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Abstract
In this paper, we solve the Fokker–Planck equation of the multivariate
Ornstein–Uhlenbeck process to obtain its probability density function. This approach
allows us to ascertain the distribution without solving it analytically. We find that, at
any moment in time, the process has a multivariate normal distribution. We obtain
explicit formulae of mean, covariance, and cross-covariance matrix. Moreover, we
obtain its mean-reverting condition and the long-term distribution.
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1 Introduction
For decades, stochastic processes have become more popular as a model for fluctuations
over time. Including the noise term is the main advantage of the stochastic model. The
Ornstein–Uhlenbeck process is one of the most well-known stochastic processes used in
many research areas such as mathematical finance [1], physics [2], and biology [3]. It was
introduced by L. Ornstein and G. Eugene Uhlenbeck (1930). This process is defined as the
solution of stochastic differential equation

dX(t) = θ
(
μ – X(t)

)
dt + σ dW (t), (1)

where θ �= 0, μ, and σ > 0 are constant parameters, and W (t) is the Wiener process. The
parameter μ is the long-term mean, θ is the velocity, and σ is the friction coefficient. Its
analytic solution, a function of mean, variance, and covariance functions over time t were
derived. An important feature of this process (with positive θ ) is the mean reversion, which
means that it tends to its long-term mean μ as t tends to infinity. So, at any moment in
time, if the value of the yield is greater than the long-term mean, then the drift becomes
negative, so that the yield is pulled down in the direction of the long-term mean. Similarly,
if the value of the yield is smaller than the long-term mean, then the drift becomes positive,
so that the yield is pushed up to the long-term mean.

The multivariate Ornstein–Uhlenbeck process is a generalization to multiple dimen-
sions of the Ornstein–Uhlenbeck process. It is defined as the solution of the multivariate
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stochastic differential equation

dX(t) = θ
(
μ – X(t)

)
dt + σ dW(t), (2)

where θ is an n × n invertible real matrix, μ is an n-dimensional real vector, σ is an n × m
positive real matrix, and W(t) is an m-dimensional standard Wiener process. The idea of
this generalization arises when we simultaneously deal with more than one quantity. The
univariate Ornstein–Uhlenbeck process forces us to model X(t) independently, which is
not a realistic assumption. It certainly does not work when all quantities are related in
some sense. Consequently, many researchers apply this process to their interesting situa-
tions with limitations [4–6], and [7].

In most research in the past, this process was considered as a solution of stochastic
differential equation (2). It was solved for its solution, and then its distribution, mean, co-
variance, and cross-covariance function matrix was computed. This research is different
in that we derive its distribution and parameters without solving it analytically: we con-
sider the probability density function as a solution of the Fokker–Plank equation.

2 Preliminaries
In this section, we introduce some well-known definitions and results, which can be found
in [8–11].

Proposition 1 Let X(t) be a multivariate Itô process defined by the stochastic differential
equation

dX(t) = μ
(

X(t), t
)

dt + σ
(

X(t), t
)

dW(t), (3)

where μ(X(t), t) is an n-dimensional vector, σ (X(t), t) is an n × m matrix, and W(t) is an
m-dimensional standard Wiener process. The probability density function p(x, t) of X(t)
satisfies the Fokker–Planck equation

∂

∂t
p
(

x(t), t
)

= –
∂

∂x
[
μ

(
x(t), t

)
p
(

x(t), t
)]

+
∂2

∂x2

[
D

(
x(t), t

)
p
(

x(t), t
)]

, (4)

where D(x(t), t) = σ (X(t), t)σ T (X(t), t). This equation is also known as the Kolmogorov for-
ward equation.

Let f : Rn →R be continuous. The n-dimensional Fourier transform of f is the function
F(f ) : Rn →R defined by

F(f )(u) =
∫

Rn
f (x)e–i(x·u) dx,

where i is the imaginary unit.

Lemma 1 Let f : R
n → R be a continuously differentiable function such that

lim‖x‖→∞ f (x) = 0. For any n × n real matrix A and n-dimensional real vector c, the follow-
ing properties hold:

1 F( ∂
∂x · cf (x)) = iuT cF(f )(u),
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2 F( ∂
∂x

∂
∂x : Af (x)) = –uT AuF(f )(u),

3 F( ∂
∂x · Axf (x)) = –( ∂F(f )(u)

∂u )T AT u.

For any square matrix A, we define the exponential of A, denoted eA, as
∑∞

k=0
Ak

k! , where
A0 is the identity matrix I. Note that this series always converges, so the exponential is
well-defined.

Lemma 2 For any square matrix A, the following properties hold:
1 AeA = eAA,
2 (eA)T = eAT ,
3 eA is invertible with e–A as its inverse,
4 deAt

dt = AeAt , so if A is invertible, then
∫

eAt dt = A–1eAt .

3 Main results
Theorem 1 The characteristic function of the n-dimensional Ornstein–Uhlenbeck process
X(t) satisfying (2) with the initial value X(0) = x0 is given by

φ(u, t) = exp

[
iuT(

e–θ tx0 +
(

I – e–θ t)μ
)

–
1
2

uT
(∫ t

0
eθ (s–t)σσ T eθT (s–t) ds

)
u
]

. (5)

Proof The Fokker–Planck equation of (2) is given by

∂p
∂t

= –
[

∂

∂x
θμp –

∂

∂x
θxp

]
+

1
2

∂2

∂x2 Dp, (6)

where D = σσ T , with initial condition

p(x) = δ2(x – x0). (7)

First, taking the n-dimensional Fourier transform of equation (6), we get

∂p̂
∂t

= –iuTθμp̂ +
(

∂p̂
∂u

)T

θT u –
1
2

uT Dup̂, (8)

where p̂(u, t) is the n-dimensional Fourier transform of p(x, t).
The initial condition (7) becomes

p̂(u0) = exp
(
–iuT

0 x0
)
. (9)

Note that equation (8) is a first-order partial differential equation, so we will apply the
method of characteristic.

Consider the system

du
dt

= θT u

with initial condition u(0) = u0. The solution of this system is

u = eθT tu0. (10)
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Consider the other equation

dp̂
dt

=
[

–iuTθμ –
1
2

uT Du
]

p̂. (11)

Substituting u from (10) into (11), we get

dp̂
p̂

=
[

–iuT
0 eθ tθμ –

1
2

uT
0 eθ tDeθT tu0

]
dt. (12)

So

p̂ = p̂0 exp

[
–iuT

0
(
eθ t – I

)
μ –

1
2

uT
0

(∫ t

0
eθ tDeθT t dt

)
u0

]
. (13)

Then, substituting p̂0 from (9) and u0 by inverting (10) into (13), we get

p̂ = exp

[
–iuT

0 x0 – iuT
0
(
eθ t – I

)
μ –

1
2

uT
0

(∫ t

0
eθ tDeθT t dt

)
u0

]

= exp

[
–iuT e–θ tx0 – iuT e–θ t(eθ t – I

)
μ –

1
2

uT e–θ t
(∫ t

0
eθ tDeθT t dt

)
e–θT tu

]

= exp

[
–iuT e–θ tx0 – iuT(

I – e–θ t)μ –
1
2

uT
(∫ t

0
eθ (s–t)σσ T eθT (s–t) ds

)
u
]

. (14)

Since the characteristic function is the Fourier transform with opposite sign in the com-
plex exponential, we are done. �

Corollary 1 The n-dimentianal Ornstein–Uhlenbeck process X(t) satisfying (2) has an n-
dimensional normal distribution with mean vector

M(t) = e–θ tX0 +
(

I – e–θ t)μ (15)

and covariance matrix

Σ(t) =
∫ t

0
eθ (s–t)σσ T eθT (s–t) ds. (16)

Moreover, the probability density function of X(t) is given by

p(x, t) =
exp(– 1

2 (x – M(t))TΣ–1(t)(x – M(t)))
√|2πΣ(t)| . (17)

Proof Comparing (5) with a characteristic function of multivariate normal distribution
with mean M and covariance matrix Σ ,

φ(u) = exp

[
iuT M –

1
2

uTΣu
]

, (18)

we obtain the result. �
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Theorem 2 The cross-covariance function matrix of an n-dimensional Ornstein–
Uhlenbeck process X(t) satisfying (2) is given by

Γ (s, t) =
∫ min(s,t)

0
e–θ (s–u)σσ T e–θT (t–u) du. (19)

Proof Let Γ (s, t) = E[(X(t) – M(t))(X(s) – M(s))T ]. From (15) we can see that M′(t) =
–θ (M(t) – μ). Then

∂2Γ

∂s ∂t
= E

[(
X ′(s) – M′(s)

)(
X ′(t) – M′(t)

)T]

= E
[(

–θ
(

X(s) – M(s)
)

+ σξ (s)
)(

–θ
(

X(t) – M(t)
)

+ σξ (t)
)T]

= θΓ θT – θK(s, t)σ T – σ L(s, t)θT + σE
[
ξ (s)ξT (t)

]
σ T , (20)

where ξ (t) is an n-dimensional white noise, K(s, t) = E[(X(s) – M(s))ξT (t)], and L(s, t) =
E[ξ (s)(X(t) – M(t))T ].

Taking the derivative of K(s, t) with respect to t, we get

∂K
∂s

= E
[(

X ′(s) – M′(s)
)
ξT (t)

]

= E
[
–θ

(
X(s) – M(s)

)
ξT (t) + σξ (s)ξT (t)

]

= –θK(s, t) + σE
[
ξ (s)ξT (t)

]
. (21)

Since E[ξ (s)ξT (t)] = δm(s – t) and K(0, t) = 0, we get the solution

K(s, t) =

⎧
⎨

⎩
e–θ (s–t)σ for s > t,

0 for s < t.
(22)

Similarly, we get

L(s, t) =

⎧
⎨

⎩
0 for s > t,

σ T e–θ (s–t) for s < t.
(23)

So, if t > s, then

∂2Γ

∂s ∂t
= θΓ θT – θe–θ (s–t)σσ T + σδm(s – t)σ T (24)

with initial condition C(0, t) = C(s, 0) = 0. This equation has the solution

Γ (s, t) =
∫ s

0
e–θ (s–u)σσ T e–θT (t–u) du. (25)

On the other hand, if s > t, then we similarly obtain that

Γ (s, t) =
∫ t

0
e–θ (s–u)σσ T e–θT (t–u) du. (26)

This completes the proof. �
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From this result it follows that if we let s = t, then the cross-covariance function matrix
becomes the covariance matrix as in (16).

If the parameter θ of univariate Ornstein–Uhlenbeck process is positive, then the pro-
cess is mean-reverting. For the multivariate case, we also have a condition for mean-
reverting, which is stated in the following theorem.

Theorem 3 The n-dimensional Ornstein–Uhlenbeck process X(t) satisfying (2) is mean-
reverting if all eigenvalues of θ are positive.

Proof Since e–θ t tends to the zero matrix as t tends to infinity if all eigenvalues of θ are
positive, we can conclude from (15) that, with this condition, M(t) tends to μ.

For Σ(t), the situation is different, since we cannot take t in (16) to infinity directly as we
do for M(t). We apply the identity vec(ABC) = (CT ⊗ A) vec(B), where ⊗ is the Kronecker
product defined in [12], and vec(A) is defined as the column vector made of the columns
of A stacked atop one another from left to right. Then

vec
(
Σ(t)

)
=

∫ t

0
eθ (s–t) ⊗ eθ (s–t) ds vec

(
σσ T)

. (27)

Now we use another identity eA⊗B = eA ⊕ eB where ⊕ is the Kronecker sum. Then we
obtain

vec
(
Σ(t)

)
=

∫ t

0
eθ (s–t) ⊗ eθ (s–t) ds vec

(
σσ T)

=
∫ t

0
e(θ⊕θ )(s–t) ds vec

(
σσ T)

= (θ ⊕ θ )–1(I – e–(θ⊕θ )t)vec
(
σσ T)

. (28)

Since all eigenvalues of θ ⊕ θ are still positive, the covariance matrix converts to a con-
stant matrix Σ such that vec(Σ) = (θ ⊕ θ )–1 vec(σσ T ). �

4 Conclusion
In this paper, we propose a new method to derive the distribution of the multivariate
Ornstein–Uhlenbeck process by solving its forward equation. We apply the character-
istic method and Fourier transform to solve the equation. We obtain the characteristic
function of the multivariate Ornstein–Uhlenbeck process and also its density function.
Our explicit result shows that the multivariate Ornstein–Uhlenbeck process, at any time,
is a multivariate normal random variable. We also derive the mean vector, covariance ma-
trix, and cross covariance matrix and obtain its mean-reverting condition, which is an
extension of the univariate case. It is well known that the univariate Ornstein–Uhlenbeck
process has a mean-reverting property when the parameter θ is positive. In our study, for
the multivariate case, we have found that the process is mean-reverting as t increases and
all eigenvalues of the matrix θ are positive.
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