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Abstract
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1 Introduction
Several stochastic dynamical systems not only rely on current and past values but
also include derivatives with delays. Neutral stochastic functional differential equations
(NSFDEs) are employed to express such type of systems. These equations and their ap-
plications in aeroelasticity and chemical engineering were introduced by Kolmanovskii,
Nosov and Myshkis [10, 11]. Thenceforth, the theory of NSFDEs has attracted the at-
tention of many authors [15, 16, 29, 32]. The existence-uniqueness and stability of solu-
tions for neutral stochastic functional differential equations driven by G-Brownian mo-
tion (G-NSFDEs) with Lipschitz and non-Lipschitz conditions was, respectively, studied
by Faiz [4] and Faiz et al. [7]. The pth moment exponential stability for solutions to G-
NSFDEs with Markovian switching [13] and the asymptotic stability of Euler–Maruyama
numerical solutions for G-NSFDEs [14] was given by Li and Yang. The quasi sure expo-
nential stability for solutions to the stated equations was established by Zhu et al. [33].
The mean-square stability of delayed stochastic neural networks driven by G-Brownian
motion and stabilization of SDEs driven by G-Brownian motion can be found in [20, 28].
For the text on stochastic functional differential equations driven by G-Brownian motion
we refer the reader to see [3, 5, 18]. The existence theory and estimates for the differ-
ence between exact and approximate solutions of stochastic differential equations driven
by G-Brownian motion can be found in [2, 8, 9]. Also see [21–26]. Unlike to the above
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briefly discussed literature, this article presents the study of G-NSFDEs with some suit-
able monotone type conditions in the phase space Cq defined below. We investigate the
boundedness and convergence of solutions. We derive the convergence of any two solu-
tion maps with distinct initial conditions. Furthermore, the L2

G and exponential estimates
for solutions to G-NSFGEs are determined. Let Rn be an n-dimensional Euclidean space
and C((–∞, 0];Rn) be the collection of continuous functions from (–∞, 0] to R

n. For a
given number q > 0 the phase space with the fading memory Cq((–∞, 0];Rn) is defined by

Cq
(
(–∞, 0];Rn) =

{
ψ ∈ C

(
(–∞, 0];Rn) : lim

θ→–∞ eqθψ(θ ) exists in R
n
}

.

The space Cq((–∞, 0];Rn) endowed with the norm ‖ψ‖q = sup–∞<α≤0 eqα|ψ(α)| < ∞ is
a Banach space of continuous and bounded functions and for any 0 ≤ q1 ≤ q2 < ∞,
Cq1 ⊆ Cq2 [12, 31]. Let B(Cq) be the σ -algebra generated by Cq and C0

q = {ψ ∈ Cq :
limθ→–∞ eqθψ(θ ) = 0}. Denote by C2(Cq) (resp. C2(C0

q)) the space of all F -measurable Cq-
valued (resp. C0

q -valued) stochastic processes ψ such that E‖ψ‖2
q < ∞. Let (Ω ,F ,P) be a

complete probability space, B(t) be a n-dimensional G-Brownian motion and Ft = σ {B(s) :
0 ≤ s ≤ t} be the natural filtration. Let the filtration {F ; t ≥ 0} satisfies the usual conditions.
Let P be the collection of all probability measures on (Cq,B(Cq)) and Cb(Cq) be the set of
all bounded continuous functionals. Let N0 be the set of probability measures on (–∞, 0]
such that, for any μ ∈ N0,

∫ 0
–∞ μ(dθ ) = 1. For any m > 0 we define Nm by

Nm =
{
μ ∈ N0 : μ(m) =

∫ 0

–∞
e–mθμ(dθ ) < ∞

}
,

where for any k ∈ (0, k0), Nk0 ⊂ Nk ⊂ N0 [31]. We study the G-NSFDE with infinite delay

d
[
z(t) – u(zt)

]
= g(zt) dt + h(zt) d〈B, B〉(t) + γ (zt) dB(t), (1.1)

on t ≥ 0 with the given initial data z0 = ζ ∈ Cq((–∞, 0];Rn) and zt = {z(t +θ ) : –∞ < θ ≤ 0}.
The remaining article is divided in three sections. The basic notions and definitions can be
found in Sect. 2. Section 3 includes some useful lemmas, boundedness and convergence
of solutions and solution maps. The L2

G and exponential estimates are placed in the last
Sect. 4.

2 Preliminaries
This section contains some basic notions and results required for our further study in the
subsequent sections of this article [2, 6, 17–19, 27, 30]. Assume a sublinear expectation
space (S,W , Ê) where W is a space of real mappings defined on a given non-empty set
S. Assume that S denotes the collection of all Rn-valued continuous trajectories (z(t))t≥0

with z(0) = 0 endowed with the distance

ρ
(
z1, z2) =

∞∑

i=1

1
2i

(
max
t∈[0,i]

∣∣z1(t) – z2(t)
∣∣ ∧ 1

)
.

Let B(t) = B(t, z) = z(t) [18] for any z ∈ S and t ≥ 0, be the canonical process. For a selected
T ∈ [0,∞), we define

Lip(ST ) =
{
χ

(
B(t1), B(t2), . . . , B(tn)

)
: n ≥ 1, t1, t2, . . . , tn ∈ [0, T],χ ∈ Cb.Lip

(
R

n×m)
)
}

,
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where Cb.Lip(Rn×m) is a space of bounded Lipschitz mappings. For t ≤ T , Lip(St) ⊆Lip(ST )
and Lip(S) =

⋃∞
n=1 Lip(Sn). Let Lp

G(S) denote the completion of Lip(S) equipped with the
Banach norm Ê[| · |p]

1
p , p ≥ 1 and Lp

G(St) ⊆ Lp
G(ST ) ⊆ Lp

G(S) for 0 ≤ t ≤ T < ∞. Let Ft =
σ {B(v), 0 ≤ v ≤ t} indicate the filtration produced by the stated canonical process and F =
{Ft}t≥0. Let πT = {t0, t1, . . . , tZ+}, 0 ≤ t0 ≤ t1 ≤ · · · ≤ tZ+ ≤ ∞ be a partition of [0, T]. For
everyZ+ ≥ 1, 0 = t0 < t1 < · · · < tZ+ = T and i = 0, 1, . . . ,Z+ –1, define the spaceMp,0

G ([0, T]),
p ≥ 1 of simple processes as

Mp,0
G

(
[0, T]

)
=

{

ηt(z) =
Z

+–1∑

i=0

ξti (z)I[ti ,ti+1](t); ξti (z) ∈Lp
G(Ωti )

}

. (2.1)

The space (2.1) is complete with the norm ‖η‖ = {∫ T
0 Ê[|η(s)|p] ds}1/p and is indicated by

Mp
G(0, T), p ≥ 1.

Definition 2.1 Let ηt ∈M2,0
G (0, T). Then the G-Itô integral, say J(η), is given by

J(η) =
∫ T

0
η(s) dBθ (s) =

Z
+–1∑

i=0

ξi
(
Bθ (ti+1) – Bθ (ti)

)
.

We can continuously extend the mapping J : M2,0
G (0, T) 
→ L2

G(FT ) to J : M2
G(0, T) 
→

L2
G(FT ). For η ∈M2

G(0, T) we can still give the G-Itô integral as

∫ T

0
η(s) dBθ (s) = J(η).

Definition 2.2 The quadratic variation process {〈Bθ 〉(t)}t≥0 of G-Brownian motion is
given by

〈
Bθ

〉
(t) = lim

Z+→∞

Z
+–1∑

i=0

(
Bθ

(
tZ

+
i+1

)
– Bθ

(
tZ

+
i

))2 = Bθ (t)2 – 2
∫ t

0
Bθ (s) dBθ (s).

The stated process is increasing, 〈Bθ 〉(0) = 0 and for any 0 ≤ s ≤ t, 〈Bθ 〉(t) – 〈Bθ 〉(s) ≤
σθθτ (t – s).

Assume that θ , θ̂ ∈ R
n be given vectors. The mutual variation process of Bθ̂ and Bθ is

given by 〈Bθ , Bθ̂ 〉 = 1
4 [〈Bθ + Bθ̂ 〉(t) – 〈Bθ – Bθ̂ 〉(t)]. A mapping W0,T : M0,1

G (0, T) 
→L2
G(FT )

is defined by

W0,T (η) =
∫ T

0
η(s) d

〈
Bθ

〉
(s) =

Z
+–1∑

i=0

ξi
(〈

Bθ
〉
(ti+1) –

〈
Bθ

〉
(ti)

)
.

We can continuously extend it to M1
G(0, T) and for η ∈M1

G(0, T) this is still given by

∫ T

0
η(s) d

〈
Bθ

〉
(s) = W0,T (η).
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The concept of G-capacity and Lemma 2.3 can be found in [1]. Let B(S) be a Borel σ -
algebra of S. Let Q represent the group of all probability measures on (S,B(S). The G-
capacity ν̂ is given as follows:

ν̂(C) = sup
P∈Q

P(C),

where set C ∈ B(S). If ν̂(C) = 0 then the set C ∈ B(S) is called polar. A characteristic holds
quasi-surely when it holds external of the set C.

Lemma 2.3 Let z ∈ Lp
G and Ê|z|p < ∞. Then, for each c > 0, the G-Markov inequality is

given by

ν̂
(|z| > c

) ≤ Ê[|z|p]
c

.

For the proof of Lemmas 2.4 and 2.5 see [9].

Lemma 2.4 Let θ ∈R
n, η ∈M2

G(0, T), p ≥ 2 and z(t) =
∫ t

0 η(s) dBθ (s). Then on some S̄ ⊂ S
with ν(S̄c) = 0 and ∀t ∈ [0, T], ν̂(|z(t) – z̄| �= 0) = 0 so that

Ê

[
sup

s≤v≤t

∣
∣z̄(v) – z̄(s)

∣
∣p

]
≤ K̂σ

p
2

θθτ Ê

(∫ t

s

∣
∣η(v)

∣
∣2 dv

) p
2

,

where 0 < K̂ < ∞ is a positive constant and z̄(t) is a modification of z(t).

Lemma 2.5 Let θ , θ̂ ∈ R
n, p ≥ 1 and η ∈ Mp

G(0, T). A continuous modification z̄θ ,θ̂ (t) of
zθ ,θ̂ (t) =

∫ t
0 η(s) d〈Bθ , Bθ̂ 〉(s) exists and for 0 ≤ s ≤ v ≤ t ≤ T ,

Ê

[
sup

0≤s≤v≤t

∣∣z̄θ ,θ̂ (v) – z̄θ ,θ̂ (s)
∣∣p

]
≤

(
1
4
σ(θ+θ̂)(θ–θ̂ )τ

)p

(t – s)p–1
Ê

∫ t

s

∣∣η(v)
∣∣p dv.

Lemma 2.6 Let λ < 2q and μi ∈ Nm, for any i ∈ Z
+. Then, for any ζ ∈ Cq((–∞, 0];Rn),

∫ t

0

∫ 0

–∞

∣
∣z(s + θ )

∣
∣2

μi(dθ ) ds ≤ μ
(2q)
i

2q
‖ζ‖2

q +
∫ t

0

∣
∣z(s)

∣
∣2 ds, (2.2)

∫ t

0

∫ 0

–∞
eλs∣∣z(s + θ )

∣∣2
μi(dθ ) ds ≤ μ

(2q)
i

2q – λ
‖ζ‖2

q + μ
(2q)
i

∫ t

0
eλs∣∣z(s)

∣∣2 ds. (2.3)

Proof Let ζ ∈ Cq((–∞, 0];Rn) and μi ∈ N2q for any i ∈ Z
+. By using the definition of norm

and the Fubini theorem, we derive

∫ t

0

∫ 0

–∞

∣
∣z(s + θ )

∣
∣2

μi(dθ ) ds

=
∫ t

0

[∫ –s

–∞
e2q(s+θ )∣∣z(s + θ )

∣∣2e–2q(s+θ )μi(dθ ) +
∫ 0

–s

∣∣z(s + θ )
∣∣2

μi(dθ )
]

ds

≤ ‖ζ‖2
q

∫ t

0
e–2qs ds

∫ 0

–∞
e–2qθμi(dθ ) +

∫ 0

–∞
μi(dθ )

∫ t

0

∣
∣z(s)

∣
∣2 ds,
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by noticing that
∫ 0

–∞ μi(dθ ) = 1 and
∫ 0

–∞ e–2qθμi(dθ ) = μ
(2q)
i , i ∈ Z

+, we derive

∫ t

0

∫ 0

–∞

∣
∣z(s + θ )

∣
∣2

μi(dθ ) ds ≤ μ
(2q)
i

2q
‖ζ‖2

q +
∫ t

0

∣
∣z(s)

∣
∣2 ds.

The proof of (2.2) is complete. The assertion (2.3) can be proved in a similar fashion as
above. �

The book [16] is a good reference for the following three lemmas.

Lemma 2.7 Let a, b ≥ 0 and ε ∈ (0, 1). Then

(a + b)2 ≤ a2

ε
+

b2

1 – ε
.

Lemma 2.8 Assume p ≥ 2 and ε̂, a, b > 0. Then the following two inequalities hold:
(i) ap–1b ≤ (p–1)ε̂ap

p + bp

pε̂p–1 .

(ii) ap–2b2 ≤ (p–2)ε̂ap

p + 2bp

pε̂
p–2

2
.

Lemma 2.9 Let a1, a2 ∈ R and δ ∈ (0, 1). Then for any p > 1

|a1 + a2|p ≤ [
1 + δ

1
p–1

]p–1
(

|a1|p +
|a2|p

δ

)
.

3 Boundedness and convergence of solutions
Consider that problem (1.1) has a solution z(t). All through this article we take λ < pq for
any p ≥ 1. We assume the following two hypotheses:

(A1) Let y, z ∈ Cq((–∞, 0];Rn) and μ1,μ2,μ3 ∈ N2q. Then there are positive constants
λi, i = 1, 2, . . . , 5 so that

[
z(0) – y(0) –

(
u(z) – u(y)

)]T[
g(z) – g(y)

]

≤ –λ1
∣
∣z(0) – y(0)

∣
∣2 + λ2

∫ 0

–∞

∣
∣z(θ ) – y(θ )

∣
∣2

μ1(dθ ),

[
z(0) – y(0) –

(
u(z) – u(y)

)]T[
h(z) – h(y)

]

≤ –λ3
∣
∣z(0) – y(0)

∣
∣2 + λ4

∫ 0

–∞

∣
∣z(θ ) – y(θ )

∣
∣2

μ2(dθ ),

and

∣∣γ (z) – γ (y)
∣∣2 ≤ λ5

∫ 0

–∞

∣∣z(θ ) – y(θ )
∣∣2

μ3(dθ ).

(A2) Let z ∈ Cq((–∞, 0];Rn) and μ4 ∈ N2q with μ
(2q)
4 < 1. Then there is a constant 0 < b̂ <

1 so that

∣∣u(z)
∣∣2 ≤ b̂

∫ 0

–∞

∣∣z(θ )
∣∣2

μ4(dθ ). (3.1)
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Let p > 1, z ∈ Cq((–∞, 0];Rn) and μ4 ∈ Npq with μ
(pq)
4 < 1. Then there is a constant 0 < b < 1

so that

∣∣u(z)
∣∣p ≤ bp

∫ 0

–∞

∣∣z(θ )
∣∣p

μ4(dθ ). (3.2)

Obviously, if p = 2 and letting b2 = b̂ then (3.2) is the same as (3.1). Firstly, we give the
prove of some important lemmas.

Lemma 3.1 Let p > 1, q > 0 and ζ ∈ Cq((–∞, 0];Rn). Let condition 3.2 hold. Then

sup
0<s≤t

∣∣z(s)
∣∣p ≤ bμ

(pq)
4

1 – b
e–pqs‖ζ‖p

q +
1

(1 – b)p sup
0<s≤t

∣∣z(s) – u(zs)
∣∣p,

where 0 < b < 1.

Proof By using Lemma 2.9 and condition (3.2) for any δ > 0, it follows that

∣
∣z(t)

∣
∣p =

∣
∣u(zt) + z(t) – u(zt)

∣
∣p

≤ [
1 + δ

1
p–1

]p–1
(

bp

δ

∫ 0

–∞

∣
∣z(t + θ )

∣
∣p

μ4 d(θ ) +
∣
∣z(t) – u(zt)

∣
∣p

)
.

Taking δ = ( b
1–b )p–1 and using the definition of norm, we obtain

sup
0<s≤t

∣
∣z(s)

∣
∣p ≤ b

∫ 0

–∞
sup

0<s≤t

∣
∣z(s + θ )

∣
∣p

μ4(dθ ) +
1

(1 – b)p–1 sup
0<s≤t

∣
∣z(s) – u(zs)

∣
∣p

= b
∫ –s

–∞
sup

0<s≤t
epq(s+θ )∣∣z(s + θ )

∣
∣pe–pq(s+θ )μ4(dθ ) + b

∫ 0

–s
sup

0<s≤t

∣
∣z(s + θ )

∣
∣p

μ4(dθ )

+
1

(1 – b)p–1 sup
0<s≤t

∣∣z(s) – u(zs)
∣∣p

≤ be–pqs‖ζ‖p
q

∫ –s

–∞
e–pqθμ4(dθ ) + b sup

0<s≤t

∣∣z(s)
∣∣p

∫ 0

–s
μ4(dθ )

+
1

(1 – b)p–1 sup
0<s≤t

∣∣z(s) – u(zs)
∣∣p

≤ be–pqs‖ζ‖p
q

∫ 0

–∞
e–pqθμ4(dθ ) + b sup

0<s≤t

∣∣z(s)
∣∣p

∫ 0

–∞
μ4(dθ )

+
1

(1 – b)p–1 sup
0<s≤t

∣∣z(s) – u(zs)
∣∣p

≤ bμ
(pq)
4 e–pqs‖ζ‖p

q + b sup
0<s≤t

∣
∣z(s)

∣
∣p +

1
(1 – b)p–1 sup

0<s≤t

∣
∣z(s) – u(zs)

∣
∣p,

simplification yields the desired assertion. The proof is complete. �

Lemma 3.2 Let p > 1, q > 0 and ζ ∈ Cq((–∞, 0];Rn). Let condition 3.2 hold. Then there
exists a constant 0 < b < 1 such that

∣
∣ζ (0) – u(ζ )

∣
∣p ≤ (1 + b)p–1(1 + bμ

(pq)
4

)‖ζ‖p
q.
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Proof In view of Lemma 2.9 and condition (3.2), we obtain

∣
∣ζ (0) – u(ζ )

∣
∣p ≤ [

1 + δ
1

p–1
]p–1

(∣
∣ζ (0)

∣
∣p +

|u(ζ )|p
δ

)

≤ [
1 + δ

1
p–1

]p–1
(∣∣ζ (0)

∣∣p +
bp

δ

∫ 0

–∞

∣∣ζ (θ )
∣∣p

μ4(dθ )
)

.

Observing |ζ (0)|p ≤ sup–∞<α≤0 epqθ |ζ (θ )|p = ‖ζ‖p
q and substituting δ = bp–1 we have

∣
∣ζ (0) – u(ζ )

∣
∣p ≤ (1 + b)p–1‖ζ‖p

q + b(1 + b)p–1
∫ 0

–∞

∣
∣ζ (θ )

∣
∣p

μ4(dθ )

≤ (1 + b)p–1‖ζ‖p
q + b(1 + b)p–1

∫ 0

–∞
sup

–∞<θ≤0
epqθ

∣
∣ζ (θ )

∣
∣pe–pqθμ4(dθ )

= (1 + b)p–1‖ζ‖p
q + b(1 + b)p–1‖ζ‖p

q

∫ 0

–∞
e–pqθμ4(dθ )

= (1 + b)p–1‖ζ‖p
q + b(1 + b)p–1‖ζ‖p

qμ
(pq)
4

= (1 + b)p–1(1 + bμ
(pq)
4

)‖ζ‖p
q.

The proof is completed. �

Lemma 3.3 Let p > 1, q > 0 and ζ ∈ Cq((–∞, 0];Rn). Let condition 3.2 hold. Then

∣
∣z(t) – u(zt)

∣
∣p ≤ (1 + b)p–1∣∣z(t)

∣
∣p +

(1 + b)p–1

b

∫ 0

–∞

∣
∣z(t + θ )

∣
∣p

μ4(dθ ),

where 0 < b < 1.

We omit the proof. It can be proved in a similar procedure to the above last lemma. Now
let us see one of the main results.

Theorem 3.4 Under assumptions A1 and A2, if for any ζ ∈ Cq, λi, i = 1, 2, . . . , 5 satisfy
λ1 > μ

(2q)
1 λ2 – k2λ3 + k2μ

(2q)
2 λ4 + (2k2

1 + k2)μ(2q)
3 λ5 then there exists λ ∈ (0, 1

(1+b1μ
(2q)
4 )

(λ1 +

k2λ3 – μ
(2q)
1 λ2 – k2μ

(2q)
2 λ4 – (2k2

1 + k2)μ(2q)
3 λ5) ∧ 2q) such that

Ê

[
sup

0<s≤t

∣
∣z(s)

∣
∣2

]
≤ C + Ke–λt ,

where C = b3c1, K = (b2 + b3c2)Ê‖ζ‖2
q, b1 = 1 + b–1, b2 = bμ

(2q)
4 (1 – b)–1, b3 = (1 – b)–2, c1 =

1
λ

[ 1
ε1

|g(0)|2 + k2
1
ε1

|h(0)|2 + (k2 + k3) 1
ε3

|γ (0)|2], c2 = 2
2q–λ

(4(2q – λ) + 2λ2μ
(2q)
1 + 2k2λ4μ

(2q)
2 +

(2k2
1 + k2)μ(2q)

3 + b1(λ+ε1 +ε1k2)μ(2q)
4 ), k1, k2 are positive constants and ε1, ε2 are sufficiently

small constants such that

λ1 + k2λ3 – μ
(2q)
1 λ2 – k2μ

(2q)
2 λ4 –

(
2k2

1 + k2
)
μ

(2q)
3

1
1 – ε2

λ5

–
(
1 + b1μ

(2q)
4

)
(λ + 1 + k2)ε1 > 0.
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Proof By virtue of the G-Itô formula, for any t ∈ [0, T], it follows that

eλt∣∣z(t) – u(zt)
∣∣2

≤ ∣∣z(0) – u(z0)
∣∣2 +

∫ t

0
eλs[λ

∣∣z(s) – u(zs)
∣∣2 + 2

∣∣z(s) – u(zs)
∣∣T g(zs)

]
ds

+
∫ t

0
eλs[2

∣
∣z(s) – u(zs)

∣
∣T h(zs) +

∣
∣γ (zs)

∣
∣2]d〈B, B〉(s)

+
∫ t

0
2eλs∣∣z(s) – u(zs)

∣∣T
γ (zs) dB(s).

Applying the G-expectation on both sides, utilizing Lemma 2.5, Lemma 2.4 and Lemma
3.2, there exist k1 > 0 and k2 > 0 so that

Ê

[
sup

0≤s≤t
eλs∣∣z(s) – u(zs)

∣∣2
]

≤ 4Ê‖ζ‖2
q + Ê

∫ t

0
eλs[λ

∣
∣z(s) – u(zs)

∣
∣2 + 2

∣
∣z(s) – u(zs)

∣
∣T g(zs)

]
ds

+ k2Ê

∫ t

0
eλs[2

∣∣z(s) – u(zs)
∣∣T h(zs) +

∣∣γ (zs)
∣∣2]ds

+ 2k1Ê

[∫ t

0

(
eλs∣∣z(s) – u(zs)

∣∣T ∣∣γ (zs)
∣∣)2

] 1
2

ds

≤ 4Ê‖ζ‖2
q + Ê

∫ t

0
eλs[λ

∣
∣z(s) – u(zs)

∣
∣2 + 2

∣
∣z(s) – u(zs)

∣
∣T g(zs)

]
ds

+ 2k2
1Ê

∫ t

0
eλs∣∣γ (zs)

∣∣2 ds +
1
2
Ê

(
sup

0<s≤t
eλs∣∣z(s) – u(zs)

∣∣2
)

+ k2Ê

∫ t

0
eλs[2

∣∣z(s) – u(zs)
∣∣T h(zs) +

∣∣γ (zs)
∣∣2]ds. (3.3)

By using assumption A1 and Lemma 2.8 we derive

2
∣
∣z(s) – u(zs)

∣
∣τ g(zs) ds

≤ 2
∣
∣z(s) – u(zs)

∣
∣τ g(0) – 2λ1

∣
∣z(s)

∣
∣2 + 2λ2

∫ 0

–∞

∣
∣z(s + θ )

∣
∣2

μ1(dθ )

≤ ε1
∣
∣z(s) – u(zs)

∣
∣2 +

1
ε1

∣
∣g(0)

∣
∣2 – 2λ1

∣
∣z(s)

∣
∣2 + 2λ2

∫ 0

–∞

∣
∣z(s + θ )

∣
∣2

μ1(dθ ), (3.4)

similar arguments give

2
∣
∣z(s) – u(zs)

∣
∣τ h(zs) ds

≤ ε1
∣
∣z(s) – u(zs)

∣
∣2 +

1
ε1

∣
∣h(0)

∣
∣2 – 2λ3

∣
∣z(s)

∣
∣2

+ 2λ4

∫ 0

–∞

∣
∣z(s + θ )

∣
∣2

μ2(dθ ). (3.5)
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In view of assumption A1 and Lemma 2.7 we derive

∣∣γ (zs)
∣∣2 ≤ 1

ε2

∣∣γ (0)
∣∣2 +

λ5

1 – ε2

∫ 0

–∞

∣∣z(s + θ )
∣∣2

μ3(dθ ). (3.6)

By substituting (3.4), (3.5) and (3.6) in (3.3) and using Lemma 3.3 we get

Ê

[
sup

0≤s≤t
eλs∣∣z(s) – u(zs)

∣∣2
]

≤ 8Ê‖ζ‖2
q + 4[–λ1 – k2λ3 + λ + ε1 + ε1k2]Ê

∫ t

0
eλs∣∣z(s)

∣∣2 ds

+ c1
(
eλt – 1

)
+ 4λ2Ê

∫ t

0

∫ 0

–∞
eλs∣∣z(s + θ )

∣
∣2

μ1(dθ ) ds

+ 4k2λ4Ê

∫ t

0

∫ 0

–∞
eλs∣∣z(s + θ )

∣∣2
μ2(dθ ) ds

+ 2
(
2k2

1 + k2
) λ5

1 – ε2
Ê

∫ t

0

∫ 0

–∞
eλs∣∣z(s + θ )

∣
∣2

μ3(dθ ) ds

+ 2b1(λ + ε1 + ε1k2)Ê
∫ t

0

∫ 0

–∞
eλs∣∣z(s + θ )

∣∣2
μ4(dθ ) ds,

where c1 = 2
λ

[ 1
ε1

|g(0)|2 + k2
1
ε1

|h(0)|2 + (k2 + k3) 1
ε2

|γ (0)|2] and b1 = 1 + b–1. By virtue of
Lemma 2.6, it follows that

Ê

[
sup

0≤s≤t
eλs∣∣z(s) – u(zs)

∣
∣2

]

≤ c1
(
eλt – 1

)
+ c2Ê‖ζ‖2

q + 2
[

12λ1 – 2k2ε3 + 2λ + 2ε1 + 2ε1k2

+ 2λ2μ
(2q)
1 + 2k2λ4μ

(2q)
2 +

(
2k2

12 + k2
) λ5

1 – ε2
μ

(2q)
3

+ b1(λ + ε1 + ε1k2)μ(2q)
4

]
Ê

∫ t

0
eλs∣∣z(s)

∣
∣2 ds,

where c2 = 2
2q–λ

(4(2q – λ) + 2λ2μ
(2q)
1 + 2k2λ4μ

(2q)
2 + (2k2

1 + k2)μ(2q)
3 + b1(λ + ε1 + ε1k2)μ(2q)

4 ).
Next, we use Lemma 3.1 to derive

Ê

[
sup

0<s≤t
eλs∣∣z(s)

∣∣2
]

≤ (b2 + b3c2)Ê‖ζ‖2
q + b3c1

(
eλt – 1

)
– 4b3

[
λ1 + k2λ3 – μ

(2q)
1 λ2 – k2μ

(2q)
2 λ4

–
(
2k2

1 + k2
)
μ

(2q)
3

1
1 – ε2

λ5 –
(
1 + b1μ

(2q)
4

)
λ

– (1 + k2)
(
1 + b1μ

(2q)
4

)
ε1

]
Ê

∫ t

0
eλs∣∣z(s)

∣∣2 ds, (3.7)

where b2 = bμ
(2q)
4 (1 – b)–1, b3 = (1 – b)–2 and e–(2q–λ)s < 1. From the assumptions, we notice

that λ1 > μ
(2q)
1 λ2 – k2λ3 + k2λ4μ

(2q)
2 + (2k2

1 + k2)μ(2q)
3 λ5 and λ ∈ (0, 1

(1+b1μ
(2q)
4 )

(λ1 + k2λ3 –
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μ
(2q)
1 λ2 – k2μ

(2q)
2 λ4 – (2k2

1 + k2)μ(2q)
3 λ5) ∧ 2q). Choosing ε1 and ε2 sufficiently small such

that

λ1 + k2λ3 – μ
(2q)
1 λ2 – k2μ

(2q)
2 λ4 –

(
2k2

1 + k2
)
μ

(2q)
3

1
1 – ε2

λ5

–
(
1 + b1μ

(2q)
4

)
(λ + 1 + k2)ε1 > 0,

we get the desired result. The proof is completed. �

Next, let us see the convergence of any two solutions of G-NSFDEs with different initial
data.

Theorem 3.5 Let the assumptions of Theorem 3.4 hold. Let y(t) and z(t) be any two solu-
tions of problem (1.1) with the respective initial conditions ζ and ξ . Then

Ê

[
sup

0≤s≤t

∣∣z(t) – y(t)
∣∣2

]
≤ LÊ‖ζ – ξ‖2

qe–λt ,

where L = b2 + b3c3, b2 = bμ
(2q)
4 (1 – b)–1, b3 = (1 – b)–2, c3 = 2

2q–λ
[4(2q – λ) + 2λ2μ

(2q)
1 +

2k2λ4μ
(2q)
2 + (k2 + 2k2

1)λ5μ
(2q)
3 + λb1μ

(2q)
4 ], b1 = 1 + b–1, k1 and k2 are positive constants.

Proof Define Λ(t) = z(t) – y(t), û(t) = u(zt) – u(yt), ĝ(t) = g(zt) – g(yt), ĥ(t) = h(zt) – h(yt),
γ̂ (t) = γ (zt) – γ (yt). By the G-Itó formula and similar arguments to Theorem 3.4 it follows
that

Ê

[
sup

0≤s≤t
eλs∣∣Λ(s) – û(s)

∣∣2
]

≤ 8Ê‖ζ – ξ‖2
q + 2Ê

[∫ t

0
eλs[λ

∣∣Λ(s) – û(s)
∣∣2 + 2

∣∣Λ(s) – û(s)
∣∣T ĝ(s)

]
ds

]

+ 2k2Ê

[∫ t

0
eλs[2

∣
∣Λ(s) – û(s)

∣
∣T ĥ(s) +

∣
∣γ̂ (s)

∣
∣2]ds

]
+ 4k2

1Ê

∫ t

0
eλs∣∣γ̂ (s)

∣
∣2 ds. (3.8)

By virtue of assumptions A1, we have

∣
∣Λ(s) – û(s)

∣
∣T ĝ(s) ≤ –λ1

∣
∣Λ(s)

∣
∣2 + λ2

∫ 0

–∞

∣
∣Λ(s + θ )

∣
∣2

μ1(dθ ),

∣∣Λ(s) – û(s)
∣∣T ĥ(s) ≤ –λ3

∣∣Λ(s)
∣∣2 + λ4

∫ 0

–∞

∣∣Λ(s + θ )
∣∣2

μ2(dθ ),

∣∣γ̂ (s)
∣∣2 ≤ λ5

∫ 0

–∞

∣∣Λ(s + θ )
∣∣2

μ3(dθ ).

Substituting this in (3.8) and using Lemma 3.3 we obtain

Ê

[
sup

0≤s≤t
eλs∣∣Λ(s) – û(s)

∣∣2
]

≤ 8Ê‖ζ – ξ‖2
q + 4(λ – λ1 – k2λ3)Ê

∫ t

0
eλs∣∣Λ(s)

∣∣2 ds

+ 4λ2Ê

∫ t

0

∫ 0

–∞
eλs∣∣Λ(s + θ )

∣
∣2

μ1(dθ ) ds
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+ 4k2λ4Ê

∫ t

0

∫ 0

–∞
eλs∣∣Λ(s + θ )

∣∣2
μ2(dθ ) ds

+ 2
(
k2 + 2k2

1
)
λ5Ê

∫ t

0

∫ 0

–∞
eλs∣∣Λ(s + θ )

∣∣2
μ3(dθ ) ds

+ 2λb1Ê

∫ t

0

∫ 0

–∞
eλs∣∣Λ(s + θ )

∣
∣2

μ4(dθ ) ds,

where b1 = 1 + b–1. By using Lemma 2.6, it follows that

Ê

[
sup

0≤s≤t
eλs∣∣Λ(s) – û(s)

∣
∣2

]

≤ c3Ê‖ζ – ξ‖2
q – 4

[
λ1 + k2λ3 – μ

(2q)
1 λ2 – k2μ

(2q)
2 λ4

–
(
k2 + 2k2

1
)
μ

(2q)
3 λ5 –

(
1 + b1μ

(2q)
4

)
λ
]
Ê

∫ t

0
eλs∣∣Λ(s)

∣
∣2 ds,

where c3 = 2
2q–λ

(4(2q – λ) + 2λ2μ
(2q)
1 + 2k2λ4μ

(2q)
2 + (k2 + 2k2

1)λ5μ
(2q)
3 + λb1μ

(2q)
4 ). By using

Lemma 3.1, we have

Ê

[
eλs sup

0≤s≤t

∣∣Λ(s)
∣∣2

]

≤ (b2 + b3c3)E‖ζ – ξ‖2
q – 4b3

[
λ1 + k2λ3 – μ

(2q)
1 λ2 – k2μ

(2q)
2 λ4

–
(
k2 + 2k2

1
)
μ

(2q)
3 λ5 –

(
1 + b1μ

(2q)
4

)
λ
]
E

∫ t

0
eλs∣∣Λ(s)

∣∣2 ds, (3.9)

where b2 = bμ
(2q)
4 (1 – b)–1, b3 = (1 – b)–2 and e–(2q–λ)s < 1. By using the assumptions

λ1 > μ
(2q)
1 λ2 – k2λ3 + k2μ

(2q)
2 λ4 + (2k2

1 + k2)μ(2q)
3 λ5 and λ ∈ (0, 1

(1+b1μ
(2q)
4 )

(λ1 + k2λ3 – μ
(2q)
1 λ2 –

k2μ
(2q)
2 λ4 – (2k2

1 + k2)μ(2q)
3 λ5) ∧ 2q), we derive the desired assertion. The proof is com-

pleted. �

The following two theorems show that the solutions maps of G-NSFDEs are bounded
and any two solutions maps with different initial data are convergent, respectively.

Theorem 3.6 Let all the assumptions of Theorem 3.5 hold. Then for any initial data ζ ∈ Cq

Ê‖zt‖ ≤ C1 + K1e–λt ,

where C1 = b3c1, K1 = (1 + b2 + b3c2)E‖ζ‖2
q and b2, b3, c1, c2 are defined in Theorem 3.4.

Proof By virtue of the definition of norm ‖ · ‖ and observing that 2q > λ we have

Ê‖zt‖ = Ê

[
sup

–∞<θ≤0
eqθ

∣
∣z(t + θ )

∣
∣
]2 ≤ Ê

[
sup

–∞<θ≤0
eλθ

∣
∣z(t + θ )

∣
∣2

]

≤ Ê

[
sup

–∞<s≤0
e–λ(t–s)∣∣z(s)

∣∣2
]

+ Ê

[
sup

0<s≤t
e–λ(t–s)∣∣z(s)

∣∣2
]

,

consequently,

Ê‖zt‖ ≤ e–λt
Ê‖ζ‖2

q + e–λt
Ê

[
sup

0<s≤t
eλs∣∣z(s)

∣∣2
]
. (3.10)
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But from (3.7) we have

Ê

[
sup

0<s≤t
eλs∣∣z(s)

∣∣2
]

≤ (b2 + b3c2)Ê‖ζ‖2
q + b3c1

(
eλt – 1

)
– 4b3

[
λ1 + k2λ3 – μ

(2q)
1 λ2 – k2μ

(2q)
2 λ4

–
(
2k2

1 + k2
)
μ

(2q)
3

1
1 – ε2

λ5 –
(
1 + b1μ

(2q)
4

)
λ

– (1 + k2)
(
1 + b1μ

(2q)
4

)
ε1

]
Ê

∫ t

0
eλs∣∣z(s)

∣∣2 ds,

using the assumptions of Theorem 3.5, it gives

Ê

[
sup

0<s≤t
eλs∣∣z(s)

∣
∣2

]
≤ (b2 + b3c2)Ê‖ζ‖2

q + c1b3
(
eλt – 1

)
. (3.11)

By substituting (3.11) in (3.10), we derive

Ê‖zt‖ ≤ b3c1 + (1 + b2 + b3c2)Ê‖ζ‖2
qe–λt ,

which yields the desired assertion. The proof is completed. �

Theorem 3.7 Under the assumptions of Theorem 3.5, different solution maps zt and yt of
problem (1.1) with respective different initial data ζ and ξ converge, i.e.,

Ê
[|zt – yt|2

] ≤ L1Ê‖ζ – ξ‖2
qe–λt ,

where L1 = (1 + b2 + b3c3) and b2, b3, c3 are defined in Theorem 3.5.

Proof Using similar arguments of Theorem 3.6 we derive

Ê
∥
∥zt(ζ ) – yt(ξ )

∥
∥ ≤ e–λt

Ê‖ζ – ξ‖2
q + e–λt

Ê

(
sup

0<s≤t
eλs∣∣z(s) – y(s)

∣
∣2

)
. (3.12)

But from (3.9), using the assertion of Theorem 3.5, we derive

Ê

[
sup

0≤s≤t
eλs∣∣z(s) – y(s)

∣
∣2

]
≤ (b2 + b3c3)Ê‖ζ – ξ‖2

q,

which on substituting in (3.12) yields the desired assertion. The proof is completed. �

4 Exponential estimate
For the purpose of exponential estimate one needs to assume that problem (1.1) admits
a unique solution z(t) on t ≥ 0. In the following theorem, we give the L2

G and exponential
estimates for the solutions of neutral stochastic functional differential equation driven by
G-Brownian motion.

Theorem 4.1 Let problem (1.1) has a unique solution z(t) on t ≥ 0 and Ê‖ζ‖2
q < ∞. As-

sume that A1 and A2 are satisfied. Then the following results hold:

Ê

[
sup

–∞<s≤t

∣∣z(s)
∣∣2

]
≤ C2eK2t , t ≥ 0, (4.1)
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where C2 = 2b3[4q + μ
2q
1 + k2λ4μ

2q
2 + λ5(k2 + 2k2

1)μ2q
3 + (1 + k2)(1 + b–1)μ2q

4 ] 1
q Ê‖ζ‖2

q + (1 +
b2)Ê‖ζ‖2

q + b3c∗, K2 = 4b3(–λ1 – k2λ3 + λ2 + λ4k2 + λ5(k2 + 2k2
1) + (2 + k2)(1 + b–1)), b2 =

bμ
(2q)
4 (1 – b)–1 and b3 = (1 – b)–2 are positive constants. Furthermore,

lim
t→∞ sup

1
t

log
∣
∣z(t)

∣
∣ ≤ M, (4.2)

where M = 2b3(–λ1 – k2λ3 + λ2 + λ4k2 + λ5(k2 + 2k2
1) + (2 + k2)(1 + b–1)).

Proof To prove (4.1) in a similar fashion to Theorem 3.5 we derive

Ê

[
sup

0≤s≤t

∣∣z(s) – u(zs)
∣∣2

]

≤ 4Ê‖ζ‖2
q + 2Ê

∫ t

0

∣∣z(s) – u(zs)
∣∣T g(zs) ds +

1
2
Ê

[
sup

0≤s≤t

∣∣z(s) – u(s)
∣∣2

]

+ k2Ê

∫ t

0

[
2
∣∣z(s) – u(zs)

∣∣T h(zs) +
∣∣γ (zs)

∣∣2]ds + 2k2
1 sup

0≤s≤t
Ê

∫ t

0
γ (zs) ds,

which yields

Ê

[
sup

0≤s≤t

∣∣z(s) – u(zs)
∣∣2

]

≤ 8Ê‖ζ‖2
q + 4Ê

∫ t

0

∣∣z(s) – u(zs)
∣∣T g(zs) ds

+ 2k2Ê

∫ t

0

[
2
∣
∣z(s) – u(zs)

∣
∣T h(zs)

]
ds + 2

(
k2 + 2k2

1
)
Ê

∫ t

0

∣
∣γ (zs)

∣
∣2 ds. (4.3)

By using assumption A1 and the basic inequality 2a1a2 ≤ ∑2
i=1 a2

i we derive

2
∣
∣z(s) – u(zs)

∣
∣T g(zs)

≤ 2
∣∣z(s) – u(zs)

∣∣g(0) – 2λ1
∣∣z(s)

∣∣2 + 2λ2

∫ 0

–∞

∣∣z(s + θ )
∣∣2

μ1(dθ )

≤ ∣∣z(s) – u(zs)
∣∣2 +

∣∣g(0)
∣∣2 – 2λ1

∣∣z(s)
∣∣2 + 2λ2

∫ 0

–∞

∣∣z(s + θ )
∣∣2

μ1(dθ ). (4.4)

Similar arguments to above give the following:

2
∣
∣z(s) – u(zs)

∣
∣T h(zs) ≤ ∣

∣z(s) – u(zs)
∣
∣2 +

∣
∣h(0)

∣
∣2 – 2λ3

∣
∣z(s)

∣
∣2

+ 2λ4

∫ 0

–∞

∣
∣z(s + θ )

∣
∣2

μ2(dθ ). (4.5)

In view of assumption A1 and the basic inequality |∑2
i=1 ai|2 ≤ ∑2

i=1 |ai|2, we obtain

∣
∣γ (zs)

∣
∣2 ≤ 2

∣
∣γ (0)

∣
∣2 + 2λ5

∫ 0

–∞

∣
∣z(s + θ )

∣
∣2

μ3(dθ ). (4.6)
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Substituting (4.4), (4.5) and (4.6) in (4.3) and using Lemma 3.3 we have

Ê

[
sup

0≤s≤t

∣
∣z(s) – u(zs)

∣
∣2

]

≤ 8Ê‖ζ‖2
q + c∗ + 4(1 + k2 – λ1 – k2λ3)Ê

∫ t

0

∣
∣z(s)

∣
∣2 ds

+ 4λ2Ê

∫ t

0

∫ 0

–∞

∣∣z(s + θ )
∣∣2

μ1(dθ ) ds + 4λ4k2Ê

∫ t

0

∫ 0

–∞

∣∣z(s + θ )
∣∣2

μ2(dθ ) ds

+ 4λ5
(
k2 + 2k2

1
)
Ê

∫ t

0

∫ 0

–∞

∣
∣z(s + θ )

∣
∣2

μ3(dθ ) ds

+ 2(1 + k2)b1Ê

∫ t

0

∫ 0

–∞

∣∣z(s + θ )
∣∣2

μ4(dθ ) ds,

where c∗ = 2(|g(0)|2 + k2|h(0)|2 + 2(k2 + 2k2
1)|γ (0)|2)T . By using Lemma 2.6, it follows that

Ê

[
sup

0≤s≤t

∣∣z(s) – u(zs)
∣∣2

]

≤ 2
[
4q + μ

2q
1 + k2λ4μ

2q
2 + λ5

(
k2 + 2k2

1
)
μ

2q
3 + (1 + k2)b1μ

2q
4

]1
q
Ê‖ζ‖2

q + c∗

+ 4
(
–λ1 – k2λ3 + λ2 + λ4k2 + λ5

(
k2 + 2k2

1
)

+ (2 + k2)b1
)∫ t

0
Ê

[
sup

0≤s≤t

∣
∣z(s)

∣
∣2

]
ds.

By using Lemma 3.1, we derive

Ê

[
sup

0<s≤t

∣∣z(s)
∣∣2

]

≤ 2b3
[
4q + μ

2q
1 + k2λ4μ

2q
2 + λ5

(
k2 + 2k2

1
)
μ

2q
3 + (1 + k2)b1μ

2q
4

]1
q
Ê‖ζ‖2

q

+ b2Ê‖ζ‖2
q + b3c∗ + 4b3

(
–λ1 – k2λ3 + λ2 + λ4k2 + λ5

(
k2 + 2k2

1
)

+ (2 + k2)
(
1 + b–1))

∫ t

0
Ê

[
sup

0≤s≤t

∣
∣z(s)

∣
∣2

]
ds, (4.7)

where b2 = bμ
(2q)
4 (1 – b)–1, b3 = (1 – b)–2 and e–2qs < 1. Noticing that Ê[sup–∞<s≤t |z(s)|2] ≤

Ê‖ζ‖2
q + Ê[sup0<s≤t |z(s)|2] and using the Gronwall inequality, we get the desired assertion.

The proof is complete.
To prove (4.2) by the Gronwall inequality from (4.7) we have

Ê

[
sup

0≤s≤t

∣∣z(s)
∣∣2

]
≤ αeβt , (4.8)

where α = 2b3[4q + μ
2q
1 + k2λ4μ

2q
2 + λ5(k2 + 2k2

1)μ2q
3 + (1 + k2)(1 + b–1)μ2q

4 ] 1
q E‖ζ‖2

q +
b2Ê‖ζ‖2

q + b3c∗ and β = 4b3(–λ1 – k2λ3 + λ2 + λ4k2 + λ5(k2 + 2k2
1) + (2 + k2)(1 + b–1)). By

virtue of the above result (4.8), for each k = 1, 2, 3, . . . , we have

Ê

[
sup

k–1≤t≤k

∣
∣z(t)

∣
∣2

]
≤ αeβm.
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For any ε > 0, by using Lemma 2.3 we get

ν̂
(
δ : sup

k–1≤t≤k

∣∣z(t)
∣∣2 > e(β+ε)k

)
≤ Ê[supk–1≤t≤k |z(t)|2]

e(β+ε)k ≤ αe–εk .

But, for almost all δ ∈ Ω , the Borel–Cantelli lemma shows that there is k0 = k0(δ) so that

sup
k–1≤t≤k

∣
∣z(t)

∣
∣2 ≤ e(β+ε)k , whenever k ≥ k0,

and consequently we derive the desired assertion. The proof is completed. �
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