poor 500, Russell 2000,
and NASDAQ-100. The simulation resulted in strong agreement between the models cal-
culation and the data acquired in the recent market. This works for call and put option
which is shown from the smallest mean of sum of squared errors in all four stock indexes.
Our proposed option pricing model with an extension of the relevant stochastic factors,
in essence, yields the most accurate values compared to three other existing models.

To conclude, our mathematical option pricing model that includes the stochastic earn-
ing yield, stochastic market price of risk, and stochastic earning yield has the highest po-
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tential in illustrating the financial market in recent world. Thus, for investor, the proposed
model may be applied for a better result of option valuation in the market of financial
world.
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