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Abstract
In this paper, we develop the theory of differential equations with mixed
perturbations of the second type on time scales. We give an existence theorem for
differential equations with mixed perturbations of the second type on time scales
under Lipschitz condition. We also present some fundamental differential inequalities
on time scales, which are utilized to investigate the existence of extremal solutions.
We establish the comparison principle for differential equations with mixed
perturbations of the second type on time scales. Our results in this paper extend and
improve some well-known results.
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1 Introduction
In this paper, we discuss the following differential equations with mixed perturbations of
the second type on time scales (DETS):

⎧
⎨

⎩

[ u(t)–k(t,u(t))
f (t,u(t)) ]� = g(t, u(t)), t ∈ J ,

u(t0) = u0,
(1)

where f ∈ Crd(J ×R,R \ {0}) and k, g ∈ Crd(J ×R,R).
Let T be a time scale, and let J = [t0, t0 + a]T = [t0, t0 + a] ∩T be a bounded interval in T

for some t0 ∈R and a > 0. We denote by Crd(J ×R,R) the class of rd-continuous functions
g : J ×R→R. For basic definitions and useful lemmas from the theory of calculus on time
scales, we refer to [1].

By a solution of the DETS (1) we mean a �-differentiable function u such that
(i) the function t �→ u–k(t,u)

f (t,u) is �-differentiable for each u ∈R, and
(ii) u satisfies equations (1).
The theory of time scales has been drawn a lot of attention since 1988 (see [1–9]). In

recent years the theory of nonlinear differential equations with perturbations has been
a hot research topic; see [10–15]. Dhage [13] discussed the following first-order hybrid
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differential equation with mixed perturbations of the second type:

⎧
⎨

⎩

d
dt [ x(t)–k(t,x(t))

f (t,x(t)) ] = g(t, x(t)), t ∈ [t0, t0 + a],

x(t0) = x0 ∈R,

where [t0, t0 + a] is a bounded interval in R for some t0 ∈ R and a > 0, f ∈ C([t0, t0 + a] ×
R,R \ {0}), and k, g ∈ C([t0, t0 + a] × R,R). They developed the theory of hybrid differ-
ential equations with mixed perturbations of the second type and gave some original and
interesting results.

As far as we know, there are no results for the DETS (1). From the works mentioned we
consider the theory of DETS (1). We give an existence theorem for the DETS (1) under
Lipschitz conditions. We also present some fundamental differential inequalities on time
scales (DITS), which are utilized to investigate the existence of extremal solutions. We
establish the comparison principle for the DETS (1). Our results in this paper extend and
improve some well-known results.

The paper is organized as follows. In Sect. 2, we give an existence theorem for the DETS
(1) under Lipschitz conditions by the fixed point theorem in Banach algebra due to Dhage.
In Sect. 3, we establish some fundamental DITS to strict inequalities for the DETS (1).
In Sect. 4, we present existence results of maximal and minimal solutions for HDTS. In
Sect. 5, we prove the comparison principle for the DETS (1), which is followed by the
conclusion in Sect. 6.

2 Existence result
In this section, we discuss the existence results for the DETS (1). We place the DETS (1)
in the space Crd(J ,R) of rd-continuous functions defined on J with the supremum norm
‖ · ‖ defined as

‖u‖ = sup
t∈J

∣
∣u(t)

∣
∣

and the multiplication “·” in Crd(J ,R) defined as

(u · v)(t) = (uv)(t) = u(t)v(t)

for u, v ∈ Crd(J ,R). Clearly, Crd(J ,R) is a Banach algebra with respect to these norm and
multiplication. By L1(J ,R) we denote the space of Lebesgue �-integrable functions on J
equipped with the norm ‖ · ‖L1 defined as

‖u‖L1 =
∫ t0+a

t0

∣
∣u(s)

∣
∣�s.

The following fixed point theorem in a Banach algebra due to Dhage [16] is useful in the
proofs of our main results.

Lemma 2.1 ([16]) Let Q be a closed convex bounded subset of a Banach space P, and let
A, C : P → P and B : Q → P be three operators such that
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(a) A and C are Lipschitz with Lipschitz constants α and β , respectively,
(b) B is compact and continuous,
(c) u = AuBv + Cu for all v ∈ Q ⇒ u ∈ Q, and
(d) αM + β < 1, where M = ‖B(Q)‖ = sup{‖B(u)‖ : u ∈ Q}.

Then the operator equation AuBu + Cu = u has a solution in Q.

We present the following hypotheses.
(A0) The function u �→ u–k(t,u)

f (t,u) is increasing in R for all t ∈ J .
(A1) There exist constants L1 > 0 and L2 > 0 such that

∣
∣f (t, u) – f (t, v)

∣
∣ ≤ L1|u – v|

and

∣
∣k(t, u) – k(t, v)

∣
∣ ≤ L2|u – v|

for all t ∈ J and u, v ∈ R. Moreover, L ≤ M.
(A2) There exists a function h ∈ L1(J ,R) such that

∣
∣g(t, u)

∣
∣ ≤ h(t), t ∈ J ,

for all u ∈R.

Lemma 2.2 Suppose that (A0) holds. Then for any v ∈ L1(J ,R), the �-differentiable func-
tion u is a solution of the DETS

[
u(t) – k(t, u(t))

f (t, u(t))

]�

= v(t), t ∈ J , (2)

and

u(t0) = u0 ∈R, (3)

if and only if u satisfies the integral equation

u(t) = k
(
t, u(t)

)
+ f

(
t, u(t)

)
(

u0 – k(t0, u0)
f (t0, u0)

+
∫ t

t0

v(s)�s
)

, t ∈ J . (4)

Proof Let u be a solution of problem (2)–(3). Applying the �-integral to (2) from t0 to t,
we obtain

[
u(t) – k(t, u(t))

f (t, u(t))

]

–
[

u0 – k(t0, u0)
f (t0, u0)

]

=
∫ t

t0

v(s)�s,

that is,

u(t) = k
(
t, u(t)

)
+ f

(
t, u(t)

)
(

u0 – k(t0, u0)
f (t0, u0)

+
∫ t

t0

v(s)�s
)

, t ∈ J .

Thus (4) holds.
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Conversely, suppose that u satisfies equation (4). By direct differentiation, applying the
�-derivative to both sides of (4), we get that (2) is satisfied. Thus, substitute t = t0 in (4)
implies

u(t0) – k(t0, u(t0))
f (t0, u(t0))

=
u0 – k(t0, u0)

f (t0, u0)
.

Since the map u �→ u–k(t,u)
f (t,u) is increasing in R for t ∈ J , the map u �→ u–k(t0,u)

f (t0,u) is injective in
R, and u(t0) = u0. Hence (3) also holds. �

Now we will give the following existence theorem for the DETS (1).

Theorem 2.1 Suppose that (A0)–(A2) hold. If

L1

(∣
∣
∣
∣
u0 – k(t0, u0)

f (t0, u0)

∣
∣
∣
∣ + ‖h‖L1

)

+ L2 < 1, (5)

then the DETS (1) has a solution defined on J .

Proof Set U = Crd(J ,R) and define the subset S of U by

S =
{

u ∈ U|‖u‖ ≤ N
}

,

where

N =
F0(| u0–k(t0,u0)

f (t0,u0) | + ‖h‖L1 ) + K0

1 – L1(| u0–k(t0,u0)
f (t0,u0) | + ‖h‖L1 ) – L2

,

F0 = supt∈J |f (t, 0)|, and K0 = supt∈J |k(t, 0)|.
Clearly, S is a closed, convex, and bounded subset of the Banach space U . By Lemma 2.2

the DETS (1) is equivalent to the nonlinear integral equation

u(t) = k
(
t, u(t)

)
+ f

(
t, u(t)

)
(

u0 – k(t0, u0)
f (t0, u0)

+
∫ t

t0

g
(
s, u(s)

)
�s

)

, t ∈ J . (6)

Define three operators A, C : U → U and B : S → U by

Au(t) = f
(
t, u(t)

)
, t ∈ J , (7)

Bu(t) =
u0 – k(t0, u0)

f (t0, u0)
+

∫ t

t0

g
(
s, u(s)

)
�s, t ∈ J , (8)

and

Cu(t) = k
(
t, u(t)

)
, t ∈ J . (9)

Then equation (6) is transformed into the operator equation as

Au(t)Bu(t) + Cu(t) = u(t), t ∈ J .
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Next, we prove that the operators A, B, and C satisfy all the conditions of Lemma 2.1.
First, we prove that A is a Lipschitz operator on U with Lipschitz constant L1. Let

u, v ∈ U . Then by (A1)

∣
∣Au(t) – Av(t)

∣
∣ =

∣
∣f

(
t, u(t)

)
– f

(
t, v(t)

)∣
∣ ≤ L1

∣
∣u(t) – v(t)

∣
∣ ≤ L1‖u – v‖

for all t ∈ J . Taking the supremum over t, then we have

‖Au – Av‖ ≤ L1‖u – v‖

for all u, v ∈ U . This shows that A is a Lipschitz operator on U with Lipschitz constant L1.
Similarly, we can get that C is also a Lipschitz operator on U with Lipschitz constant L2.

Next, we prove that B is a compact continuous operator from S into U . First, we prove
that B is continuous on S. Let {un} be a sequence in S converging to a point u ∈ S. Then
by the Lebesgue dominated convergence theorem adapted to time scale we have

lim
n→∞ Bun(t) = lim

n→∞

(
u0 – k(t0, u0)

f (t0, u0)
+

∫ t

t0

g
(
s, un(s)

)
�s

)

=
u0 – k(t0, u0)

f (t0, u0)
+ lim

n→∞

∫ t

t0

g
(
s, un(s)

)
�s

=
u0 – k(t0, u0)

f (t0, u0)
+

∫ t

t0

[
lim

n→∞ g
(
s, un(s)

)]
�s

=
u0 – k(t0, u0)

f (t0, u0)
+

∫ t

t0

g
(
s, u(s)

)
�s

= Bu(t)

for all t ∈ J . This shows that B is a continuous operator on S.
Next, we prove that B is a compact operator on S. It suffices to show that B(S) is a uni-

formly bounded and equicontinuous set in U . Take arbitrary u ∈ S. Then by (A2)

∣
∣Bu(t)

∣
∣ =

∣
∣
∣
∣
u0 – k(t0, u0)

f (t0, u0)
+

∫ t

t0

g
(
s, u(s)

)
�s

∣
∣
∣
∣

≤
∣
∣
∣
∣
u0 – k(t0, u0)

f (t0, u0)

∣
∣
∣
∣ +

∫ t

t0

∣
∣g

(
s, u(s)

)∣
∣�s

≤
∣
∣
∣
∣
u0 – k(t0, u0)

f (t0, u0)

∣
∣
∣
∣ +

∫ t

t0

h(s)�s

≤
∣
∣
∣
∣
u0 – k(t0, u0)

f (t0, u0)

∣
∣
∣
∣ + ‖h‖L1

for all t ∈ J . Taking the supremum over t, we have

‖Bu‖ ≤
∣
∣
∣
∣
u0 – k(t0, u0)

f (t0, u0)

∣
∣
∣
∣ + ‖h‖L1

for all u ∈ S. This shows that B is uniformly bounded on S.
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On the other hand, let t1, t2 ∈ J . Then for any u ∈ S, we get

∣
∣Bu(t1) – Bu(t2)

∣
∣ =

∣
∣
∣
∣

∫ t1

t0

g
(
s, u(s)

)
�s –

∫ t2

t0

g
(
s, u(s)

)
�s

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ t1

t2

∣
∣g

(
s, u(s)

)∣
∣�s

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ t1

t2

h(s)�s
∣
∣
∣
∣

=
∣
∣p(t1) – p(t2)

∣
∣,

where p(t) =
∫ t

t0
h(s)�s. Since the function p is continuous on compact J , it is uniformly

continuous. Hence, for ε > 0, there exists δ > 0 such that

|t1 – t2| < δ ⇒ ∣
∣Bu(t1) – Bu(t2)

∣
∣ < ε

for all t1, t2 ∈ J and u ∈ S. This shows that B(S) is an equicontinuous set in U . Now the set
B(S) is uniformly bounded and equicontinuous set in U , so it is compact by Arzelà–Ascoli
theorem. Thus B is a compact operator on S.

Next, we show that (c) of Lemma 2.1 is satisfied. Let u ∈ U and v ∈ S be such that u =
AuBv + Cu. Then by assumption (A1) we have

∣
∣u(t)

∣
∣ ≤ ∣

∣Au(t)
∣
∣
∣
∣Bv(t)

∣
∣ +

∣
∣Cu(t)

∣
∣

=
∣
∣f

(
t, u(t)

)∣
∣

∣
∣
∣
∣

(
u0 – k(t0, u0)

f (t0, u0)
+

∫ t

t0

g
(
s, v(s)

)
�s

)∣
∣
∣
∣ +

∣
∣k

(
t, u(t)

)∣
∣

≤ [∣
∣f

(
t, u(t)

)
– f (t, 0)

∣
∣ +

∣
∣f (t, 0)

∣
∣
]

·
(∣

∣
∣
∣
u0 – k(t0, u0)

f (t0, u0)

∣
∣
∣
∣ +

∫ t

t0

∣
∣g

(
s, v(s)

)∣
∣�s

)

+
∣
∣k

(
t, u(t)

)
– k(t, 0)

∣
∣ +

∣
∣k(t, 0)

∣
∣

≤ [
L1

∣
∣u(t)

∣
∣ + F0

]
(∣

∣
∣
∣
u0 – k(t0, u0)

f (t0, u0)

∣
∣
∣
∣ +

∫ t

t0

h(s)�s
)

+ L2
∣
∣u(t)

∣
∣ + K0

≤ [
L1

∣
∣u(t)

∣
∣ + F0

]
(∣

∣
∣
∣
u0 – k(t0, u0)

f (t0, u0)

∣
∣
∣
∣ + ‖h‖L1

)

+ L2
∣
∣u(t)

∣
∣ + K0.

Thus we get

∣
∣u(t)

∣
∣ ≤

F0(| u0–k(t0,u0)
f (t0,u0) | + ‖h‖L1 ) + K0

1 – L1(| u0–k(t0,u0)
f (t0,u0) | + ‖h‖L1 ) – L2

.

Taking the supremum over t, we have

‖u‖ ≤
F0(| u0–k(t0,u0)

f (t0,u0) | + ‖h‖L1 ) + K0

1 – L1(| u0–k(t0,u0)
f (t0,u0) | + ‖h‖L1 ) – L2

= N .

This shows that (c) of Lemma 2.1 is satisfied.
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Finally, we obtain

M =
∥
∥B(S)

∥
∥ = sup

{∥
∥B(u)

∥
∥ : u ∈ S

} ≤
∣
∣
∣
∣
u0 – k(t0, u0)

f (t0, u0)

∣
∣
∣
∣ + ‖h‖L1 ,

and so

L1M + L2 ≤ L1

(∣
∣
∣
∣
u0 – k(t0, u0)

f (t0, u0)

∣
∣
∣
∣ + ‖h‖L1

)

+ L2 < 1.

Thus all the conditions of Lemma 2.1 are satisfied, and hence the operator equa-
tion AuBu + Cu = u has a solution in S. Therefore the DETS (1) has a solution defined
on J . �

3 Differential inequalities on time scales
In this section, we establish DITS for the DETS (1).

Theorem 3.1 Suppose that (A0) holds. Assume that there exist �-differentiable functions
v, w such that

[
v(t) – k(t, v(t))

f (t, v(t))

]�

≤ g
(
t, v(t)

)
, t ∈ J , (10)

and

[
w(t) – k(t, w(t))

f (t, w(t))

]�

≥ g
(
t, w(t)

)
, t ∈ J , (11)

one of the inequalities being strict. Then v(t0) < w(t0) implies

v(t) < w(t) (12)

for all t ∈ J .

Proof Assume that inequality (11) is strict. Suppose that the claim is false. Then there
exists t1 ∈ J , t1 > t0, such that v(t1) = w(t1) and v(t) < w(t) for t0 ≤ t < t1.

Define

V (t) =
v(t) – k(t, v(t))

f (t, v(t))
and W (t) =

w(t) – k(t, w(t))
f (t, w(t))

for all t ∈ J . Then we obtain V (t1) = W (t1), and by (A0) we have V (t) < W (t) for all t < t1.
Since V (t1) = W (t1), we get

V (t1 + h) – V (t1)
h

>
W (t1 + h) – W (t1)

h

for sufficiently small h < 0. This inequality implies that

V �(t1) ≥ W �(t1)
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because of (A0). Then we obtain

g
(
t1, v(t1)

) ≥ V �(t1) ≥ W �(t1) > g
(
t1, w(t1)

)
.

This is a contradiction with v(t1) = w(t1). Hence inequality (12) is valid. �

The next result is concerned with nonstrict DITS, which needs a Lipshitz condition.

Theorem 3.2 Suppose that the conditions of Theorem 3.1 hold with inequalities (10) and
(11). Suppose that there exists a real number K > 0 such that

g(t, u1) – g(t, u2) ≤ K sup
t0≤s≤t

(
u1(t) – k(t, u1(t))

f (t, u1(t))
–

u2(t) – k(t, u2(t))
f (t, u2(t))

)

, t ∈ J (13)

for all u1, u2 ∈R with u1 ≥ u2. Then v(t0) ≤ w(t0) implies v(t) ≤ w(t) for all t ∈ J .

Proof Let ε > 0 and K > 0 be given. Define

wε(t) – k(t, wε(t))
f (t, wε(t))

=
w(t) – k(t, w(t))

f (t, w(t))
+ εe2L(t–t0),

so that we get

wε(t) – k(t, wε(t))
f (t, wε(t))

>
w(t) – k(t, w(t))

f (t, w(t))
⇒ wε(t) > w(t).

Let Wε(t) = wε(t)–k(t,wε(t))
f (t,wε(t)) , so that W (t) = w(t)–k(t,w(t))

f (t,w(t)) for t ∈ J . Then by (11) we obtain

W �
ε (t) = W �(t) + 2Kεe2L(t–t0) ≥ g

(
t, w(t)

)
+ 2Lεe2L(t–t0).

Then from (13) we have

g
(
t, wε(t)

)
– g

(
t, w(t)

) ≤ K sup
t0≤s≤t

(
Wε(s) – W (s)

)
= Kεe2L(t–t0)

for all t ∈ J , and thus

W �
ε (t) ≥ g

(
t, wε(t)

)
– Kεe2L(t–t0) + 2Kεe2L(t–t0) > g

(
t, wε(t)

)
,

that is,

[
wε(t) – f

(
t, wε(t)

)]� > g
(
t, wε(t)

)

for all t ∈ J . Also, we get wε(t0) > w(t0) > v(t0). Hence Theorem 3.1 with w = wε implies that
v(t) < wε(t) for all t ∈ J . By the arbitrariness of ε > 0, taking the limits as ε → 0, we have
v(t) ≤ w(t) for all t ∈ J . �
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4 Existence of maximal and minimal solutions
In this section, we prove the existence of maximal and minimal solutions for the DETS (1)
on J = [t0, t0 + a]T.

Definition 4.1 A solution r of the DETS (1) is said to be maximal if for any other solution
u to the DETS (1), we have u(t) ≤ r(t) for all t ∈ J . Similarly, a solution ρ of the DETS (1) is
said to be minimal if ρ(t) ≤ u(t) for all t ∈ J , where u is any solution of the DETS (1) on J .

We discuss the case of maximal solution only. Similarly, the case of minimal solution can
be obtained with the same arguments with appropriate modifications. Given an arbitrary
small number ε > 0, we discuss the following initial value problem of DETS:

⎧
⎨

⎩

[ u(t)–k(t,u(t))
f (t,u(t)) ]� = g(t, u(t)) + ε, t ∈ J ,

u(t0) = u0 + ε,
(14)

where f ∈ Crd(J ×R,R \ {0}) and k, g ∈ Crd(J ×R,R).
An existence theorem for the DETS (14) can be stated as follows.

Theorem 4.1 Suppose that (A0)–(A2) and inequality (5) hold. Then for every small num-
ber ε > 0, the DETS (14) has a solution defined on J .

Proof By hypothesis, since

L1

(∣
∣
∣
∣
u0 – k(t0, u0)

f (t0, u0)

∣
∣
∣
∣ + ‖h‖L1

)

+ L2 < 1,

there exists ε0 > 0 such that

L1

(∣
∣
∣
∣
u0 + ε – k(t0, u0 + ε)

f (t0, u0 + ε)

∣
∣
∣
∣ + ‖h‖L1 + εa

)

+ L2 < 1

for all 0 < ε ≤ ε0. The rest of the proof is similar to that of Theorem 2.1, and we omit
it. �

Our main existence theorem for maximal solution for the DETS (1) is the following:

Theorem 4.2 Suppose that (A0)–(A2) and inequality (5) hold. Then the DETS (1) has a
maximal solution defined on J .

Proof Let {εn}∞0 be a decreasing sequence of positive numbers such that limn→∞ εn = 0,
where ε0 is a positive number satisfying the inequality

L1

(∣
∣
∣
∣
u0 + ε0 – k(t0, u0 + ε0)

f (t0, u0 + ε0)

∣
∣
∣
∣ + ‖h‖L1 + ε0a

)

+ L2 < 1.

Such a number ε0 exists in view of inequality (5). Then for any solution x of the DETS (1),
by Theorem 4.1 we get

x(t) < r(t, εn)
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for all t ∈ J and n ∈N∪ {0}, where r(t, εn) defined on J is a solution of the DETS

⎧
⎨

⎩

[ u(t)–k(t,u(t))
f (t,u(t)) ]� = g(t, u(t)) + εn, t ∈ J ,

u(t0) = u0 + εn.
(15)

By Theorem 3.2, {r(t, εn)} is a decreasing sequence of positive numbers, and thus the
limit

r(t) = lim
n→∞ r(t, εn) (16)

exists. We prove that the convergence in (16) is uniform on J . Next, we show that the
sequence {r(t, εn)} is equicontinuous in Crd(J ,R). Let t1, t2 ∈ J with t1 < t2 be arbitrary.
Then we have

∣
∣r(t1, εn) – r(t2, εn)

∣
∣

=
∣
∣
∣
∣

[
f
(
t1, r(t1, εn)

)]
(

u0 + εn – k(t0, u0 + εn)
f (t0, u0 + εn)

+
∫ t1

t0

g
(
s, r(s, εn)

)
�s

+
∫ t1

t0

εn�s
)

+ k
(
t1, r(t1, εn)

)
– k

(
t2, r(t2, εn)

)
–

[
f
(
t2, r(t2, εn)

)]

·
(

u0 + εn – k(t0, u0 + εn)
f (t0, u0 + εn)

+
∫ t2

t0

g
(
s, r(s, εn)

)
�s +

∫ t2

t0

εn�s
)∣

∣
∣
∣

≤ ∣
∣k

(
t1, r(t1, εn)

)
– k

(
t2, r(t2, εn)

)∣
∣ +

∣
∣
∣
∣

[
f
(
t1, r(t1, εn)

)]

·
(

u0 + εn – k(t0, u0 + εn)
f (t0, u0 + εn)

+
∫ t1

t0

g
(
s, r(s, εn)

)
�s +

∫ t1

t0

εn�s
)

–
[
f
(
t2, r(t2, εn)

)]
(

u0 + εn – k(t0, u0 + εn)
f (t0, u0 + εn)

+
∫ t2

t0

g
(
s, r(s, εn)

)
�s

+
∫ t2

t0

εn�s
)∣

∣
∣
∣

≤ ∣
∣k

(
t1, r(t1, εn)

)
– k

(
t2, r(t2, εn)

)∣
∣ +

∣
∣
∣
∣

[
f
(
t1, r(t1, εn)

)]

·
(

u0 + εn – k(t0, u0 + εn)
f (t0, u0 + εn)

+
∫ t1

t0

g
(
s, r(s, εn)

)
�s +

∫ t1

t0

εn�s
)

–
[
f
(
t2, r(t2, εn)

)]
(

u0 + εn – k(t0, u0 + εn)
f (t0, u0 + εn)

+
∫ t1

t0

g
(
s, r(s, εn)

)
�s

+
∫ t1

t0

εn�s
)∣

∣
∣
∣ +

∣
∣
∣
∣

[
f
(
t2, r(t2, εn)

)]
(

u0 + εn – k(t0, u0 + εn)
f (t0, u0 + εn)

+
∫ t1

t0

g
(
s, r(s, εn)

)
�s +

∫ t1

t0

εn�s
)

–
[
f
(
t2, r(t2, εn)

)]

·
(

u0 + εn – k(t0, u0 + εn)
f (t0, u0 + εn)

+
∫ t2

t0

g
(
s, r(s, εn)

)
�s +

∫ t2

t0

εn�s
)∣

∣
∣
∣

≤ ∣
∣k

(
t1, r(t1, εn)

)
– k

(
t2, r(t2, εn)

)∣
∣ +

∣
∣f

(
t1, r(t1, εn)

)
– f

(
t2, r(t2, εn)

)
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·∣∣
(∣

∣
∣
∣
u0 + εn – k(t0, u0 + εn)

f (t0, u0 + εn)

∣
∣
∣
∣ + ‖h‖L1 + εna

)

+ F
[∣
∣p(t1) – p(t2)

∣
∣ + |t1 – t2|εn

]
,

where F = sup(t,u)∈J×[–N ,N] |f (t, u)| and p(t) =
∫ t

t0
h(s)�s.

Since f and k are continuous on the compact set J × [–N , N], they are uniformly con-
tinuous. Hence

∣
∣f

(
t1, r(t1, εn)

)
– f

(
t2, r(t2, εn)

)∣
∣ → 0 as t1 → t2

and

∣
∣k

(
t1, r(t1, εn)

)
– k

(
t2, r(t2, εn)

)∣
∣ → 0 as t1 → t2

uniformly for all n ∈N. Similarly, since the function p is continuous on the compact set J ,
it is uniformly continuous, and hence

∣
∣p(t1) – p(t2)

∣
∣ → 0 as t1 → t2.

Therefore we obtain

∣
∣r(t1, εn) – r(t2, εn)

∣
∣ → 0 as t1 → t2

uniformly for all n ∈N. Therefore

r(t, εn) → r(t) as n → ∞

for all t ∈ J .
Next, we prove that the function r(t) is a solution of the DETS (1) defined on J . Since

r(t, εn) is a solution of the DETS (15), we get

r(t, εn) =
[
f
(
t, r(t, εn)

)]
(

u0 + εn – k(t0, u0 + εn)
f (t0, u0 + εn)

+
∫ t

t0

g
(
s, r(s, εn)

)
�s

+
∫ t

t0

εn�s
)

+ k
(
t, r(t, εn)

)
(17)

for all t ∈ J . Taking the limit as n → ∞ in (17) implies

r(t) =
[
f (t, r(t)

]
(

u0 – k(t0, u0)
f (t0, u0)

+
∫ t

t0

g
(
s, r(s)

)
�s

)

+ k
(
t, r(t)

)

for all t ∈ J . Thus the function r is a solution of the DETS (1) on J . Finally, from inequality
(15) it follows that x(t) ≤ r(t) for all t ∈ J . Hence the DETS (1) has a maximal solution
on J . �
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5 Comparison theorems on time scales
The main problem of the DITS is to estimate a bound for the solution set for the DITS
related to the DETS (1). In this section, we present the maximal and minimal solutions
serving as bounds for the solutions of the related DITS to the DETS (1) on J = [t0, t0 + a]T.

Theorem 5.1 Suppose that (A0)–(A2) and inequality (5) hold. Assume that there exists a
�-differentiable function u such that

⎧
⎨

⎩

[ x(t)–k(t,x(t))
f (t,x(t)) ]� ≤ g(t, x(t)), t ∈ J ,

x(t0) ≤ u0.
(18)

Then

x(t) ≤ r(t) (19)

for all t ∈ J , where r is a maximal solution of the the DETS (1) on J .

Proof Let ε > 0 be arbitrarily small. By Theorem 4.2, r(t, ε) is a maximal solution of the
DETS (14), the limit

r(t) = lim
ε→0

r(t, ε) (20)

is uniform on J , and the function r is a maximal solution of the DETS (1) on J . Hence we
have

⎧
⎨

⎩

[ r(t,ε)–k(t,r(t,ε))
f (t,r(t,ε)) ]� = g(t, r(t, ε)) + ε, t ∈ J ,

r(t0, ε) = u0 + ε.

By the above inequality it implies that
⎧
⎨

⎩

[ r(t,ε)–k(t,r(t,ε))
f (t,r(t,ε)) ]� > g(t, r(t, ε)), t ∈ J ,

r(t0, ε) > u0.
(21)

Now, applying Theorem 3.2 to inequalities (18) and (21), we conclude that x(t) < r(t, ε) for
all t ∈ J . Thus (20) implies that inequality (19) holds on J . �

Theorem 5.2 Suppose that (A0)–(A2) and inequality (5) hold. Assume that there exists a
�-differentiable function u such that

⎧
⎨

⎩

[ y(t)–k(t,y(t))
f (t,y(t)) ]� ≥ g(t, y(t)), t ∈ J ,

y(t0) ≥ u0.

Then

ρ(t) ≤ y(t)

for all t ∈ J , where ρ is a minimal solution of the DETS (1) on J .



Zhao et al. Advances in Difference Equations        (2019) 2019:268 Page 13 of 15

Note that Theorem 5.1 is useful to prove the boundedness and uniqueness of the solu-
tions for the DETS (1) on J . We have a following result.

Theorem 5.3 Suppose that (A0)–(A2) and inequality (5) hold. Assume that there exists a
function G : J ×R

+ → R
+ such that

g(t, u1) – g(t, u2) ≤ G
(

t, max
s∈[t0,t]

∣
∣
∣
∣
u1(s) – k(s, u1(s))

f (s, u1(s))
–

u2(s) – k(s, u2(s))
f (s, u2(s))

∣
∣
∣
∣

)

, t ∈ J ,

for all u1, u2 ∈ R with u1 ≥ u2. If the identically zero function is the only solution of the
differential equation

m�(t) = G
(
t, m(t)

)
, t ∈ J , m(t0) = 0, (22)

then the DETS (1) has a unique solution on J .

Proof By Theorem 2.1 the DETS (1) has a solution defined on J . Suppose that there are
two solutions x1 and x2 of the DETS (1) existing on J with x1 > x2. Define m : J → R

+ by

m(t) =
∣
∣
∣
∣
u1(t) – k(t, u1(t))

f (t, u1(t))
–

u2(t) – k(t, u2(t))
f (t, u2(t))

∣
∣
∣
∣.

Since (|x(t)|)� ≤ |x�(t)|, we obtain that

m�(t) ≤
∣
∣
∣
∣

[
u1(t) – k(t, u1(t))

f (t, u1(t))

]�

–
[

u2(t) – k(t, u2(t))
f (t, u2(t))

]�∣
∣
∣
∣

=
∣
∣g(t, x1) – g(t, x2)

∣
∣

≤ G
(

t,
∣
∣
∣
∣
u1(t) – k(t, u1(t))

f (t, u1(t))
–

u2(t) – k(t, u2(t))
f (t, u2(t))

∣
∣
∣
∣

)

= G
(
t, m(t)

)

for t ∈ J and m(t0) = 0.
Now we apply Theorem 5.1 with k(t, u) ≡ 0 and f (t, u) ≡ 1 to get that m(t) ≤ 0 for all

t ∈ J , where the identically zero function is the only solution of the DETS (22), which is a
contradiction with m(t) > 0. This implies

u1(t) – k(t, u1(t))
f (t, u1(t))

=
u2(t) – k(t, u2(t))

f (t, u2(t))

for all t ∈ J . Then we have x1 = x2. �

Remark 5.1 When k ≡ 0, f ≡ 1, and T = R in our results, we obtain the differential in-
equalities and other related results of Lakshmikantam and Leela [17] for the IVP of ordi-
nary nonlinear differential equation

u′(t) = g
(
t, u(t)

)
, t ∈ [t0, t0 + a], u(t0) = u0.

Remark 5.2 The main results in this paper extend and improve some well-known results
in [13] when T = R.
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6 Conclusion
In this paper, we have developed the theory of the DETS (1). By the fixed point theorem
in Banach algebra due to Dhage we have presented an existence theorem for the DETS (1)
under Lipschitz conditions. We have also established some DITS for the DETS (1), which
are used to investigate the existence of extremal solutions, and the comparison principle
for the DETS (1). Our results in this paper extend and improve some well-known results.
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