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Abstract
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1 Introduction
In recent years, the study of oscillation of differential equations has become more and
more perfect, including various sufficient conditions, necessary conditions, the existence
of non-oscillatory solutions, and even the zeros distribution of oscillatory solutions.

In 2017, Li et al. [1] studied the distribution of zeros of oscillatory solutions for second-
order nonlinear neutral delay differential equation

(
a(t)z′(t)

)′ + q(t)f
(
x(t – σ )

)
= 0, t ≥ t0,

and obtained a sufficient condition for oscillation of differential equation.
However, most of references about oscillation of difference equations are concerned

with sufficient or necessary conditions for oscillation; see [2–8]. We will also naturally ask
some questions of difference equations: Are there any bounds for the distance between
adjacent generalized zeros of oscillatory solutions when equations show oscillation? And
how do we estimate these bounds? Therefore, we obtain the oscillation criteria of differ-
ence equations by studying the distribution of zeros.

The distribution of generalized zeros of oscillation solutions for first-order dynamic
equations and second-order non-neutral dynamic equations on time scale can be found
in [9–11]. However, most oscillatory results for second-order neutral dynamic equations
are sufficient conditions for oscillation; see [12–19]. To the best of our knowledge, there
is no paper on the generalized zero distribution of oscillation solutions for second-order
neutral dynamic equations on time scale.
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Motivated by the above papers, we consider the second-order neutral difference equa-
tion of the following form:

�
(
a(t)�z(t)

)
+ q(t)f

(
x(t – σ )

)
= 0, t ∈ [t0,∞)Z, (1.1)

where � denotes the forward difference operator �x(t) = x(t + 1) – x(t), z(t) = x(t) +
p(t)x(t – τ ), Z represents the set of all integers and

∞∑

s=t0

1
a(s)

= ∞.

Throughout this paper, we assume that the following hypotheses are satisfied:
(H1) a(t), q(t), p(t) ∈ (0,∞), where t ∈ [t0,∞)Z.
(H2) τ ,σ ∈ R

+, where R
+ represents the set of all positive real numbers, and σ > τ .

(H3) There exists a positive constant k such that f (u)
u ≥ k for all u �= 0.

(H4) There exists a function H(t) which satisfies H(t) ≥ p(t–σ )q(t)
q(t–τ ) and �H(t) ≤ 0, t ≥ t1

for some t1 ≥ t0 + σ , where t ∈ Z.
In this paper, we relate the distance between adjacent generalized zeros of an oscillation

solution of (1.1) to a positivity problem of certain solution for a first-order delay difference
inequality

�x(t) + P(t)x(t – r1) ≤ 0, t ∈ [t0,∞)Z, (1.2)

where P(t) ∈ [0, 1) which define by (2.1), r1 is a constant satisfying r1 ≥ 2.

2 Preliminaries
In order to prove our main results, we establish some fundamental results in this section.

For convenience, we define a sequence {Fn(t)} ∈ [0, 1) by

F0(t) = P(t) :=
kq(t)

1 + H(t + 1)

t–1∑

s=T0

1
a(s – σ )

, t ∈ [t0,∞)Z,

Fn(t) = Fn–1(t)
t–1∑

s=t–r
Fn–1(s)

t∏

ζ=s–r

1
1 – Fn–1(ζ )

, t ∈ [t0 + 2nr,∞)Z, n = 1, 2, . . . ,

(2.1)

where T0 satisfies x(t) > 0, t ≥ T0 when x(t) is eventually positive solution.
If tn is a generalized zero of solution of (1.1), then it satisfies x([tn]) · x([tn] + 1) ≤ 0. Let

ds(x) be the least upper bound of the distance between adjacent generalized zeros of a
solution x(t) of Eq. (1.1) on [s,∞).

Lemma 2.1 Assume that x(t) is an eventually positive solution of (1.1), and (H1) ∼ (H3)
hold. Then z(t) satisfies z(t) > 0, �z(t) > 0, �(a(t)�z(t)) < 0.

Proof If x(t) is an eventually positive solution of Eq. (1.1), then there exists a t1 > t0 such
that x(t) > 0, x(t – τ ) > 0 and x(t – σ ) > 0 for all t ≥ t1. Thus z(t) = x(t) + p(t)x(t – τ ) > 0.
From (1.1) and condition (H3), we obtain

�
(
a(t)�z(t)

)
= –q(t)

f (x(t – σ ))
x(t – σ )

x(t – σ ) ≤ –kq(t)x(t – σ ) < 0, t ≥ t1, (2.2)
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so we can conclude a(t)�z(t), t ≥ t1 is decreasing. It can be seen that there exists a t2 > t1

such that �z(t) > 0 or �z(t) < 0 for t ≥ t2. Now, we prove �z(t) > 0, t ≥ t2. If not, assume
that �z(t) < 0, t ≥ t2, then also a(t)�z(t) < –c < 0 and summing up it from t2 to t – 1, we
have

z(t) – z(t2) < –c
t–1∑

s=t2

1
a(s)

. (2.3)

Taking limits of both sides for the above inequality, we have limt→∞ z(t) = –∞, which is a
contradiction. The proof is completed. �

In the following lemmas, let r = [r1] := max{a|a ≤ r1, a ∈ Z}, where r1 is the delay argu-
ment of (1.2). And δ is a constant satisfying |δ| ≤ r.

Lemma 2.2 Let n be a positive integer such that

t–1∑

s=t–r
Fn(s) ds ≥ 1, t ∈ [

t0 + (2n + 1)r,∞)
Z

, n = 1, 2, . . . . (2.4)

If x(t) is a non-increasing function on [T1 – δ, T]Z which satisfies (1.2) on [T1, T]Z, then x(t)
cannot be positive on [T1, T]Z, where T > T1 + (3n + 1)r + (n + 1) – δ, T1 ≥ t0 + (2n + 1)r.

Proof Without loss of generality, we assume that x(t) is positive on [T1, T]Z. Summing up
(1.2) from t – r to t – 1, we have

x(t) – x(t – r) +
t–1∑

s=t–r
P(s)x(s – r1) ≤ 0, t ∈ [T1 + r, T]Z.

Multiplying this inequality by P(t) and using (1.2), we get

�x(t) + P(t)x(t) + P(t)
t–1∑

s=t–r
P(s)x(s – r1) ≤ 0, t ∈ [T1 + r + 1 – δ, T]Z, (2.5)

so

t∏

ζ=t0

1
1 – P(ζ )

(

�x(t) + P(t)x(t) + P(t)
t–1∑

s=t–r
P(s)x(s – r1)

)

≤ 0, t ∈ [T1 + r + 1 – δ, T]Z.

Using �x(t) = x(t + 1) – x(t), we get

t∏

ζ=t0

1
1 – P(ζ )

x(t + 1) –
t–1∏

ζ=t0

1
1 – P(ζ )

x(t) +
t∏

ζ=t0

1
1 – P(ζ )

P(t)
t–1∑

s=t–r
P(s)x(s – r1) ≤ 0,

t ∈ [T1 + r + 1 – δ, T]Z. (2.6)

Let y1(t) := x(t)
∏t–1

ζ=t0
1

1–P(ζ ) . Then y1(t) > 0 on [T1, T]Z and

�y1(t) =
t∏

ζ=t0

1
1 – P(ζ )

x(t + 1) –
t–1∏

ζ=t0

1
1 – P(ζ )

x(t). (2.7)
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Using (2.7) in (2.6), we have

�y1(t) + P(t)
t–1∑

s=t–r
P(s)

(

x(s – r1)
t∏

ζ=t0

1
1 – P(ζ )

)

≤ 0, t ∈ [T1 + r + 1 – δ, T]Z,

i.e.

�y1(t) + P(t)
t–1∑

s=t–r

(

P(s)x(s – r1)
s–r–1∏

ζ=t0

1
1 – P(ζ )

t∏

ζ=s–r

1
1 – P(ζ )

)

≤ 0, t ∈ [T1 + r + 1 – δ, T]Z. (2.8)

From the definition of y1(t) and �x(t) ≤ 0, t ∈ [T1 + r + 1 – δ, T]Z we obtain

�y1(t) = �x(t)
t∏

ζ=t0

1
1 – P(ζ )

+ x(t)�

( t–1∏

ζ=t0

1
1 – P(ζ )

)

= �x(t)
t∏

ζ=t0

1
1 – P(ζ )

+ x(t)
t∏

ζ=t0

1
1 – P(ζ )

– x(t)
t–1∏

ζ=t0

1
1 – P(ζ )

=
t∏

ζ=t0

1
1 – P(ζ )

(
�x(t) + x(t) – x(t)

(
1 – P(t)

))

=
t∏

ζ=t0

1
1 – P(ζ )

(
�x(t) + P(t)x(t)

)

≤
t∏

ζ=t0

1
1 – P(ζ )

(
�x(t) + P(t)x(t – r1)

)
.

Since �x(t) + P(t)x(t – r1) ≤ 0, we can conclude �y1(t) ≤ 0, t ∈ [T1 + r + 1 – δ, T]Z, and
from (2.8), we have

�y1(t) + F1(t)y1(t – r) ≤ 0, t ∈ [T1 + 3r + 1 – δ, T]Z.

Repeating the above procedure to this inequality, we get

�y1(t) + F1(t)y1(t) + F1(t)
t–1∑

s=t–r
F1(s)y1(s – r) ≤ 0, t ∈ [T1 + 4r + 1 – δ, T]Z. (2.9)

Let y2(t) := y1(t)
∏t–1

ζ=t0+2r
1

1–F1(ζ ) . It follows from (2.9) that

�y2(t) + F1(t)
t–1∑

s=t–r
F1(s)y2(s – r)

t∏

ζ=s–r

1
1 – F1(s)

≤ 0, t ∈ [T1 + 4r + 1 – δ, T]Z,

where �y2(t) ≤ 0 for t ∈ [T1 + 4r + 2 – δ, T]Z and hence

�y2(t) + F2(t)y2(t – r) ≤ 0, t ∈ [T1 + 6r + 2 – δ, T]Z.
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Repeating this argument n times, we obtain

�yn(t) + Fn(t)yn(t – r) ≤ 0, t ∈ [T1 + 3nr + n – δ, T]Z, (2.10)

where �yn(t) ≤ 0 for t ∈ [T1 + (3n – 2)r + n – δ, T]Z. Now, summing up (2.10) from t – r to
t – 1 ∈ [T1 + (3n + 1)r + n – δ, T]Z, we have

yn(t) – yn(t – r) +
t–1∑

s=t–r
Fn(s)yn(s – r) ≤ 0.

Since y(t) is decreasing, we obtain

yn(t) + yn(t – r)

[ t–1∑

s=t–r
Fn(s) – 1

]

≤ 0, t ∈ [
T1 + (3n + 1)r + (n + 1) – δ, T

]
Z

,

which is a contradiction with hypothesis (2.4). The proof of Lemma 2.2 is complete. �

Lemma 2.3 Assume that
∑t–2

s=t–r P(s) ≥ β for 0 < β < 1 and there exist T2 ≥ t0 + r, T ≥
T2 + (1 + n)r – δ, n = 1, 2, . . . and a function x(t) satisfying inequality (1.2) on [T2, T]Z with
�x(t) ≤ 0 for t ∈ [T2 – δ, T]Z. If x(t) is positive on [T2, T]Z, then

x(t – r)
x(t)

≥ fn(β) > 0, t ∈ [
T2 + (1 + n)r – δ, T

]
Z

, (2.11)

for some integer n ≥ 0, where fn(β) is defined by

f0(β) = 1, f1(β) =
1

1 – β
, fn+2(β) =

r – βfn(β)
r – βfn(β) – β + βfn(β)

fn+1(β)

.

Proof Since x(t) is non-increasing on [T2 – δ, T]Z, we find

x(t – r)
x(t)

≥ f0(β) = 1, t ∈ [T2 + r – δ, T]Z. (2.12)

Summing inequality (1.2) from t – r + 1 to t – 1, where t ∈ [T2 + 2r – δ, T]Z, we obtain

x(t – r) ≥ x(t) +
t–1∑

s=t–r+1

P(s)x(s – r1) ≥ x(t) + βx(t – r). (2.13)

Therefore

x(t – r)
x(t)

≥ 1
1 – β

= f1(β) > 0, t ∈ [T2 + 2r – δ, T]Z.

On the other hand, dividing inequality (1.2) by x(t),

�x(t)
x(t)

= –P(t)
x(t – r1)

x(t)
,
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because of �x(t) < 0,

x(t + 1)
x(t)

≤ 1 – P(t)
x(t – r)

x(t)
.

Multiplying from s – r to t – r – 1 where s ∈ [t – r + 1, t – 1]Z, we find

x(s – r)
x(t – r)

≥
t–r–1∏

u=s–r

1
1 – P(u) x(u–r)

x(u)

, t ∈ [T2 + 3r – δ, T]Z.

According to (2.12), this yields

x(s – r)
x(t – r)

≥
t–r–1∏

u=s–r

1
1 – f0(β)P(u)

, t ∈ [T2 + 3r – δ, T]Z. (2.14)

We can easily obtain

�

(

–
1

f0(β)

s–1∏

u=t–r

(
1 – f0(β)P(u)

)
)

= –
1

f0(β)

s∏

u=t–r

(
1 – f0(β)P(u)

)
+

1
f0(β)

s–1∏

u=t–r

(
1 – f0(β)P(u)

)

= –
1

f0(β)
(
1 – f0(β)P(s) – 1

) s–1∏

u=t–r

(
1 – f0(β)P(u)

)

= P(s)
s–1∏

u=t–r

(
1 – f0(β)P(u)

)
. (2.15)

Combining (2.14), (2.15) with (2.13), and because of the fact

n
1

a1
+ 1

a2
+ · · · + 1

an

≤ n√a1a2 · · ·an ≤ a1 + a2 + · · · + an

n
, ai > 0, i = 1, 2, . . . , n,

we have

x(t – r) – x(t) ≥ x(t – r)
t–1∑

s=t–r+1

P(s)
x(s – r)
x(t – r)

≥ x(t – r)
t–1∑

s=t–r+1

P(s)

(t–r–1∏

u=s–r

1
1 – f0(β)P(u)

)

≥ x(t – r)
t–1∑

s=t–r+1

P(s)

( s–1∏

u=s–r

1
1 – f0(β)P(u)

s–1∏

u=t–r
1 – f0(β)P(u)

)

≥ x(t – r)
r

r – βf0(β)

t–1∑

s=t–r+1

P(s)

( s–1∏

u=t–r

(
1 – f0(β)P(u)

)
)

= x(t – r)
r

r – βf0(β)

t–1∑

s=t–r+1

�

(

–
1

f0(β)

s–1∏

u=t–r

(
1 – f0(β)P(u)

)
)
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= x(t – r)
r

r – βf0(β)

(

–
1

f0(β)

t–1∏

u=t–r

(
1 – f0(β)P(u)

)

+
1

f0(β)

t–r∏

u=t–r

(
1 – f0(β)P(u)

)
)

≥ x(t – r)
r

r – βf0(β)
1

f0(β)
(
1 – f0(β)P(t – r)

)
(

1 –
r – 1 – βf0(β)

r – 1

)

≥ x(t – r)
r

r – βf0(β)
1

f0(β)

(
1 –

f0(β)
f1(β)

)(
1 –

r – 1 – βf0(β)
r – 1

)

≥ x(t – r)
β

r – βf0(β)

(
1 –

f0(β)
f1(β)

)
.

Thus

x(t – r)
x(t)

≥ r – βf0(β)
r – βf0(β) – β + βf0(β)

f1(β)

= f2(β) > 1, t ∈ [T2 + 3r – δ, T]Z.

Repeating this argument, it follows by induction that

x(t – r)
x(t)

≥ fn(β) > 0, t ∈ [
T2 + (n + 1)r – δ, T

]
Z

.

The proof is complete. �

Remark It can easily be seen that either fn(β) satisfies limt→∞ fn(β) = 1 or fn(β) is non-
decreasing and limt→∞ fn(β) = ∞ or fn(β) → ∞ after finite number of terms or fn(β) is
negative.

Lemma 2.4 Assume that
∑t–2

s=t–r P(s) ≥ β , t ≥ t0 holds for some 0 < β < 1 and there exists
a function x(t) satisfying inequality (1.2) on [T2, T + Nr + 1]Z for some positive integer N
such that �x(t) ≤ 0 on [T2 – δ, T2 + Nr + 1]Z where T2 ≥ t0 + r. If x(t) is positive on [T2, T2 +
Nr + 1]Z, then

0 <
x(t – r)

x(t)
≤ gm(β), t ∈ [

T2 + 2r – δ, T2 + (N – m)r + 1
]
Z

, (2.16)

where m is a positive integer, N ≥ m + 2 – δ
r , and gm(β) is defined by

g1(β) =
2(1 – β)

β2 , gm+1(β) =
2(1 – β – 1

gm(β) )
β2 , m = 1, 2, . . . .

Proof From
∑t–1

s=t–r P(s) ≥ β , t ≥ t0, we see that
∑t+r–1

s=t P(s) ≥ β for t ≥ T2. Summing both
sides of (1.2) from t to t + r – 1, we obtain

x(t) – x(t + r) ≥
t+r–1∑

s=t
P(s)x(s – r1), t ∈ [

T2 + r, T2 + (N – 1)r + 1
]
Z

. (2.17)
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Since T2 + r ≤ t ≤ s ≤ t + r – 1, it follows T2 ≤ t – r ≤ s – r ≤ t – 1. Again, summing (1.2)
from s – r to t yields

x(s – r) – x(t) ≥
t–1∑

u=s–r
P(u)x(u – r1).

It is clear that x(u – r1) is non-increasing on [s – r, t + 1]Z ⊆ [T2 + r – δ, T2 + (N – 1)r + 1]Z.
Thus,

x(s – r) ≥ x(t) +
t–1∑

u=s–r
P(u)x(u – r1)

≥ x(t) + x(t – r)
t–1∑

u=s–r
P(u)

= x(t) + x(t – r)

[ s∑

u=s–r
P(u) –

s∑

u=t
P(u)

]

≥ x(t) + x(t – r)

[

β –
s∑

u=t
P(u)

]

.

In view of the last inequality and (2.17), we obtain

x(t) ≥ x(t + r) +
t+r–1∑

s=t
P(s)x(s – r1)

≥ x(t + r) +
t+r–1∑

s=t
P(s)

[

x(t) + x(t – r)

(

β –
s∑

u=t
P(u)

)]

≥ x(t + r) + βx(t) + β2x(t – r) – x(t – r)
t+r–1∑

s=t
P(s)

( s∑

u=t
P(u)

)

, (2.18)

for all t ∈ [T2 + 2r – δ, T2 + (N – 1)r + 1]Z. As is well known, we have the identity

t+r–1∑

s=t

s∑

u=t

(
P(s)P(u)

)
=

t+r–1∑

u=t

t+r–1∑

s=u

(
P(u)P(s)

)
=

t+r–1∑

s=t

t+r–1∑

u=s

(
P(s)P(u)

)
.

Consequently,

t+r–1∑

s=t

s∑

u=t

(
P(s)P(u)

)
>

1
2

t+r–1∑

s=t

t+r–1∑

u=t

(
P(s)P(u)

)
=

1
2

(t+r–1∑

s=t
P(s)

)2

≥ β2

2
.

Substituting into (2.18),

x(t) ≥ x(t + r) + βx(t) +
β2

2
x(t – r), t ∈ [

T2 + 2r – δ, T2 + (N – 1)r + 1
]
Z

. (2.19)

Since x(t + r) > 0 on [T2 + 2r – δ, T2 + (N – 1)r]Z, we get

x(t – r)
x(t)

<
2(1 – β)

β2 = g1(β), t ∈ [
T2 + 2r – δ, T2 + (N – 1)r + 1

]
Z

. (2.20)
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On the other hand, when t ∈ [T2 + 2r – δ, T2 + (N – 2)r + 1]Z, we have T2 + 2r – δ ≤ t ≤
t + r ≤ T2 + (N – 1)r. So (2.20) leads to

x(t + r) >
1

g1(β)
x(t), t ∈ [

T1 + 2r – δ, T1 + (N – 2)r + 1
]
Z

.

Since x(t) is non-increasing on [T2 – δ, T + Nr + 1], it follows that

x(t + r) >
1

g1(β)
x(t) ≥ 1

g1(β)
x(t), t ∈ [

T2 + 2r – δ, T2 + (N – 2)r + 1
]
Z

.

From this inequality and (2.19), we obtain

x(t) ≥ 1
g1(β)

x(t) + βx(t) +
β2

2
x(t – r), t ∈ [

T2 + 2r – δ, T2 + (N – 2)r + 1
]
Z

.

Rearranging,

x(t – r)
x(t)

<
2(1 – β – 1

g1(β) )
β2 = g2(β), t ∈ [

T2 + 2r – δ, T2 + (N – 2)r + 1
]
Z

.

Repeating the above procedure, we get

x(t – r)
x(t)

<
2(1 – β – 1

gm–1(β) )
β2 = gm(β), t ∈ [

T2 + 2r – δ, T2 + (N – m)r + 1
]
Z

.

The proof of Lemma 2.4 is complete. �

Remark Wu and Xu [18] proved that gm(β) is decreasing. They found also that gm+1(β) >
1–β

β2
for m = 1, 2, . . . . So when 0 < β ≤ √

2 – 1, there exists a function g(β) =
2(1–β– 1

g(β) )
β2

such
that limm→∞ gm(β) = g(β).

Lemma 2.5 Assume that
∑t–2

s=t–r P(s) ≥ β holds for some β >
√

2 – 1 and x(t) is a function
satisfying inequality (1.2) on [T2, T]Z with �x(t) ≤ 0 for [T2 – δ, T]Z, T ≥ T2 + (kβ + 1)r – δ,
T2 ≥ t0 + r and kβ is defined by

kβ =

⎧
⎨

⎩
1, β ≥ 1,

min{α,γ }, √
2 – 1 < β < 1,

α = min
n≥1,m≥1

{
n + m|fn(β) ≥ gm(β)

}
,

γ = 1 + min
n≥1

{
n|fn(β) < 0 or fn+1(β) = ∞}

.

(2.21)

Then x(t) is positive on [T2, T]Z.

Proof Suppose, for the sake of contradiction, that x(t) is positive on [T2, T]. We consider
two cases:
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Case 1: β ≥ 1. In this case kβ = 1 and T ≥ T2 + 2r – δ. Since �x(t) ≤ 0 on [T2 – δ, T]Z,
we obtain

x(t) ≥ x(T2 + r – δ), t ∈ [T2 – δ, T2 + r – δ]Z.

Summing both sides of (1.2) from T2 +r –δ to T2 +2r –δ –1 and using the above inequality,
we obtain

x(T2 + 2r – δ) ≤ x(T2 + r – δ) –
T2+2r–δ–1∑

s=T2+r–δ

P(s)x(s – r)

≤ x(T2 + r – δ) – x(T2 + r – δ)
T2+2r–δ–1∑

s=T2+r–δ

P(s)

= x(T2 + r – δ)

[

1 –
T2+2r–δ–1∑

s=T2+r–δ

P(s)

]

< 0,

which is a contradiction.
Case 2:

√
2 – 1 < β < 1. If kβ = n∗ + m∗, then

fn∗ (β) ≥ gm∗ (β). (2.22)

From Lemma 2.3, it follows that

x(t – r)
x(t)

≥ fn∗ (β), t ∈ [
T2 +

(
n∗ + 1

)
r – δ, T

]
Z

. (2.23)

On the other hand, by Lemma 2.4 we find

x(t – r)
x(t)

< gm∗ (β), t ∈ [
T2 + 2r – δ, T2 +

(
N – m∗r

)
+ 1

]
Z

. (2.24)

So, when t = T2 + (n∗ + 1)r – δ in (2.23) and (2.24), it follows that

fn∗ (β) ≤ x(T2 + n∗r – δ)
x(T2 + (n∗ + 1)r – δ)

< gm∗ (β),

which contradicts (2.22). If

kβ = 1 + min
n≥1

{
n|fn+1(β) < 0 or fn+1(β) = ∞}

,

then Lemma 2.3 implies a contradiction and the proof is complete. �

3 Main results
In this section, we obtain sufficient oscillation conditions for Eq. (1.1) about the distribu-
tion of generalized zeros.

Theorem 3.1 Let (H1)–(H4) and (2.4) establish for some positive integer n with r1 = σ – τ .
Then the equation (1.1) oscillates and dt̃(x) ≤ 2σ + 3n(σ – τ ), where t̃ = t1 + (2n + 1)(σ – τ ).
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Proof If Eq. (1.1) has a non-oscillatory solution x(t), and –x(t) is also the solution of
Eq. (1.1), so we only consider the situation of the solution of (1.1) is eventually positive.
We assume x(t) > 0 on [T0, T]Z for some integer T0 ≥ t̃ where T > T0 + 2σ + 3n(σ – τ ).
Since z(t) = x(t) + p(t)x(t – τ ) for t ∈ [T0 + τ , T], z(t) > 0 on [T0 + τ , T]Z. From inequality
(2.2), we have

�
(
a(t)�z(t)

)

≤ –kq(t)z(t – σ ) + kq(t)p(t – σ )x(t – τ – σ ), t ∈ [T0 + σ + τ , T]Z. (3.1)

Also from (2.2), we obtain x(t – τ – σ ) ≤ – �(a(t–τ )�z(t–τ ))
kq(t–τ ) , t ∈ [T0 + σ + τ , T]Z. Then in-

equality (3.1) can be rewritten as

�
(
a(t)�z(t)

)

≤ –kq(t)z(t – σ ) – kq(t)p(t – σ )
�(a(t – τ )�z(t – τ ))

kq(t – τ )

= –kq(t)z(t – σ ) – p(t – σ )
q(t)

q(t – τ )
�

(
a(t – τ )�z(t – τ )

)
, t ∈ [T0 + σ , T]Z,

i.e.

�
(
a(t)�z(t)

)
+ p(t – σ )

q(t)
q(t – τ )

�
(
a(t – τ )�z(t – τ )

)
+ kq(t)z(t – σ )

≤ 0, t ∈ [T0 + σ , T]Z.

We can conclude from condition (H4) and �(a(t)�z(t)) < 0,

�
(
a(t)�z(t)

)
+ H(t)�

(
a(t – τ )�z(t – τ )

)
+ kq(t)z(t – σ )

≤ 0, t ∈ [T0 + σ , T]Z. (3.2)

Let

w(t) = a(t)�z(t) + H(t)
(
a(t – τ )�z(t – τ )

)
, t ∈ [T0 + σ + τ , T]Z. (3.3)

So

w(t) ≤ (
1 + H(t)

)(
a(t – τ )�z(t – τ )

)
. (3.4)

Differentiating both sides of (3.3), and because of (3.2), and �(a(t)�z(t)) < 0, we obtain

�w(t) ≤ �H(t)
(
a(t – τ + 1)�z(t – τ + 1)

)
– kq(t)z(t – σ )

< �H(t)
(
a(t – τ )�z(t – τ )

)
– kq(t)z(t – σ ), t ∈ [T0 + σ , T]Z. (3.5)

From (3.4), we get

�z(t – σ ) = �z(t + τ – σ – τ ) ≥ w(t + τ – σ )
a(t – σ )(1 + H(t + τ – σ ))

, t ∈ [T0 + 2σ , T]Z.



Feng and Han Advances in Difference Equations        (2019) 2019:282 Page 12 of 15

Summing up the above form from T0 to t – 1, we have

z(t – σ ) – z(T0 – σ ) ≥
t–1∑

s=T0

w(s + τ – σ )
1 + H(s + τ – σ )

1
a(s – σ )

,

therefore

z(t – σ ) ≥
t–1∑

s=T0

w(s + τ – σ )
1 + H(s + τ – σ )

1
a(s – σ )

. (3.6)

Let

y(t) =
w(t)

1 + H(t)
> 0, t ∈ [T0 + σ + τ , T]Z. (3.7)

Then

�y(t) =
�w(t)(1 + H(t)) – w(t)�(1 + H(t))

(1 + H(t + 1))(1 + H(t))
, t ∈ [T0 + σ + τ , T]Z. (3.8)

Adding (3.3) and (3.5) to (3.8), we have

�y(t) +
kq(t)z(t – σ )
1 + H(t + 1)

< 0, t ∈ [T0 + σ + τ , T]Z. (3.9)

From (3.6), (3.7) and the decreasing of y(t), we get

z(t – σ ) ≥
t–1∑

s=T0

1
a(s – σ )

y(s + τ – σ ) ≥ y(t + τ – σ )
t–1∑

s=T0

1
a(s – σ )

, t ∈ [T0 + σ + τ , T]Z.

Substituting the above inequality into (3.9), we obtain

�y(t) +
kq(t)y(t + τ – σ )

1 + H(t + 1)

t–1∑

s=T0

1
a(s – σ )

< 0, t ∈ [T0 + σ + τ , T]Z. (3.10)

Set r1 = σ – τ , T1 = T0 + σ + τ and P(t) = kq(t)
1+H(t+1)

∑t–1
s=T0

1
a(s–σ ) , we conclude

�y(t) + P(t)y(t – r1) < 0, t ∈ [T1, T]Z.

What is more, (2.1) holds and y(t) is decreasing. Then we can conclude from Lemma 2.2
that y(t) cannot be positive on [T1, T]Z when r1 = σ – τ , where T > T1 + 3n(σ – τ ). This is
a contradiction with (3.7). The proof is completed. �

Assume the following condition holds:
(H5)

∑t–1
s=t–r

q(s)
1+H(s+1)

∑s–1
v=T0

1
a(v–σ ) ≥ β , t ≥ t2 for some t2 ≥ t0 + 2σ – τ .

Then we can obtain some further conclusions by means of Theorem 3.1.

Corollary 3.1 Suppose conditions (H1)–(H5) hold and a sequence {βn} is defined by

β0 = β > 0, βn = β0
n+1, n = 0, 1, 2, . . . .
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If there is some positive constant n0 ∈N such that 1 ≤ β < r, then Eq. (1.1) is oscillatory and
dt̃ ≤ 2σ + 3n0(σ – τ ), where t̃ = t1 + (2n0 + 1)(σ – τ ).

Proof According to condition (H5), we have
∑t–1

s=t–r F0(s) ≥ β . In addition, from the itera-
tive sequence {Fn(t)}, we get

t–1∑

s=t–r
F1(s) =

t–1∑

s=t–r
F0(s)

s–1∑

v=s–r
F0(s)

s–1∏

ζ=v–r

1
1 – F0(ζ )

≥
t–1∑

s=t–r
F0(s)

s–1∑

v=s–r
F0(s)

v–1∏

ζ=v–r

1
1 – F0(ζ )

s–1∏

ζ=v

1
1 – F0(ζ )

≥ r
r – β

t–1∑

s=t–r
F0(s)

s–1∑

v=s–r
F0(s)

=
r

r – β
β2 ≥ β2.

In the same way, continuing the calculation n times, we obtain
∑t–1

s=t–r Fn(s) ≥ βn for n =
2, 3, . . . . Therefore, by mathematical induction, we have

t–1∑

s=t–r
Fn(s) ≥ βn, for all n ∈N.

Let n = n0. According to Theorem 3.1, the proof is completed. �

Theorem 3.2 Let (H1)–(H5) hold. Then Eq. (1.1) oscillates and dt2 (x) ≤ 2σ + kβ (σ – τ ),
where kβ is defined by (2.21).

Proof As usual, we assume (1.1) has a solution x(t) > 0 on [T0, T]Z where T > T0 + 2σ +
kβ (σ –τ ) and T0 ≥ t2. Proceed as in the proof of Theorem 3.1, when T1 = T0 +2σ . It follows
that

�y(t) + p(t)y(t + τ – σ ) < 0, t ∈ [T1, T]Z,

where

y(t) > 0, t ∈ [
T1 – 2(σ – τ ), T

]
Z

.

Also from (3.10) we obtain

�y(t) < 0, t ∈ [
T1 – (σ – τ ), T

]
Z

.

Since (H5) holds, we conclude from Lemma 2.5 with δ = σ – τ that y(t) cannot be positive
on [T1, T]Z, where T > T1 + kβ (σ – τ ). This contradiction completes the proof. �
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4 Example
In this section, we will present an example to illustrate main results.

Example 4.1 We consider the delay difference equation

�
(
�

(
x(t) + x(t – 1)

))
+

7
48(t – 2)

x(t – 2) = 0, t ≥ 1. (4.1)

Compared with (1.1), we denote a(t) = 1 where c > t – 1, p(t) = 1, q(t) = 7
48(t–2) , τ = 1, σ = 3,

r = σ – τ = 2, f (u) = u for u �= 0. It is easy to verify that conditions (H1) and (H2). Since
f (u) = u, we get f (u)

u = 1. (H3) holds. Now take H(t) ≡ 1 which satisfies (H4). According to
(2.1), we obtain F0(t) = kq(t)

1+H(t+1)
∑t–1

s=T0
1

a(s–σ ) = 7
2×48(t–2)

∑t–1
s=2 1 = 7

24 , t ≥ 1 and 1
1–F0(ζ ) = 24

17 ,
so

F1(t) = F0(t)
t–1∑

s=t–r
F0(s)

t∏

ζ=s–r

1
1 – F0(ζ )

=
7

24
7

24

(
24
17

)5

+
7

24
7

24

(
24
17

)4

≈ 0.815, t ≥ 6.

Therefore,
∑t–1

s=t–2 F1(s) ds ≥ 1 for all t ≥ 6. Here, all conditions of Theorem 3.1 are satisfied
with n = 1, then we derive that (4.1) shows oscillatory and dt̃(x) ≤ 2σ + 3n(σ – τ ) = 12,
where t̃ = t1 + (2n + 1)(σ – τ ) = t1 + 6 and t1 ≥ t0 + σ = 4.

5 Conclusion
In this paper, two theorems on the distribution of oscillation zeros for second-order non-
linear neutral delay difference equations are obtained by means of inequality techniques,
specific function sequences and non-increasing solutions for corresponding first-order
difference inequality. Comparing with the corresponding differential equation, it is more
complex to deal with the lower bound of summation. Function 1

a(t)
∏t–1

s=1(1 + a(s)) is in-
variant after derivation in difference equation, which is equivalent to ex in differential
equation. That is the difficulty we address and the innovation of this paper. We study a
second-order equation under the canonical form, and it is also of great significance for
the study of non-canonical forms. Moreover, this paper can be extended to the dynamic
equation on time scale.
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