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Abstract
In this paper, we study a predator–prey model with delay and harvesting on predator.
We give the conditions for stability and Turing instability of coexisting equilibrium by
analyzing the eigenvalue spectrum. By using delay as a bifurcation parameter we give
conditions for occurrence of Hopf bifurcation. We investigate the property of
bifurcating period solutions by calculating the normal form. We perform some
numerical simulations to support our theoretical result. Our results show that
diffusion and delay are two factors that should be considered in establishing the
predator–prey model, since they can induced the Turing instability and spatially
bifurcating period solutions.
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1 Introduction
Biological population dynamics is an important research area in biological mathemat-
ics. In biology there are various interactions between different populations, such as com-
petitive relationship, dependency relationship, predation relationship, and so on. Among
them, predation relationship is widespread and studied by many scholars [1–3].

Generally, an ordinary differential equation system describing the prey–predator model
is

u̇(t) = uφ(u) – ϕ(u, v)v,

v̇(t) = αϕ(u, v)v – θv,
(1.1)

where u(t) and v(t) stand for the prey and predator densities. Without predator, the growth
law of prey is represented by the function φ(u), ϕ(u, v) is the functional response, α stands
for the conversion rate, and θ is the death rate.

The functional response is essential for establishing the predator–prey model. It re-
flects the predator’s predation ability and can be affected by many factors, such as
structure of the habitat structure, hunting ability, prey’s escape ability, and others. In
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predator–prey models, scholars have used different functional responses to model the
interaction of predator and prey; they show that the functional response can enrich
the model dynamics [4, 5]. One kind of commonly used functional response functions
are Holling type I–III [6], usually called the prey-dependent functional response (with
ϕ(u, v) denoted as ϕ(u), a function of prey u). Another kind of functional response func-
tions are Beddington–DeAngelis type [7], Crowley–Martin type [8], Hassell–Varley type
[9], usually called predator-dependent (with ϕ(u, v) a function of prey u and preda-
tor v).

The Crowley–Martin functional response is of the following form:

g(u, v) =
Ev

(1 + Su)(1 + Bv)
,

where E, S, and B stand for the capture rate of predator to prey, the handling time, and
the magnitude of interference among predators, respectively. Cao and Jiang [10] studied a
reaction–diffusion type predator–prey model with Crowley–Martin functional response,
mainly focusing on Turing–Hopf bifurcation. In [11], the authors studied a predator–prey
model with delay and Crowley–Martin functional response, mainly considering the sta-
bility and Hopf bifurcation. In [12], the authors considered a predator–prey model with
Crowley–Martin functional response, mainly studying the flip bifurcation and Neimark–
Sacker bifurcation. These works all suggest that the Crowley–Martin functional response
can enrich the dynamics of predator–prey models. In this paper, we mainly study a
predator–prey model with Crowley–Martin functional response.

To rationally develop the exploitation of biological resources, many scholars have con-
sidered predator–prey models with harvesting. The harvesting can be mainly divided into
three types: (i) constant harvesting, (ii) proportional harvesting, and (iii) nonlinear-type
harvesting (i.e., the harvesting is a nonlinear function). From a biological and economic
perspective, more and more scholars recommend Michaelis–Menten type-harvesting
[13–16], which has the following form:

h(E, u) =
QEu

ηE + βu
,

where Q and E represent the catch ability coefficient and external effort, respectively, and
η and β are suitable constants. Constant harvesting and proportional harvesting can be
considered as two particular cases of the Michaelis–Menten-type harvesting. In [13], the
authors studied the periodic solution of a prey–predator model with harvesting. Yuan et al.
[15] studied bifurcation of a delayed predator–prey model with Michaelis–Menten-type
prey harvesting. These works suggest that Michaelis–Menten-type harvesting performs
well.

Moreover, time delay widely exists in population models. When the predator consumes
the prey, it does not immediately increase the density of predator. There exists a gestation
delay, and the density of predator increases after some time lag. This type time delay is
often studied by scholars [17–20]. In general, predator–prey models with time delay are
much more realistic, and they can exhibit much richer dynamics.
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Motivated by these, we studied a diffusive delayed predator–prey model with the fol-
lowing form:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u(x,t)
∂t = D1	u + ru(1 – u

K ) – Euv
(1+Su)(1+Bv) ,

∂v(x,t)
∂t = D2	v + CEu(t–τ )v(t–τ )

(1+Su(t–τ ))(1+Bv(t–τ )) – Dv – QEv
ηE+βv , x ∈ Ω , t > 0,

∂u(x,t)
∂ν

= ∂v(x,t)
∂ν

= 0, x ∈ ∂Ω , t > 0,

u(x, t) = u1(x, t) ≥ 0, v(x, t) = v1(x, t) ≥ 0, x ∈ Ω , t ∈ [–τ , 0],

(1.2)

where u(x, t) and v(x, t) are the prey and predator densities, respectively, D1 and D2 are
for diffusive coefficients, r and K are the growth rate of prey and the carrying capacity, C
is the conversion rate of prey, and τ is for the gestation delay of predator. The harvesting
term is a Michaelis–Menten-type harvesting on the predator. The main aim of this paper
is to study the diffusion-driven Turing instability and delay-induced Hopf bifurcation.

The paper is organized as follows. In Sect. 2, we consider the existence of equilibria of
the model. In Sect. 3, we study the stability of the coexisting equilibrium. In Sect. 4, we
analyze the property of Hopf bifurcation. In Sect. 5, we give some numerical simulations.
Finally, we end the paper with a brief conclusion in Sect. 6.

2 Equilibrium analysis
For convenience, we perform nondimensionalization of model (1.2). Denoting ũ = u/K ,
ṽ = Ev/r, and t̃ = tr, system (1.2) becomes (after dropping tildes)

⎧
⎨

⎩

∂u(x,t)
∂t = d1	u + u[1 – u – v

(1+au)(1+bv) ],
∂v(x,t)

∂t = d2	v + cu(x,t–τ )v(x,t–τ )
(1+au(x,t–τ ))(1+bv(x,t–τ )) – dv – v

e+qv ,
(2.1)

where d1 = D1
r , d2 = D2

r , a = SK , b = Br
E , c = CEK

r , d = D
r , e = ηr

Q , and q = βr2

QE2 . We assume that
Ω = (0, lπ ), where l > 0.

Solving the equation system

⎧
⎨

⎩

u(1 – u – v
(1+au)(1+bv) ) = 0,

v( cu
(1+au)(1+bv) – d – 1

e+qv ) = 0,
(2.2)

we obtain that (0, 0), and (1, 0) are two boundary equilibria, and the coexisting equilibrium
(u∗, v∗) satisfies v∗ = (1–u∗)(1+au∗)

1–b+b(1–a)u∗+abu2∗
and h(u∗) = 0, where

h(u) = β5u5 + β4u4 + β3u3 + β2u2 + β1u + β0,

β5 = a3b3dqu5,

β4 = (3 – 2a)a2b3dq,

β3 = ab
(
a2b2dq –

(
c – 3b2d

)
q + a

(
b + bde + dq + 2bdq – 6b2dq

))
,

β2 = b
(
–cq + b2dq + a2(–dq + 3b2dq – b(1 + de + 2dq)

)
(2.3)

+ a
(
–6b2dq + (c + 2d)q + 2b(1 + de + 2dq)

))
,

β1 = –2b3dq + b(c + d)q – c(e + q) + b2(1 + d(e + 2q)
)
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+ a
(
1 + b

(
1 + d(e – q)

)
+ 3b3dq + d(e + q) – 2b2(1 + d(e + 2q)

))
,

β0 =
(
–1 – b + b2)(–1 – d

(
e + q(1 – b)

))
.

We just give a sufficient condition for the existence of coexisting equilibrium (u∗, v∗):

a < 1, b < 1, and c > (1 + a)(1 + b)
[
d + 1/(q + e)

]
. (2.4)

Theorem 2.1 If the parameters satisfy condition (2.4), then model (2.1) has a coexist-
ing equilibrium (u∗, v∗), where u∗ is the root of h(u∗) = 0 in the region (0, 1), and v∗ =

(1–u∗)(1+au∗)
1–b+b(1–a)u∗+abu2∗

.

Proof By direct calculation we have h(0) = (–1 – b + b2)(–1 – d(e + q(1 – b))) > 0 and h(1) =
(a + 1)(b + 1)(1 + d(e + q)) – ce – cq < 0 under condition (2.4). By the continuity of h(u) we
obtain that h(u) = 0 has at least one root u∗ in the (0, 1). Then v∗ = (1–u∗)(1+au∗)

1–b+b(1–a)u∗+abu2∗
> 0. �

3 Stability analysis
Linearize system (2.1) at (u∗, v∗):

(
∂u
∂t
∂v
∂t

)

= diag{d1, d2}	
(

u(t)
v(t)

)

+ L1

(
u(t)
v(t)

)

+ L2

(
u(t – τ )
v(t – τ )

)

, (3.1)

where

L1 =

(
a1 –a2

0 –a3

)

, L2 =

(
0 0
b1 b2

)

,

and

a1 = u∗
(

av∗
(1 + au∗)2(1 + bv∗)

– 1
)

, a2 =
u∗

(1 + au∗)(1 + bv∗)2 > 0,

a3 = d +
e

(e + qv∗)2 > 0, b1 =
cv∗

(1 + au∗)2(1 + bv∗)
> 0,

b2 =
cu∗

(1 + au∗)(1 + bv∗)2 > 0.

The characteristic equation is

det
(
λI – Mn – L1 – L2e–λτ

)
= 0, (3.2)

where I = diag{1, 1} and Mn = –n2/l2 diag{d1, d2}, n ∈N0. Then we have

λ2 + λAn + Bn + (Cn – λb2)e–λτ = 0, n ∈N0 �N∪ {0}, (3.3)

where

An = (d1 + d2)
n2

l2 – a1 + a3,
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Bn = d1d2
n4

l4 + (a3d1 – a1d2)
n2

l2 – a1a3,

Cn = –d1b2
n2

l2 + a2b1 + a1b2.

3.1 The case τ = 0
When τ = 0, Eq. (3.3) reduces to the equation

λ2 – trnλ + 	n = 0, n ∈ N0, (3.4)

where
⎧
⎨

⎩

trn = a1 – a3 + b2 – n2

l2 (d1 + d2),

	n = a2b1 + a1(b2 – a3) – [(b2 – a3)d1 + a1d2] n2

l2 + d1d2
n4

l4 ,
(3.5)

and the eigenvalues are given by

λ
(n)
1,2 =

trn ± √
tr2

n – 4	n

2
, n ∈N0. (3.6)

We make the following hypothesis:

(H1) a1 – a3 + b2 < 0, and a2b1 + a1(b2 – a3) > 0.

When d1 = d2 = 0 and τ = 0, (u∗, v∗) is locally asymptotically stable under hypothesis (H1).
Divide the parameters into the following three cases:

Case 1: (b2 – a3)d1 + a1d2 ≤ 0,

Case 2: (b2 – a3)d1 + a1d2 > 0, and
(
(b2 – a3)d1 + a1d2

)2 – 4d1d2
(
a2b1 + a1(b2 – a3)

)
< 0,

Case 3: (b2 – a3)d1 + a1d2 > 0, and
(
(b2 – a3)d1 + a1d2

)2 – 4d1d2
(
a2b1 + a1(b2 – a3)

)
> 0.

(3.7)

Denote

K1 � {k ∈ N|	k ≤ 0}, K2 � {k ∈N|	k < 0},

where 	k is defined in (3.5).

Theorem 3.1 Suppose (H1) holds and τ = 0.
(1) In Case 1 (or Case 2), (u∗, v∗) is locally asymptotically stable;
(2) In Case 3, if K1 = ∅, then (u∗, v∗) is locally asymptotically stable;
(3) In Case 3, if K2 �= ∅, then (u∗, v∗) is Turing unstable.

Proof Hypothesis (H1) implies that tr0 < 0 and 	0 > 0. For n ∈ N0, we have trn < 0. In
Case 1 (or Case 2), we have 	n > 0 for (n ∈N0), implying that all eigenvalues of (3.4) have
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negative real parts. This implies that statement (1) holds. Similarly, statement (2) holds.
In Case 3, 	k < 0 for k ∈ K2. Then Eq. (3.4) has a positive real part root. Then statement
(3) is true. �

3.2 The case τ �= 0
Next, we study the stability of (u∗, v∗) when τ > 0. Letting iω (ω > 0) be a solution of
Eq. (3.3), we have

–ω2 + iωAn + Bn + (Cn – iωb2)(cosωτ – i sinωτ ) = 0.

Then

⎧
⎨

⎩

–ω2 + Bn + Cn cosωτ – ωb2 sinωτ = 0,

Anω – Cn sinωτ – ωb2 cosωτ = 0,

leading to

ω4 +
(
A2

n – 2Bn – b2
2
)
ω2 + B2

n – C2
n = 0. (3.8)

Denoting z = ω2, we can change (3.8) to

z2 +
(
A2

n – 2Bn – b2
2
)
z + B2

n – C2
n = 0 = 0, (3.9)

and the roots of (3.9) are

z± =
1
2

[
–
(
A2

n – 2Bn – b2
2
) ±

√
(
A2

n – 2Bn – b2
2
)2 – 4

(
B2

n – C2
n
)]

.

Under condition (1) (or 2) of Theorem (3.1), we have

Bn + Cn = 	n > 0.

Denote

Pn = A2
n – 2Bn – b2

2 =
(

a1 – d1
n2

l2

)2

+
(

a3 + d2
n2

l2

)2

– b2
2,

Qn = Bn – Cn = d1d2
n4

l4 + (b2d1 + a3d1 – a1d2)
n2

l2 – (a1a3 + a2b1 + a1b2).

Define

S1 = {n|Qn < 0, n ∈N0},
S2 =

{
n|Qn > 0, Pn < 0, P2

n – 4
(
B2

n – C2
n
)
Qn > 0, n ∈ N0

}
,

S3 =
{

n|Qn > 0, P2
n – 4

(
B2

n – C2
n
)
Qn < 0, n ∈N0

}
,
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and

ω±
n =

√
z±

n , τ j,±
n = τ 0,±

n +
2jπ
ω±

n
(j ∈N0),

τ 0,±
n =

1
ω±

n
arccos

(Anb2 + Cn)(ω±
n )2 – BnCn

C2
n + b2

2(ω±
n )2 .

(3.10)

Lemma 3.1 Assume that (H1) holds and the parameters satisfy the condition (1) (or 2) of
Theorem 3.1.

(1) For n ∈ S1, Eq. (3.3) has a pair of purely imaginary roots ±iω+
n at τ

j,+
n , j ∈N0.

(2) For n ∈ S2, Eq. (3.3) has two pairs of purely imaginary roots ±iω±
n at τ

j,±
n , j ∈N0.

(3) For n ∈ S3, Eq. (3.3) has no purely imaginary root.

Proof Equation (3.9) has a (two or no) positive root(s) z+
n (or z±

n ) when n ∈ S1 (n ∈ S2 or
n ∈ S3). Then statements (1), (2), and (3) are true. �

Lemma 3.2 Assume that (H1) holds and the parameters satisfy condition (1) (or 2) of The-
orem 3.1. Then Re( dλ

dτ
)|

τ=τ
j,+
n

> 0 and Re( dλ
dτ

)|
τ=τ

j,–
n

< 0 for n ∈ S1 ∪ S2 and j ∈N0.

Proof Differentiating Eq. (3.3) with respect to τ , we obtain

(
dλ

dτ

)–1

=
2λ + An – b2e–λτ

(Cn – λb2)e–λτ
–

τ

λ
.

Then

[

Re

(
dλ

dτ

)–1]

τ=τ
j,±
n

= Re

[
2λ + An – b2e–λτ

(Cn – λb2)e–λτ
–

τ

λ

]

τ=τ
j,±
n

=
[

1
Λ

ω2(2ω2 + A2
n – 2Bn – b2

2
)
]

τ=τ
j,±
n

= ±
[

1
Λ

ω2
√

(
A2

n – 2Bn – b2
2
)2 – 4

(
B2

n – C2
n
)
]

τ=τ
j,±
n

,

where Λ = ω4b2
2 + C2

nω
2 > 0. Therefore Re( dλ

dτ
)|

τ=τ
j,+
n

> 0 and Re( dλ
dτ

)|
τ=τ

j,–
n

< 0. �

From (3.10) we have τ 0,±
n < τ

j,±
n (j ∈ N). For n ∈ S1 ∪ S2, define τ∗ = min{τ 0,±

n orτ 0,+
n | n ∈

S1 ∪ S2}. By the preceding we obtain the following theorem.

Theorem 3.2 Assume that (H1) holds and the parameters satisfy condition (1) (or 2) of
Theorem 3.1.

(1) (u∗, v∗) is locally asymptotically stable for all τ ≥ 0 when S1 ∪ S2 = ∅.
(2) (u∗, v∗) is locally asymptotically stable for τ ∈ [0, τ∗) when S1 ∪ S2 �= ∅.
(3) Hopf bifurcation occurs at (u∗, v∗) when τ = τ

j,+
n (τ = τ

j,–
n ), j ∈ N0, n ∈ S1 ∪ S2.

4 Property of Hopf bifurcation
Now, we will study the property of Hopf bifurcation by the method of [21, 22]. For a critical
value τ

j,+
n (or τ

j,–
n ), we denote it as τ̃ . Let ũ(x, t) = u(x, τ t)–u∗ and ṽ(x, t) = v(x, τ t)–v∗. Then
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system (2.1) is (dropping the tilde)

⎧
⎨

⎩

∂u
∂t = τ [d1	u + (u + u∗)(1 – (u + u∗) – v+v∗

(1+a(u+u∗))(1+b(v+v∗)) )],
∂v
∂t = τ [d2	v + c(u(t–1)+u∗)(v(t–1)+v∗)

(1+a(u(t–1)+u∗))(1+b(v(t–1)+v∗)) – d(v + v∗) – v+v∗
e+q(v+v∗) ].

(4.1)

Denote τ = τ̃ + ε and U = (u(x, t), v(x, t))T . In the phase space C1 := C([–1, 0], X), (4.1) can
be rewritten as

dU(t)
dt

= τ̃D	U(t) + Lτ̃ (Ut) + F(Ut , ε), (4.2)

where Lε(ϕ) and F(ϕ, ε) are

Lε(ϕ) = ε

(
a1ϕ1(0) – a2ϕ2(0)

–a3ϕ2(0) + b1ϕ1(–1) + b2ϕ2(–1)

)

(4.3)

and

F(ϕ, ε) = εD	ϕ + Lε(ϕ) + f (ϕ, ε) (4.4)

with

f (ϕ, ε) = (τ̃ + ε)
(
f1(ϕ, ε), f2(ϕ, ε)

)T ,

f1(ϕ, ε) =
(
ϕ1(0) + u∗

)
(

1 – ϕ1(0) – u∗ –
ϕ2(0) + v∗

(1 + a(ϕ1(0) + u∗))(1 + b(ϕ2(0) + v∗))

)

– a1ϕ1(0) + a2ϕ2(0),

f2(ϕ, ε) =
(ϕ1(–1) + u∗)(ϕ2(–1) + v∗)

(1 + a(ϕ1(–1) + u∗))(1 + b(ϕ2(–1) + v∗))
– d

(
ϕ2(0) + v∗

)
–

ϕ2(0) + v∗
e + q(ϕ2(0) + v∗)

+ a3ϕ2(0) – b1ϕ1(–1) – b2ϕ2(–1)

for ϕ = (ϕ1,ϕ2)T ∈ C1.
We know that Λn := {iωnτ̃ , –iωnτ̃ } are characteristic roots of

dz(t)
dt

= –τ̃D
n2

l2 z(t) + Lτ̃ (zt). (4.5)

By the Riesz representation theorem there exists a 2 × 2 matrix function ηn(s, τ̃ ) (–1 ≤ s ≤
0) with elements of bounded variation functions such that

–τ̃D
n2

l2 ϕ(0) + Lτ̃ (ϕ) =
∫ 0

–1
dηn(s, τ )ϕ(s)

for ϕ ∈ C([–1, 0],R2).
Choose

ηn(s, τ ) =

⎧
⎪⎪⎨

⎪⎪⎩

τE, s = 0,

0, s ∈ (–1, 0),

–τF , s = –1,

(4.6)
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where

E =

(
a1 – d1

n2

l2 –a2

0 –a3 – d2
n2

l2

)

, F =

(
0 0
b1 b2

)

. (4.7)

Define the bilinear paring

(ψ ,ϕ) = ψ(0)ϕ(0) –
∫ 0

–1

∫ s

ξ=0
ψ(ξ – s) dηn (s, τ̃ )ϕ(ξ ) dξ

= ψ(0)ϕ(0) + τ̃

∫ 0

–1
ψ(ξ + 1)Fϕ(ξ ) dξ (4.8)

for ϕ ∈ C([–1, 0],R2) and ψ ∈ C([0, 1],R2); A(τ̃ ) has a pair of simple purely imaginary
eigenvalues ±iωnτ̃ , which are also eigenvalues of A∗.

Define p1(θ ) = (1, ζ )T eiωn τ̃ s(s ∈ [–1, 0]) and q1(r) = (1,ϑ)e–iωn τ̃ r(r ∈ [0, 1]), where

ζ =
1
a2

(

a1 – d1
n2

l2 – iωn

)

, ϑ = –
e–iτ̃ωn

b1

(

a1 – d1
n2

l2 + iωn

)

.

Let Φ = (Φ1,Φ2) and Υ ∗ = (Υ ∗
1 ,Υ ∗

2 )T with

Φ1(s) =
p1(s) + p2(s)

2
=

(
Re(eiωn τ̃ s)

Re(ζ eiωn τ̃ s)

)

, Φ2(s) =
p1(s) – p2(s)

2i
=

(
Im(eiωn τ̃ s)

Im(ζ eiωn τ̃ s)

)

for θ ∈ [–1, 0] and

Υ ∗
1 (r) =

q1(r) + q2(r)
2

=

(
Re(e–iωn τ̃ r)

Re(ϑe–iωn τ̃ r)

)

, Υ ∗
2 (r) =

q1(r) – q2(r)
2i

=

(
Im(e–iωn τ̃ r)

Im(ϑe–iωn τ̃ r)

)

for r ∈ [0, 1]. Then by (4.8) we can compute

D∗
1 :=

(
Υ ∗

1 ,Φ1
)
, D∗

2 :=
(
Υ ∗

1 ,Φ2
)
, D∗

3 :=
(
Υ ∗

2 ,Φ1
)
, D∗

4 :=
(
Υ ∗

2 ,Φ2
)
.

Define (Υ ∗,Φ) = (Υ ∗
j ,Φk) =

( D∗
1 D∗

2
D∗

3 D∗
4

)
and construct a new basis Υ for P∗ by

Υ = (Υ1,Υ2)T =
(
Υ ∗,Φ

)–1
Υ ∗.

Then (Υ ,Φ) = I2. In addition, define fn := (β1
n ,β2

n), where

β1
n =

(
cos n

l x
0

)

, β2
n =

(
0

cos n
l x

)

.

We also define

c · fn = c1β
1
n + c2β

2
n for c = (c1, c2)T ∈ C1
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and

〈u, v〉 :=
1

lπ

∫ lπ

0
u1v1 dx +

1
lπ

∫ lπ

0
u2v2 dx

for u = (u1, u2), v = (v1, v2), u, v ∈ X, and 〈ϕ, f0〉 = (〈ϕ, f 1
0 〉, 〈ϕ, f 2

0 〉)T .
Rewrite Eq. (4.1) in the abstract form

dU(t)
dt

= Aτ̃ Ut + R(Ut , ε), (4.9)

where

R(Ut , ε) =

⎧
⎨

⎩

0, θ ∈ [–1, 0),

F(Ut , ε), θ = 0.
(4.10)

The solution is

Ut = Φ

(
x1

x2

)

fn + h(x1, x2, ε), (4.11)

where
(

x1

x2

)

=
(
Υ , 〈Ut , fn〉

)

and

h(x1, x2, ε) ∈ PSC1, h(0, 0, 0) = 0, Dh(0, 0, 0) = 0.

Then

Ut = Φ

(
x1(t)
x2(t)

)

fn + h(x1, x2, 0). (4.12)

Let z = x1 – ix2 and notice that p1 = Φ1 + iΦ2. Then

Φ

(
x1

x2

)

fn = (Φ1,Φ2)

(
z+z

2
i(z–z)

2

)

fn =
1
2

(p1z + p1z)fn

and

h(x1, x2, 0) = h
(

z + z
2

,
i(z – z)

2
, 0

)

.

Equation (4.12) becomes

Ut =
1
2

(p1z + p1z)fn + h
(

z + z
2

,
i(z – z)

2
, 0

)

=
1
2

(p1z + p1z)fn + W (z, z), (4.13)
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where

W (z, z) = h
(

z + z
2

,
i(z – z)

2
, 0

)

and

ż = iωnτ̃z + g(z, z), (4.14)

g(z, z) =
(
Υ1(0) – iΥ2(0)

)〈
F(Ut , 0), fn

〉
. (4.15)

Let

W (z, z) = W20
z2

2
+ W11zz + W02

z2

2
+ · · · , (4.16)

g(z, z) = g20
z2

2
+ g11zz + g02

z2

2
+ · · · . (4.17)

Then

ut(0) =
1
2

(z + z) cos

(
nx
l

)

+ W (1)
20 (0)

z2

2
+ W (1)

11 (0)zz + W (1)
02 (0)

z2

2
+ · · · ,

vt(0) =
1
2

(ζ + ζ z) cos

(
nx
l

)

+ W (2)
20 (0)

z2

2
+ W (2)

11 (0)zz + W (2)
02 (0)

z2

2
+ · · · ,

ut(–1) =
1
2
(
ze–iωn τ̃ + zeiωn τ̃

)
cos

(
nx
l

)

+ W (1)
20 (–1)

z2

2

+ W (1)
11 (–1)zz + W (1)

02 (–1)
z2

2
+ · · · ,

vt(–1) =
1
2
(
ζ ze–iωn τ̃ + ζ zeiωn τ̃

)
cos

(
nx
l

)

+ W (2)
20 (–1)

z2

2

+ W (2)
11 (–1)zz + W (2)

02 (–1)
z2

2
+ · · · ,

and

F1(Ut , 0) =
1
τ̃

F1

= α1u2
t (0) + α2ut(0)vt(0) + α3v2

t (0) + α4u3
t (0)

+ α5u2
t (0)vt(0) + α6ut(0)v2

t (0) + α7v3
t (0) + O(4), (4.18)

F2(Ut , 0) =
1
τ̃

F2

= β1v2
t (0) + β2u2

t (–1) + β3ut(–1)vt(–1) + β4v2
t (–1) + β5v3

t (0)

+ β6u3
t (–1) + β7u2

t (–1)vt(–1) + β8ut(–1)v2
t (–1) + β9v3

t (–1) + O(4), (4.19)
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with

α1 =
av∗

(1 + au∗)3(1 + bv∗)
– 1, α2 = –

1
(1 + au∗)2(1 + bv∗)2 ,

α3 =
bu∗

(1 + au∗)(1 + bv∗)3 , α4 = –
a2v∗

(1 + au∗)4(1 + bv∗)
,

α5 =
a

(1 + au∗)3(1 + bv∗)2 , α6 =
b

(1 + au∗)2(1 + bv∗)3 ,

α7 = –
b2u∗

(1 + au∗)(1 + bv∗)4 , β1 =
eq

(e + qv∗)3 ,

β2 = –
acv∗

(1 + au∗)3(1 + bv∗)
, β3 =

c
(1 + au∗)2(1 + bv∗)2 ,

β4 = –
bcu∗

(1 + au∗)(1 + bv∗)3 , β5 = –
eq2

(e + qv∗)4 ,

β6 =
a2cv∗

(1 + au∗)4(1 + bv∗)
, β7 = –

ac
(1 + au∗)3(1 + bv∗)2 ,

β8 = –
bc

(1 + au∗)2(1 + bv∗)3 , β9 =
b2cu∗

(1 + au∗)(1 + bv∗)4 .

(4.20)

Hence

F1(Ut , 0) = cos2
(

nx
l

)(
z2

2
χ20 + zzχ11 +

z2

2
χ20

)

+
z2z
2

(

χ1 cos
nx
l

+ χ2 cos3 nx
l

)

+ · · · ,

F2(Ut , 0) = cos2
(

nx
l

)(
z2

2
ς20 + zzς11 +

z2

2
ς20

)

+
z2z
2

(

ς1 cos
nx
l

+ ς2 cos3 nx
l

)

+ · · · ,

(4.21)

〈
F(Ut , 0), fn

〉
= τ̃

(
F1(Ut , 0)f 1

n + F2(Ut , 0)f 2
n
)

=
z2

2
τ̃

(
χ20

ς20

)

Γ + zzτ̃

(
χ11

ς11

)

Γ +
z2

2
τ̃

(
χ20

ς20

)

Γ +
z2z
2

τ̃

(
κ1

κ2

)

+ · · · (4.22)

with

Γ =
1

lπ

∫ lπ

0
cos3

(
nx
l

)

dx,

κ1 =
χ1

lπ

∫ lπ

0
cos2

(
nx
l

)

dx +
χ2

lπ

∫ lπ

0
cos4

(
nx
l

)

dx,

κ2 =
ς1

lπ

∫ lπ

0
cos2

(
nx
l

)

dx +
ς2

lπ

∫ lπ

0
cos4

(
nx
l

)

dx,

and

χ20 =
1
2
(
α1 + ζ (α2 + α3ζ )

)
, χ11 =

1
4
(
2α1 + 2α3ζ ζ + α2(ζ + ζ )

)
,
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χ1 = W (1)
11 (0)(2α1 + α2ζ ) + W (2)

11 (0)(α2 + 2α3ζ )

+ W (1)
20 (0)

(

α1 +
α2ζ

2

)

+ W (2)
20 (0)

(

α3ζ +
α2

2

)

,

χ2 =
1
4
(
3α4 + α5(ζ + 2ζ ) + ζ (2α6ζ + α6ζ + 3α7ζ ζ )

)
,

ς20 =
1
2

e–2iτ̃ωn
(
β2 + ζ

(
β3 +

(
e2iτ̃ωnβ1 + β4

)
ζ
))

,

ς11 =
1
4
(
2β2 + 2(β1 + β4)ζζ + β3(ζ + ζ )

)
,

ς1 = 2W 2
11(0)β1ζ + W 2

20(0)β1ζ + e–iτ̃ωn W 1
11(–1)(2β2 + β3ζ )

+ e–i ˜̃τωn W 2
11(–1)(β3 + 2β4ζ ) +

1
2

eiτ̃ωn W 1
20(–1)(2β2 + β3ζ )

+
1
2

eiτ̃ωn W 2
20(–1)(β3 + 2β4ζ ),

ς2 =
1
4

e–iτ̃ωn
(
3β6 + β7(ζ + 2ζ ) + ζ

(
3
(
eiτ̃ωnβ5 + β9

)
ζ ζ + β8(2ζ + ζ )

))
.

Denote

Υ1(0) – iΥ2(0) :=
(

γ1 γ2

)
.

Notice that

1
lπ

∫ lπ

0
cos3 nx

l
dx = 0, n = 1, 2, 3, . . . .

We have

(
Υ1(0) – iΥ2(0)

)〈
F(Ut , 0), fn

〉

=
z2

2
(γ1χ20 + γ2ς20)Γ τ̃ + zz(γ1χ11 + γ2ς11)Γ τ̃ +

z2

2
(γ1χ20 + γ2ς20)Γ τ̃

+
z2z
2

τ̃ [γ1κ1 + γ2κ2] + · · · . (4.23)

Then by (4.15), (4.17), and (4.23) we have g20 = g11 = g02 = 0 for n = 1, 2, 3, . . . . If n = 0, then
we have

g20 = γ1τ̃χ20 + γ2τ̃ ς20, g11 = γ1τ̃χ11 + γ2τ̃ ς11, g02 = γ1τ̃χ20 + γ2τ̃ ς20,

and for n ∈N0, we have g21 = τ̃ (γ1κ1 + γ2κ2).
From [21] we have

Ẇ (z, z) = W20zż + W11żz + W11zż + W02zż + · · · ,

Aτ̃ W (z, z) = Aτ̃ W20
z2

2
+ Aτ̃ W11zz + Aτ̃ W02

z2

2
+ · · · ,

and

Ẇ (z, z) = Aτ̃ W + H(z, z),
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where

H(z, z) = H20
z2

2
+ W11zz + H02

z2

2
+ · · ·

= X0F(Ut , 0) – Φ
(
Υ ,

〈
X0F(Ut , 0), fn

〉 · fn
)
. (4.24)

Hence we have

(2iωnτ̃ – Aτ̃ )W20 = H20, –Aτ̃ W11 = H11, (–2iωnτ̃ – Aτ̃ )W02 = H02, (4.25)

that is,

W20 = (2iωnτ̃ – Aτ̃ )–1H20, W11 = –A–1
τ̃ H11,

W02 = (–2iωnτ̃ – Aτ̃ )–1H02.
(4.26)

Then

H(z, z) = –Φ(0)Υ (0)
〈
F(Ut , 0), fn

〉 · fn

= –
(

p1(θ ) + p2(θ )
2

,
p1(θ ) – p2(θ )

2i

)(
Φ1(0)
Φ2(0)

)
〈
F(Ut , 0), fn

〉 · fn

= –
1
2
[
p1(θ )

(
Φ1(0) – iΦ2(0)

)
+ p2(θ )

(
Φ1(0) + iΦ2(0)

)]〈
F(Ut , 0), fn

〉 · fn

= –
1
2

[
(
p1(θ )g20 + p2(θ )g02

)z2

2
+

(
p1(θ )g11 + p2(θ )g11

)
zz

+
(
p1(θ )g02 + p2(θ )g20

)z2

2

]

+ · · · .

Therefore

H20(θ ) =

⎧
⎨

⎩

0, n ∈N,

– 1
2 (p1(θ )g20 + p2(θ )g02) · f0, n = 0,

H11(θ ) =

⎧
⎨

⎩

0, n ∈N,

– 1
2 (p1(θ )g11 + p2(θ )g11) · f0, n = 0,

H02(θ ) =

⎧
⎨

⎩

0, n ∈N,

– 1
2 (p1(θ )g02 + p2(θ )g20) · f0, n = 0,

and

H(z, z)(0) = F(Ut , 0) – Φ
(
Υ ,

〈
F(Ut , 0), fn

〉) · fn,
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where

H20(0) =

⎧
⎨

⎩

τ̃
( χ20

ς20

)
cos2( nx

l ), n ∈N,

τ̃
( χ20

ς20

)
– 1

2 (p1(0)g20 + p2(0)g02) · f0, n = 0,

H11(0) =

⎧
⎨

⎩

τ̃
( χ11

ς11

)
cos2( nx

l ), n ∈N,

τ̃
( χ11

ς11

)
– 1

2 (p1(0)g11 + p2(0)g11) · f0, n = 0.

(4.27)

By the definition of Aτ̃ and (4.25) we have

Ẇ20 = Aτ̃ W20 = 2iωnτ̃W20 +
1
2
(
p1(θ )g20 + p2(θ )g02

) · fn, –1 ≤ θ < 0,

that is,

W20(θ ) =
i

2iωnτ̃

(

g20p1(θ ) +
g02
3

p2(θ )
)

· fn + E1e2iωn τ̃ θ ,

where

E1 =

⎧
⎨

⎩

W20(0), n = 1, 2, 3, . . . ,

W20(0) – i
2iωn τ̃

(g20p1(θ ) + g02
3 p2(θ )) · f0, n = 0.

By the definition of Aτ̃ and (4.25) we have, for –1 ≤ θ < 0,

–
(

g20p1(0) +
g02
3

p2(0)
)

· f0 + 2iωnτ̃E1 – Aτ̃

(
i

2ωnτ̃

(

g20p1(0) +
g02
3

p2(0)
)

· f0

)

– Aτ̃ E1 – Lτ̃

(
i

2ωnτ̃

(

g20p1(0) +
g02
3

p2(0)
)

· fn + E1e2iωn τ̃ θ

)

= τ̃

(
χ20

ς20

)

–
1
2
(
p1(0)g20 + p2(0)g02

) · f0.

As

Aτ̃ p1(0) + Lτ̃ (p1 · f0) = iω0p1(0) · f0

and

Aτ̃ p2(0) + Lτ̃ (p2 · f0) = –iω0p2(0) · f0,

we have

2iωnE1 – Aτ̃ E1 – Lτ̃ E1e2iωn = τ̃

(
χ20

ς20

)

cos2
(

nx
l

)

, n ∈ N0,

that is,

E1 = τ̃E

(
χ20

ς20

)

cos2
(

nx
l

)

,
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where

E =

(
2iωnτ̃ + d1

n2

l2 – a1 a2

–b1e–2iωn τ̃ 2iωnτ̃ + d2
n2

l2 + a3 – b2e–2iωn τ̃

)–1

.

Similarly, from (4.26) we have

–Ẇ11 =
i

2ωnτ̃

(
p1(θ )g11 + p2(θ )g11

) · fn, –1 ≤ θ < 0,

that is,

W11(θ ) =
i

2iωnτ̃

(
p1(θ )g11 – p1(θ )g11

)
+ E2.

Similarly, we have

E2 = τ̃E∗
(

χ11

ς11

)

cos2
(

nx
l

)

,

where

E∗ =

(
d1

n2

l2 – a1 ra2

–b1 d2
n2

l2 – b2 + a3

)–1

.

Thus we have:

c1(0) =
i

2ωnτ̃

(

g20g11 – 2|g11|2 –
|g02|2

3

)

+
1
2

g21, μ2 = –
Re(c1(0))
Re(λ′(τ j

n))
,

T2 = –
1

ωnτ̃

[
Im

(
c1(0)

)
+ ε2 Im

(
λ′(τ j

n
))]

, β2 = 2 Re
(
c1(0)

)
.

(4.28)

Theorem 4.1 For any critical value τ
j,+
n (or τ

j,–
n ), the bifurcating periodic solutions exist

for τ > τ
j,±
n (or τ < τ

j,±
n ) when μ2 > 0 (or μ2 < 0) and are orbitally asymptotically stable (or

unstable) when β2 < 0 (or β2 > 0).

5 Numerical simulations
To verify our theoretical results, we give some numerical simulations. Fix the following
parameters

a = 0.4, b = 0.5, c = 2, d = 0.1, e = 2,

q = 8, d1 = 0.1, d2 = 0.2, l = 2.
(5.1)

Then (u∗, v∗) = (0.1606, 1.6143) is a unique coexisting equilibrium. Hypothesis (H1) is sat-
isfied, and the parameters are in Case 1. By calculation we have τ∗ = τ 0

0 ≈ 2.3471. By The-
orem 3.1 we have that (u∗, v∗) is stable when τ ∈ [0, τ∗), which is shown in Fig. 1; τ = τ∗
is the critical value. When τ crosses it, the stability of (u∗, v∗) changes, and bifurcating
solution occurs. By calculation we have

μ2 ≈ 22.1033 > 0, β2 ≈ –5.1222 < 0, and T2 ≈ 10.1370 < 0.
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Figure 1 When τ = 2, (0.1606, 1.6143) is asymptotically stable

Figure 2 When τ = 2.5, (0.1606, 1.6143) is is unstable, and stable bifurcating periodic solutions appear

Hence the locally asymptotically stable bifurcating periodic solutions appears for τ >
2.3471, which is shown in Fig. 2.

6 Conclusion
We have studied the impact of delay on the dynamics of a diffusive predator–prey model.
In this model the functional response is of Crowley–Martin type, and the harvesting of
predator is modeled by Michaelis–Menten-type harvesting. We give a sufficient condi-
tion (2.4) for coexisting equilibrium to exist. When time delay τ = 0, the stability of coex-
isting equilibrium is investigated, and the conditions for stability and Turing instability are
given in Theorem 3.1. When time delay τ increases, it can affect the stability of coexisting
equilibrium and induce Hopf bifurcation. In addition, the property of Hopf bifurcation is
considered, including the direction and stability of bifurcating period solutions. Our re-
sults suggest that diffusion and time delay are two factors that should be considered in
establishing the predator–prey model, since they can induce the Turing instability and
spatially bifurcating period solutions.
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