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Abstract
We present a new class of higher-order multistep multiderivative methods for the
numerical solution of stiff initial value problems. These methods are obtained based
on free parameters and off-point. The methods have minimum error bounds. The
constructed class is A-stable for orders 3 and 4, and A(α)-stable for orders 5 and 6. The
new class is L-stable for all orders. They are suitable for solving stiff systems of initial
value problems with large eigenvalues lying close to the imaginary axis. The stability
regions of the new class are plotted, and some problems are solved, which show the
superiority of the class in efficiency and accuracy.

MSC: 65L05; 65L07; 65L20

Keywords: Hybrid methods; A-stable; A(α)-stable; L-stable; Off-step points;
Multiderivative method; Stiff systems

1 Introduction
Consider the initial value problems for the first-order ordinary differential equation

y′(x) = f
(
x; y(x)

)
; y(a) = η; x ∈ [x0, b]. (1)

Here y : [x0; b] → Rd and f : [x0; b]×Rd → Rd are assumed to be sufficiently smooth, and
y0 ∈ Rd is the given initial value. Without any loss of generality we assume the step-size
h > 0 to be constant, and we define the grid points along the x-axis by xn = x0 + nh; n =
0; 1; 2; . . . ; N , where Nh = b – x0, and the set of equally spaced points on the integration
interval is defined by x0 < x1 < x2 < · · · < xn+1 = b.

Equations having highly oscillatory solution or stiff problems are very common prob-
lems in many fields, such as biology, celestial mechanics, control, fluids, heat transfer [20],
chemical kinetics, lasers, and mechanics; see [7]. In general, any physical system modeled
by an ordinary differential equation and having physical components with greatly different
time constants leads to a stiff problem. In the literature of ordinary differential equations
(ODEs), various definitions are seen for the stiffness [3, 9, 13, 17, 19], one being somewhat
more precise than another. The essence of stiffness is that the solution to be computed is
slowly varying but there exist rapidly damped perturbations.

The numerical solution of these kinds of problems is a central task in all simulation
environments for mechanical, electrical, and chemical systems. From discussion on the
relative merits of linear multistep and Runge–Kutta methods it emerged that the former
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class of methods, though generally more efficient in terms of accuracy and weak stability
properties for a given number of functions evaluations per step, suffered the disadvantage
of requiring additional starting values and special procedures for changing step length.
These difficulties would be reduced, without sacrifice, if we could lower the step num-
ber of the linear multistep methods without reducing their order. The difficulty here lies
in satisfying the essential condition of zero-stability. This “zero-stability barrier” was cir-
cumvented by the introduction of modified linear multistep formula, which incorporates
a function evaluation at off-step point. Such formula, simultaneously proposed by Agar-
wal, Ibrahim, and Yousry [2], Butcher [4], Gear [11], Gragg and Stetter [12], Ibrahim and
Yousry [15], and Shokri [18] were christened “hybrid” by the last author since, whilst re-
taining certain linear multistep characteristics, hybrid methods share with Runge–Kutta
methods the property of utilizing data at points other than the step points [5, 6]. Thus,
we may regard the introduction of hybrid formula as an important step by Kopal [16]. In
this paper, our objective is to construct stable multistep multiderivative methods with off-
points and good stability characteristic properties, fewer function evaluations, and rapid
convergence to the exact solution.

The k-step classical hybrid method formula is as follows:

k∑

i=o

αiyn+i = h
k∑

i=0

βkfn+i + hβsfn+s, (2)

where αk = +1, α0 and β0 are not both zero, s /∈ {0, 1, . . . , k}, and fn+s = f (xn+s, yn+s). These
methods are similar to linear multistep methods but with one essential modification: an
additional predictor is introduced at the off-step point. This greater generality allows the
consequences of the Dahlquist barrier to be avoided, and it is actually possible to obtain
convergent k-step methods with order 2k +1 up to k = 7. Even higher orders are available if
two or more off-step points are used. The other independent discoveries of this approach
were reported in [3, 8, 10, 11].

Another important class of linear multistep methods for the numerical solution of first-
order ordinary differential equations is the classical Obrechkoff methods. The k-step clas-
sical Obrechkoff method using the first l derivatives of y for solution of (1) is given by [12]

k∑

j=0

αjyn+j =
l∑

i=1

hi
k∑

j=0

βijy(i)
n+j, αk = 1. (3)

According to [17], the error constant decreases more rapidly with increasing l rather
than with increasing k. It is difficult to satisfy the zero-stability for large k. The weak sta-
bility interval appears to be small.

For many problems, such explicit differentiation is intolerably complicated, but when
it is feasible to evaluate the first few total derivatives of y, then generalizations of linear
multistep methods that employ such derivatives can be very efficient [1].
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2 Construction of the new hybrid superimplicit method
The main aim of this section is to consider the numerical integration of (1). We consider
k-step methods with first l derivatives of y and ν off-step points of the form

k∑

j=0

αjyn+j =
l∑

i=1

hi
k∑

j=0

βijy(i)
n+j + h

ν∑

j=1

γjfn+sj , αk = 1, (4)

where αi, βij, γj are arbitrary constants to be determined, and 0 < s < k are parameters.
Formula (4) can only be used if we know the values of the solution y(x) and associated
derivatives at k successive points. These k values will be assumed to be given.

For s > k, the methods are called superimplicit because they require the knowledge of
functions not only at past and present but also at future steps (off-points).

The next work concerns the parametric formula with one off-point as follows:

k∑

i=0

αiyn+i = hβk(fn+k – βsfn+s) + h2γk(gn+k – γsgn+s), αk = 1. (5)

The associative formula to obtain the first and second derivatives at the superfuture
points is

yn+s = hμy′
n+k +

k∑

j=0

νjyn+j, (6)

where y′ = f (x, y) and y′′ = g(x, y) = fx + fyf , and the coefficients are chosen so that (5) and
(6) have orders k + 1 and k – 1, respectively.

The associated polynomials are given by

ρ(z) =
k∑

i=0

αizi, σ (z) = βk
(
zk – βszs), η(z) = γk

(
zk – γszs).

We can assume that the functions ρ(z),σ (z), and η(z) have no common factors.
We use a Taylor series expansion to determine all the coefficients of (5), for which we

have

L
[
y(x), h

]
= C0y(x) + C1hy(1)(x) + · · · + Cqhqy(q)(x) + · · · . (7)

Definition 1 The new multistep method (5) is said to be of order p if

C0 = C1 = C2 = · · · = Cp = 0, Cp+1 �= 0.

Hence for any function y(x) ∈ C(p+2) and for some nonzero constant Cp+1, we have

L
(
y(x), h

)
=

k∑

i=0

(αiy(xn + ih) – hβk
(
y′(xn + kh) – βsy′(xn + sh)

)
– h2γk

(
y′′(xn + kh)

– γsy′′(xn + sh)
)

+ Cp+1hp+1y(p+1)(xn) + O
(
hp+2), (8)

where Cp+1 is called the error constant.
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In particular, L(y(x), h) vanishes identically when y(x) is a polynomial whose degree is
less than or equal to p.

Lemma 1 The new multistep method (5) is consistent if and only if

ρ(1) = 0, ρ ′(1) = σ (1). (9)

Proof We know that the general linear multistep methods are consistent if and only if they
have the order p ≥ 1. This implies C0 = C1 = 0. Therefore by a simple calculation we get
(9). �

3 Stability analysis
In this section, we introduce different types of stability. We study A, A(α), and L-stability
of the new superfuture methods (5)–(6) for k = 2 – 5 with one off-point.

Definition 2 (Lambert [17]) A numerical method is said to be A-stable if its region of
absolute stability S contains the whole complex left-half plane.

Definition 3 (Lambert [17]) A k-step method is said to be L-stable if it is A-stable and
has a stability matrix with vanishing eigenvalues at infinity.

If we apply (5)–(6) to the test equation y′ = λy for which y′′ = λ2y, then we get

k∑

i=0

αiyn+i = χβk(yn+k – βsyn+s) + χ2γk(yn+k – γsyn+s), (10)

yn+s = χμyn+k +
k∑

j=0

νjyn+j, (11)

where χ = hλ Substituting (11) inti (10), we obtain

k∑

i=0

αiyn+i = χβk

(

yn+k – βs

(

χμyn+k +
k∑

j=0

νjyn+j

))

+ χ2γk

(

yn+k – γs

(

χμyn+k +
k∑

j=0

νjyn+j

))

. (12)

This equation can be written as

yn+k
(
γkγsμχ3 + βkβsμχ2 – χβk + αk + βkβsνk – γk

)

+
k∑

i=0

(
αi – νiβkβsχ – γkγsνiχ

2)yn+i = 0, (13)

yn+k =
–

∑k
i=0(αi – νiβkβsχ – γkγsνiχ

2)
(γkγsμχ3 + βkβsμχ2 – χβk + αk + βkβsνk – γk)

yn+i. (14)
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Figure 1 Absolute stability region for formulas (4)–(5) with k = 2, 3, 4, 5

The associated characteristic equation takes the form

k∑

i=0

αiξ
i = χβk

(

ξ k – βs

(

χμξ k +
k∑

j=0

νn–jξ
k–j

))

+ χ2γk

(

ξ k – γs

(

χμξ k +
k∑

j=0

νn–jξ
k–j

))

. (15)

For stability, ξ must satisfy the condition |ξ | ≤ 1, with strict inequality for multiple roots;
see [17]. We use the boundary locus method to determine the absolute stability region; for
ξ = eiθ , a cubic equation gives rise to three roots locus curves, which together describe the
stability domain. The stability regions of method (5)–(6) for steps k = 2 up to 5 are plotted
in Fig. 1. The method (5)–(6) is A-stable for k = 2 and 3, and is A(α) stable for k = 4 and 5,
where α = 85.1◦ for k = 4 and α = 75.7◦ for k = 5. From (14) it is clear that since the power
of χ in the denominator is higher than that in the numerator, the solution tends to zero,
and so (5)–(6) is L-stable or L(α)-stable according to its A-stability or A(α)-stability.
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4 Four-step methods with one off-step point
We are going to discuss in details method (4)–(5) for k = 4. The coefficients of method
(5)–(6) for k = 2, 3, 5, the error constants, and the values of the parameters that minimize
the truncation error are listed in the Appendix.

Upon choosing k = 4 in (5)–(6), we get

4∑

i=0

αiyn+i = hβ4(fn+4 – βsfn+s) + h2γ4(gn+4 – γsgn+s), α4 = 1, (16)

yn+s = hμy′
n+4 +

4∑

j=0

νjyn+j. (17)

The coefficients of (16) and (17) are as follows:

α0 = –
(
–6

(
1660 + (–5 + s)s

(
906 + 5(–5 + s)s

(
33 + 2(–5 + s)s

)))

+ β4(–4 + s)2
(
1421 + s

(
–3080 + s

(
2469 + 10s(–86 + 11s)

)))

+ 2(–4 + s)
(
–4669 + s

(
10,856 + 5s

(
–1946 + 3s

(
276 + s(–55 + 4s)

))))
γ4

)

/
(
6
(
36 + (–3 + s)s

(
66 + 5(–3 + s)s

(
9 + 2(–3 + s)s

))))
;

α1 =
(
β4(–4 + s)2

(
324 + s

(
–864 + s

(
972 + 5s(–89 + 14s)

)))

– 4
(
576 + s

(
–1872 + s

(
2676 + 5s

(
–384 + s

(
144 + s(–27 + 2s)

)))))

+ (–4 + s)
(
–2088 + s

(
5832 + 5s

(
–1392 + s

(
746 + 7s(–25 + 2s)

))))
γ4

)

/
(
36 + (–3 + s)s

(
66 + 5(–3 + s)s

(
9 + 2(–3 + s)s

)))
;

α2 = –
(
–12

(
144 + (–4 + s)s

(
171 + 5(–4 + s)s

(
15 + 2(–4 + s)s

)))

+ β4(–4 + s)2
(
225 + s

(
–936 + s

(
1569 + 10s(–94 + 19s)

)))

+ 2(–4 + s)
(
–657 + s

(
2808 + 5s

(
–978 + s

(
664 + s(–185 + 16s)

))))
γ4

)

/
(
2
(
36 + (–3 + s)s

(
66 + 5(–3 + s)s

(
9 + 2(–3 + s)s

))))
;

α3 =
(
β4(–4 + s)2

(
76 + s

(
–352 + s

(
672 + 5s(–101 + 26s)

)))

– 12
(
64 + s

(
–336 + s

(
756 + 5s

(
–160 + s

(
84 + s(–21 + 2s)

)))))

+ (–4 + s)
(
–376 + s

(
1784 + 5s

(
–704 + 3s

(
194 + s(–65 + 6s)

))))
γ4

)

/
(
3
(
36 + (–3 + s)s

(
66 + 5(–3 + s)s

(
9 + 2(–3 + s)s

))))
;

γs = (12
(
24 + 5(–4 + s)s

(
5 + (–4 + s)s

))
– β4(–4 + s)

(
–168 + s

(
649 + s(–548 + 125s)

))

– 5
(
228 + 5s

(
–184 + s

(
183 + s(–64 + 7s)

))
γ4

)

/
((

36 + (–3 + s)s
(
66 + 5(–3 + s)s

(
9 + 2(–3 + s)s

)))
z
)
;

βs =
(
2
(
–60(–2 + s)

(
5 + 2(–4 + s)s

)
+ β4

(
–1382 + s

(
2841 + 2s(–786 + 125s)

))

+ 25(–4 + s)
)
23 + 2s(–20 + 7s)

)
γ4))

/
(
β4

(
36 + (–3 + s)s

(
66 + 5(–3 + s)s

(
9 + 2(–3 + s)s

))))
;

v1 =
1
6
(
24 – 26s + 9s2 – s2 + 2μ – 24v0

)
;
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v2 =
1
2
(
–12 + 19s – 8s2 + s3 – 3μ + 12v0

)
;

v3 =
1
2
(
8 – 14s + 7s2 – s3 + 6μ – 8v0

)
;

v4 =
1
6
(
–6 + 11s – 6s2 + s3 – 11μ + 6v0

)
.

Here β4, γ4, s, μ, ν0 are free parameters, and the error constant of the local truncation
error is

T = –(–12
(
576 + 5(–4 + s)s

(
180 + (–4 + s)s

(
114 + (–4 + s)s

(
31 + 3(–4 + s)s

))))

+ β4(–4 + s)2(1116 + s
(
–6336 + s

(
15,690 + s

(
–18,620

+ s
(
11,195 – 3288s + 375s2)))))

+ (–4 + s)
(
–8856 + s

(
51,624 + 5s

(
–26,424 + s

(
33,502

+ s
(
–22,640 + s

(
8233 + 15s(–100 + 7s)

))))))
γ4)

/(360
(
36 + (–3 + s)s

(
66 + 5(–3 + s)s

(
9 + 2(–3 + s)s

)))
.

The values, s = 4 and γ4 = –72/415 minimize the truncation error, and the error constant
becomes 24

2075 .

5 Stability analysis
We study the stability analysis of method (4)–(5) for k = 4.

Definition 4 (Lambert [17]) An LMM is called A(α)-stable (0 < α < π/2) if S ⊇ Sα =
{μ, | arg(–μ) < α,μ �= 0}|.

To analyze the method for the absolute stability, the associated characteristic equation
of the method (16)–(17) takes the form

ξ 4(1 + β4χ (–1 + βsμχ ) + γ4χ
2(–1 + γsμχ )

)
+ α0 + χ (β4βs + γ4γsχ )v0

+ ξ
(
α1 + ξα2 + ξ 2α3

+ χ (βsγs + γ4γsχ )
(
v1 + ξ

(
v2 + ξ (v3 + ξv4)

)))
. (18)

By using boundary locus method and Wolfram Mathematica the absolute stability re-
gion is plotted. The figure shows that the method is A(α)-stable with α = 85.1◦. The abso-
lute stability region is plotted in Fig. 1.The methods are unstable at the shaded region.

From equation (14) we have

yn+4 = –
4∑

i=0

(
αi – νiβkβsχ – γkγsνiχ

2)yn+i

/
(
γkγsμχ3 + βkβsμχ2 – χβk + αk + βkβsνk – γk

)
. (19)

This equation shows that method (16)–(7) is L(α)-stable.
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Table 1 Numerical results for Test 1

x Method (5)–(6) Parallel SDMM

[y1, y2, y3]T [y1, y2, y3]T

0.4 9.85162E–1 9.851721356E–1
3.38621E–5 3.386395959E–5
1.48045E–2 1.479437796E–2

4.0 9.05514E–1 9.055189442E–1
2.24042E–5 2.240478450E–5
9.44635E–2 9.445891522E–2

Figure 2 The solution curves of Test 1

6 Numerical examples
In this section, we present some numerical results obtained by our new methods (5)–(6)
with step k = 3. The values of the parameters used are β3 = 0.2,γ3 = 0.2, s = 4,μ = –0.6,ν0 =
0.3, and the numerical results are compared with those of other multistep methods.

Test 1 (Robertson chemical kinetics problem, Hojjati [14]) Consider the stiff initial value
problem

y′
1(x) = –0.04y1(x) + 104y2(x)y3(x),

y′
2(x) = –0.04y1(x) – 104y2(x)y3(x) – 3 ∗ 107y2

2(x),

y′
3(x) = 3 ∗ 107y2

2(x), y1(0) = 1, y2(0) = 1, y3(0) = 1.

Numerical results for the Robertson problem by method (5)–(6) are compared with
those of the parallel SDMM method in Table 1. The solution curves are displayed in Fig. 2.

Test 2 The following stiff initial value problem arises from a chemistry problem:

y′
1(x) = –0.013y2(x) – 1000y1(x)y2(x) – 2500y1(x)y3(x),

y′
2(x) = –0.013y2(x) – 1000y1(x)y2(x),
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Table 2 The absolute errors for Test 2

x yi Method (5)–(6) SDBDF

2 y1 2.88593E–13 3.188688E–9
y2 7.23197E–8 1.807690E–3
y3 1.87633E–7 5.760193E–4

y′
3(x) = –2500y1(x)y3(x),

with y1(0) = 0, y2(0) = 1, y3(0) = 1. For x = 2, the exact solution is

y1(2) = –0.3616933169289 ∗ 10–5,

y2(2) = 0.9815029948230,

y3(2) = 1.018493388244.

This problem is solved by method (5)–(6), and the second derivative BDF method
(SDBDF) with h = 0.0001. The absolute errors of the numerical integration at x = 2 are
tabulated in Table 2.

Test 3 Consider the stiff system

y′
1(x) = –10y1(x) + 21y2(x), y1(0) = 1,

y′
2(x) = –21y1(x) – 10y2(x), y2(0) = 1,

y′
3(x) = –10y3(x), y3(0) = 1.

The exact solution is given by

y1(x) = e–10x(cos 21x + sin 21x),

y2(x) = e–10x(cos 21x – sin 21x),

y3(x) = e–10x.

This problem is solved by method (5)–(6), and the sixth-order method given by [19]

yn+1 = yn +
h

120
[900fn+1 – 780fn+2) +

h2

120
(372gn+1 + 348gn+2)

+
h3

120
(111ln+1 – 49ln+2),

yn+2 = yn +
h
15

[120fn+1 – 90fn+2) +
h2

15
(48gn+1 + 428gn+2)

+
h3

15
(14ln+1 – 6ln+2).

(20)

The absolute errors of the numerical integration are illustrated in Table 3.
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Table 3 The absolute errors for Test 3

x yi Method (5)–(6) Method (20)

5 y1 2.67946× 10–25 2.80886425E–12
y2 1.69554× 10–25 4.18209911E–12
y3 1.1381× 10–26 9.547918011E–15

7 Conclusion
Multiderivative methods are used to solve stiff problems effectively. This paper has been
able to develop implicit formulas of linear multistep methods to hybrid superimplicit for-
mulas for the solution of initial value problems. Here a hybrid multistep multiderivative
method is derived with parameters that control stability and the degree of accuracy. It is
clear from the tables that our new methods are accurate. However, choosing the values of
the parameter such that the method is super implicit, the new method has large stability
regions. The method is L-stable for k = 2 and 3 and L(α)-stable with large α for k = 4 and
5. The parameters are determined to minimize the truncation errors for different k.

Appendix
The coefficients of (5) and (6) for k = 2 are

α0 = 1 – β2 +
(
2(β2 + 3γ2)

)
/
(
2 + 3(–2 + s)s

)
,

α1 = –2 + β2 –
(
2(β2 + 3γ2)

)
/
(
2 + 3(–2 + s)s

)
,

βs =
(
2(β2 + 3γ2)

)
/
(
β2

(
2 + 3(–2 + s)s

))
.

γs =
(
β2(–2 + s)(–4 + 9s) + 2

(
–2 + 3s

(
2 + s(–1 + γ2) – 4γ2

)
+ 5γ2

))

/
(
2
(
2 + 3(–2 + s)s

)
γ2

)
,

v1 = 2 – s + μ – 2v0, v2 = –1 + s – μ + v0.

The error constant of the local truncation error is

T =
(
β2(–2 + s)

(
8 + s(–23 + 8s)

)
+ 2

(
2 – 21γ2

+ 3s
(
–2 + s + 2

(
12 + s(–9 + 2s)

)
γ2

)))
/24

(
2 + 3(–2 + s)s

)
.

The values s = 2 and β2 = –3γ2 minimize the truncation error, and the error constant
becomes 1

48 .
The coefficients of (5) and (6) for k = 3 are

α0 =
(
β3(–3 + s)2(39 + 2s(–26 + 9s)

)
+ 2

(
–85 + 243γ3

+ 3s
(
60 – 147γ3 + s

(
–47 + 2s

(
8 + s(–1 + γ3) – 12γ3

)
94γ3

))))

/
(
8 + 6(–2 + s)s

(
3 + 2(–2 + s)s

))
,

α1 =
(
–8β3(–3 + s)2(3 + s(–5 + 3s)

)
+ 3

(
36 – 90s + 93s2 – 40s3 + 6s4

– 4(–3 + s)
(
–8 + (–7 + s)(–2 + s)s

)
γ3

))

/
(
4 + 3(–2 + s)s

(
3 + 2(–2 + s)

))
),
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α2 =
(
β3(–3 + s)2(9 – 28s + 30s2) + 6

(
–9 + 15γ3 + s

(
36 – 53γ3

+ s
(
–57 + 32s – 6s2 + 2(–7 + s)(–5 + s)γ3

))))

/
(
8 + 6(–2 + s)s

(
3 + 2(–2 + s)s

))
,

βs =
(
β3

(
139 + 6s(–36 + 11s)

)
+ 6

(
–11 + 33γ3 + s

(
18 – 47γ3 + 6s(–1 + 2γ3)

)))

/
(
β3

(
4 + 3(–2 + s)s

(
3 + 2(–2 + s)s

)))
,

γs = –
(
18 + β3(–3 + s)

(
13 – 42s + 22s2) – 58γ3

+ 3s
(
–22 + 66γ3 + s

(
18 – 47γ3 + s(–4 + 8γ3)

)))

/
((

4 + 3(–2 + s)s
(
3 + 2(–2 + s)s

))
γ3

)
,

v1 =
1
2
(
6 – 5s + s2 – μ – 6v0

)
,

v2 = –3 + 4s – s2 + 2μ + 3v0,

v3 =
1
2
(
2 – 3s + s2 – 3μ – 2v0

)
.

The error constant of the local truncation error is

T = –
(
–6

(
36 + (–3 + s)s

(
66 + 5(–3 + s)s

(
9 + 2(–3 + s)s

)))

+ β3(–3 + s)2(60 + s
(
–282 + s

(
549 + 10s(–42 + 11s)

)))

+ 2(–3 + s)
(
–168 + s

(
816 + 5s

(
–332 + 3s

(
96 + s(–35 + 4s)

))))
γ3

)

/
(
120

(
4 + 3(–2 + s)s

(
3 + 2(–2 + s)s

)))
.

The values s = 3 and γ3 = –18/85 minimize the truncation error, and the error constant
becomes 9

425 .
The coefficients of (5) and (6) for k = 5 are

α0 = (–12
(
48,076 + 5(–6 + s)s

(
5145 + (–6 + s)s

(
1029 + (–6 + s)s

(
91 + 3(–6 + s)s

))))

+ β5(–5 + s)2(56,620 + s
(
–157,046 + s

(
177,225

+ s
(
–103,780 + s

(
33,260 – 5538s + 375s2)))))

+ (–5 + s)
(
–522,500 + s

(
1,525,694 + 5s

(
–369,805 + s

(
240,067

+ s
(
–89,980 + s

(
19,438 + 15s(–149 + 7s)

))))))
γ5)

/(12
(
576 + 5(–4 + s)s

(
180 + (–4 + s)s

((
114 + (–4 + s)s

(
31 + 3(–4 + s)s

)))))
;

α1 = –(β5(–5 + s)2(42,048 + s
(
–142,992 + s

(
215,940 + s

(
–161,656

+ s
(
62,642 + 3s(–4022 + 305s)

)))))
– 30

(
14,400 + s

(
–55,440

+ s
(
96,708 + s

(
–90,832 + s

(
49,650 + s

(
–16,296 + s

(
3167 + 3s(–112 + 5s)

)))))))

+ 2(–5 + s)
(
–191,808 + s

(
676,944 + 5s

(
–213,732 + s

(
173,836

+ s
(
–77,608 + s

(
19,147 + 3s(–811 + 41s)

))))))
γ5)

/
(
6
(
576 + 5(–4 + s)s

(
180 + (–4 + s)s

(
114 + (–4 + s)s

(
31 + 3(–4 + s)s

)))))
;
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α2 = (3β5(–5 + s)2(2256 + s
(
–11,052 + s

(
23,075 + s

(
–21,734

+ s
(
10,114 + s(–2266 + 195s)

)))))
– 20

(
3600 + s

(
–19,260

+ s
(
44,967 + s

(
–52,064 + s

(
33,405 + s

(
–12,468 + s

(
2693 + 3s(–104 + 5s)

)))))))

+ 3(–5 + s)
(
–19,632 + s

(
98,628 + 5s

(
–42,557 + s

(
43,063

+ s
(
–22,712 + s

(
6388 + s(–899 + 49s)

))))))
γ5)

/
(
2
(
576 + 5(–4 + s)s

(
180 + (–4 + s)s

(
114 + (–4 + s)s

(
31 + 3(–4 + s)s

)))))
;

α3 = –(β5(–5 + s)2(8384 + s
(
–45,232 + s

(
105,420 + s

(
–115,304 + s

(
62,566

+ 3s(–5402 + 535s)
)))))

– 60
(
1600 + s

(
–9360 + s

(
24,132

+ s
(
–31,536 + s

(
22,830 + s

(
–9522 + s

(
2273 + 3s(–96 + 5s)

)))))))

+ 2(–5 + s)
(
–33,344 + s

(
183,824 + 5s

(
–88,084

+ s
(
102,076 + s

(
–61,564 + s

(
19,489 + 3s(–1009 + 59s)

))))))
γ5)

/
(
6
(
576 + 5(–4 + s)s

(
180 + (–4 + s)s

(
114 + (–4 + s)s

(
31 + 3(–4 + s)s

)))))
;

α4 = (β5(–5 + s)2(3636 + s
(
–20,466 + s

(
50,145 + s

(
–58,928

+ s
(
35,104 + 3s(–3406 + 385s)

)))))
– 60

(
900 + s

(
–5490 + s

(
14,853

+ s
(
–20,668 + s

(
16,125 + s

(
–7314 + s

(
1907 + 3s(–88 + 5s)

)))))))

+ (–5 + s)(–24,732 + s)142,074 + 5s
(
–71,433 + s

(
88,447

+ s
(
–57,892 + s

(
20,122 + 3s(–1141 + 71s)

))))
))γ5)

/
(
12

(
576 + 5(–4 + s)s

(
180 + (–4 + s)s

(
114 + (–4 + s)s

(
31 + 3(–4 + s)s

)))))
;

βs = (2
(
–60

(
274 + 15(–5 + s)s

(
9 + (–5 + s)s

)
+ β5

(
40,538 + 15s

(
–6585

+ s
(
4898 + s(–1410 + 137s)

)))

+ 5(–5 + s)
(
–3014 + s

(
6623 + s(–3923 + 675s)

))
γ5

))

/
(
β5

(
576 + 5(–4 + s)s

(
180 + (4 + s)s

(
114 + (–4 + s)s

(
31 + 3(–4 + s)s

)))))
;

γs =
(
60(–5 + 2s)

(
24 + (–5 + s)s

(
20 + 3(–5 + s)s

))
– β5(–5 + s)

(
3576

+ s
(
–15,500 + s

(
16,655 – 6465s + 822s2)))

+
(
33,576 – 5s

(
30,140 + s

(
–36,129 + s

(
17,492 + s(–3649 + 270s)

))))
γ5

)

/
((

576 + 5(–4 + s)s
(
180 + (–4 + s)s

(
114 + (–4 + s)s

(
31 + 3(–4 + s)s

))))
γ5

)
;

v1 =
(
120 – 154s + 71s2 – 14s3 + s4 – 6μ – 120v0

)
/24;

v2 =
(
–60 + 107s – 59s2 + 13s3 – s4 + 8μ + 60v0

)
/6;

v3 =
(
40 – 78s + 49s2 – 12s3 + s4 – 12μ – 40v0

)
/4;

v4 =
(
–30 + 61s – 41s2 + 11s3 – s4 + 24μ + 30v0

)
/6;

v5 =
(
24 – 50s + 35s2 – 10s3 + s4 – 50μ – 24v0

)
/24.
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The error constant of the local truncation error is

T = –
(
–180

(
4800 + (–5 + s)s

(
6576 + (–5 + s)s

(
3820

+ 7(–5 + s)s
(
152 + (–5 + s)s

(
20 + (–5 + s)s

)))))
+ 3β5(–5 + s)2(30,912

+ s
(
–198,000 + s

(
567,740 + s(–841,720 + s)704,268 + s

(
–345,575

+ s
(
98,505 + 7s(–2155 + 137s)

))))))
)

+ (–5 + s)
(
–977,472 + s

(
6,397,200 + s

(
–18,824,100

+ s
(
29,186,060 + 7s

(
–3,739,208 + 5s

(
407,305 + s

(
–136,318

+ s
(
27,268 + s(–2974 + 135s)

))))))))
γ5)

/
(
2520

(
576 + 5(–4 + s)s

(
180 + (–4 + s)s

(
114 + (–4 + s)s

(
31 + 3(–4 + s)s

)))))
.

The values s = 5 and γ5 = –1800/12,019 minimize the truncation error, and the error con-
stant becomes 600

84,133 .
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