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Abstract
Considering the influence of the preferential degree, the hesitation psychology of
customers and the heterogeneity of underlying networks in preferential information
spreading, we propose a novel model called AHFB (adherent–hesitator–forwarder–
beneficiary) model to illustrate the dynamic behaviors of preferential information
spreading on scale-free networks. The mean-field theory is adopted to describe the
formulas of AHFBmodel. To begin with, we analyze the spreading dynamics of
preferential information. Then we determine the basic reproductive number and
equilibria by the next generation matrix method. The relationship among the basic
reproductive number, preferential degree, and hesitation parameter is also analyzed.
In addition, the globally asymptotical stability of information-eliminate equilibrium
and the permanence of the preferential information spreading are proved in detail.
Furthermore, a preferential information competition model is proposed, and the
corresponding dynamic behaviors are studied. We have found that under certain
conditions, a greater competitive advantage can be achieved by improving a certain
range of preferential strengths. Numerical simulations are also presented to verify and
extend theoretical results.

Keywords: Attractivity parameter; Preferential information spread model;
Heterogeneity; Scale-free networks; Hesitation psychology

1 Introduction
With the continuous prosperity of mobile Internet technology and the appearance of
the 5G, e-commerce technology is rapidly developing and multifarious applications are
emerging. As a kind of Internet networks, e-commerce networks not only play an im-
portant role in spreading information and promoting communication, but also penetrate
people’s daily life, such as convenient shopping, mobile payment [1–3]. In most instances,
e-commerce networks provide businesses with a platform to release preferential informa-
tion and display merchandises [4, 5]. In order to obtain discounts or small gifts from the
store during the shopping process, customers need to forward the corresponding prefer-
ential information [6]. Therefore, the preferential information will be spread widely.

In the field of complex networks, researchers have made some achievements in infor-
mation spreading [7–14] and network control [15–19]. Based on the characteristics of
network structure, the effects of different network topologies, such as small world net-
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works, random networks, scale-free networks, community structure networks, and mul-
tiplex networks, on information spreading models are studied in detail. The authors of
[20] described information spreading by ODE (ordinary differential equation) dynamic
system and built a linear algebra model in small world networks. They studied the rela-
tionship between the ODE function groups and the graph topology, and also found the rule
of the information’s distribution in networks. Lim et al. [21] studied the influence of clus-
tering coefficients under the SIR model with heterogeneous contact rates and provided a
novel iterative algorithm to estimate the conditions and sizes of global cascades. In order
to study the influence of human subjective value and psychological status on information
dissemination, Liu et al. [22] proposed a novel social network information dissemination
with negative feedback NFSIR (negative feedback–susceptible–infected–removed) model
on scale-free networks, which showed that the intensity of information feedback has a sig-
nificant impact on the process of information dissemination. The authors of [23, 24] pre-
sented a privacy protection and emotional behavior information spreading model with a
community structure on social networks. Zhang et al. [25, 26] proposed a node measure-
ment augmented system model in multirate systems networks with dynamic quantization.
Recently, scholars have begun to take serious consideration about the role of human be-
havior and the multiplex networks structure in information spreading [27–29]. The inter-
play between the epidemic spreading and the diffusion of awareness in multiplex networks
was analyzed in [30, 31].

Another generalization of the initial simple determinacy is to focus on different mod-
els and spreading mechanisms. The typical information behavior in social networks is
a kind of information sharing and interaction. Ally et al. [32] proposed two rewiring
SIR (susceptible–infected–removed) models on information spreading in scale-free and
small world networks. In order to study the effect of hesitation mechanism, the authors
of [33, 34] proposed an SEIR (susceptible–exposed–infected–removed) model by intro-
ducing the exposed nodes between the ignorant nodes and the spread nodes in hetero-
geneity networks, they found that hesitant individuals have a very important influence on
the spreading of information. To further investigate the influence of heterogeneity of the
underlying complex networks and quarantine strategy, an SIQRS (susceptible–infected–
quarantined–recovered–susceptible) epidemic model on the scale-free networks has been
proposed [35, 36].

It has been found that most real networks are actually scale-free networks, so the scale-
free property is a particularly important one in social networks [37, 38]. To further under-
stand the information spreading dynamics in real world, the scale-free property of social
networks has been taken into account by many information spreading models [39–41]. In
networks, nodes represent individual and edges represent the relationship of people, as for
preferential spreading dynamics, that relationship is contacted to forward the preferential
information. With the rapid development of social networks and new media, increasingly
many business groups choose social networks to promote their products by publishing
preferential information. Hence, it is of great importance to study the spreading dynamics
of preferential information on scale-free networks. Due to the influences of the merchan-
dise’s preferential degree, personal economic level, psychological and other factors, some
customers will not immediately forward the preferential information after they know it
in the real social life, and they will become hesitant at first. However, in the literature on
preferential information spreading, some researchers ignore the hesitating mechanism,
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which will affect people’s attitudes and behaviors on preferential information and further
influence its spreading. People in the hesitating state will read some comments or opinions
about the products because of the attractiveness of preferential information, which may
make one enter the forwarder status to forward the preferential information with a certain
probability. An FSFC (follower–super-forwarder–client) preferential information model
was proposed by Fu et al. [42] in online social networks, who found that different infec-
tion rates have a great impact on large- and small-degree node forwarders. Wan et al. [43]
proposed an SIB (susceptible–infected–beneficial) model based on scale-free networks,
and they further studied the influence of the preferential degree and the heterogeneity of
underlying networks on the spread of preferential e-commerce information. However, the
influence of the parameters in the model on the basic reproductive number has not been
analyzed in detail, and the hesitation psychology of people is also not considered. Moti-
vated by the above, we establish a novel AHFB preferential information spreading model
with hesitation mechanism on scale-free networks.

The remainder of this paper is organized as follows. Section 2 presents an AHFB prefer-
ential information spreading model. In Sect. 3, the basic reproductive number and equi-
libriums are obtained. Section 4 analyzes the globally asymptotic stability of equilibriums
and the permanence of preferential information spreading. In Sect. 5, the modified pref-
erential information spreading model with competitive mechanism is introduced and the
corresponding dynamical behaviors are studied. In Sect. 6, numerical simulations are pre-
sented to illustrate our main results. Finally, we give the discussions and conclusions in
Sect. 7.

2 Model formulation
During preferential information spreading in a population, individuals are divided into
four categories: adherents, hesitators, forwarders, and beneficiaries. Adherents are indi-
viduals who never know the preferential information. Hesitators are individuals who know
the preferential information in hesitation state and do not forward preferential informa-
tion. Forwarders are individuals who know and forward the preferential information. Ben-
eficiaries are individuals who know the preferential information and obtain the preferen-
tial policies. Taking the heterogeneity induced by the presence of nodes with different
connectivity into account, we let Ak(t), Hk(t), Fk(t), and Bk(t) be the relative densities of
adherent, hesitator, forwarder and beneficiary nodes of degree k at time t, respectively.
Figure 1 illustrates the spreading rules of the AHFB model. We assume that new immigra-
tion individuals are adherent at rate b(k), the emigration rate of all individuals is μ. The
reconnection of these new immigration nodes follows the below propagation rules. If an
adherent is connected to a forwarder, then he or she will be infected to become a hesitator
or a forwarder with a probability of δρ1 or αρ1, respectively. If an adherent is connected to
a beneficiary, then he or she will be infected to become a hesitator or a forwarder with a
probability of δρ2 or αρ2, respectively. Here, the parameter δ is used to describe the hesi-
tation degree of adherents, the attractivity parameter α is used to describe the preferential
degree of preferential information. A hesitator becomes a forwarder with a probability of
β . Parameter ρ1(ρ2) is the spread rate for an adherent after contacting with a forwarder
(beneficiary). A forwarder becomes a beneficiary with a probability of γ when he or she
forwards the preferential information a specific number of times.
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Figure 1 The flow diagram of the AHFBmodel

Based on the above assumptions and conditions of hypothesis, the AHFB preferential
information spreading dynamics model can be described by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dAk (t)
dt = b(k) – αk(ρ1θ1(t) + ρ2θ2(t))Ak(t) – δk(ρ1θ1(t)

+ ρ2θ2(t))Ak(t) – μAk(t),
dHk (t)

dt = δk(ρ1θ1(t) + ρ2θ2(t))Ak(t) – βHk(t) – μHk(t),
dFk (t)

dt = αk(ρ1θ1(t) + ρ2θ2(t))Ak(t) + βHk(t) – γ Fk(t) – μFk(t),
dBk (t)

dt = γ Fk(t) – μBk(t),

(2.1)

where θ1(t), θ2(t) denote the probabilities of an adherent contacts with a forwarder or a
beneficiary at time t, respectively, which satisfies the relations

⎧
⎨

⎩

θ1(t) =
∑n

i=1
ϕ(i)

i P(i|k) Fi(t)
Ni(t) = 〈k〉–1 ∑n

i=1
ϕ(i)
ηi

P(i)Fi(t),

θ2(t) =
∑n

i=1
ϕ(i)

i P(i|k) Bi(t)
Ni(t) = 〈k〉–1 ∑n

i=1
ϕ(i)
ηi

P(i)Bi(t).
(2.2)

Here, the factor 1/i stands for the probability that one of the forwarder or beneficiary
neighbors of a node with degree i will contact this node at the present time step; P(i|k)
denotes the conditional probability that a node with degree k is connected to a node with
degree i. In this paper, P(i|k) = iP(k)/〈k〉 and

∑n
k=1 P(k) = 1; 〈k〉 =

∑n
k=1 kP(k) denotes the

average degree. The function ϕ(t) is the forwarder node with degree k, and ρ(t) = ρ1θ1(t) +
ρ2θ2(t). And Nk(t) stands for the total number of nodes with degree k at time t, which
satisfies

Nk(t) = Ak(t) + Hk(t) + Fk(t) + Bk(t). (2.3)

It is easy to see that dNk(t)/t = b(k) –μNk(t), so Nk(t) = (N0 – b(k)/μ)e–ut + b(k)/μ, where
N0 = Nk(0), and then limx→∞ Nk(t) = b(k)/μ = ηk . Thus, since system (2.1) monitors hu-
man population, it is reasonable to assume that all its state variables and parameters are
nonnegative for all t ≥ 0. It implies that the region

Ω =
{

Ak(t), Hk(t), Fk(t), Bk(t) ∈ R4n
+ |Ak(t) + Hk(t) + Fk(t) + Bk(t) ≤ ηk ,

k = 1, 2, . . . , n
}

(2.4)
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is the positively invariant set for (2.1). Thus, each solution of system (2.1) with initial con-
ditions and the limit sets are contained in Ω in this paper.

Since Ak(t) = ηk –Hk(t)–Fk(t)–Bk(t) is at steady-state, it is sufficient to study the limiting
system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dHk (t)
dt = δk(ρ1θ1(t) + ρ2θ2(t))(ηk – Hk(t) – Fk(t) – Bk(t))

– βHk(t) – μHk(t),
dFk (t)

dt = αk(ρ1θ1(t) + ρ2θ2(t))(ηk – Hk(t) – Fk(t) – Bk(t))

+ βHk(t) – γ Fk(t) – μFk(t),
dBk (t)

dt = γ Fk(t) – μBk(t).

(2.5)

3 The basic reproductive number and existence of equilibriums
3.1 The basic reproductive number R0

System (2.5) has an information-elimination equilibrium E0{(0, 0, 0)}k . Using the next gen-
eration method in [44], system (2.5) can be written as

dx
dt

= M(x) – V (x),

where

x = (Hk , Fk , Bk)T ,

M(x) =

⎛

⎜
⎝

δkρ(t)(ηk – Hk – Fk – Bk)
αkρ(t)(ηk – Hk – Fk – Bk)

0

⎞

⎟
⎠ ,

V (x) =

⎛

⎜
⎝

(β + μ)Hk

–βHk + (γ + μ)Fk

μBk – γ Fk

⎞

⎟
⎠ .

The Jacobian matrices of M(x) and V (x) at the information-elimination equilibrium E0

are as follows:

M(x) = DM(E0) =

⎛

⎜
⎝

0 M12 M13

0 M22 M23

0 0 0

⎞

⎟
⎠ , V (x) = DV (E0) =

⎛

⎜
⎝

V11 0 0
V21 V22 0
0 V32 V33

⎞

⎟
⎠ , (3.1)

where

M12 =
δηkρ1

〈k〉

⎛

⎜
⎜
⎜
⎜
⎜
⎝

ϕ(1)
η1

P(1) ϕ(2)
η1

P(2) · · · ϕ(n)
η1

P(n)
ϕ(1)
η2

2P(1) ϕ(2)
η2

2P(2) · · · ϕ(n)
η2

2P(n)
...

...
. . .

...
ϕ(1)
ηn

nP(1) ϕ(2)
ηn

2nP(2) · · · ϕ(n)
ηn

nP(n)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (3.2)
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M13 =
δηkρ2

〈k〉

⎛

⎜
⎜
⎜
⎜
⎜
⎝

ϕ(1)
η1

P(1) ϕ(2)
η1

P(2) · · · ϕ(n)
η1

P(n)
ϕ(1)
η2

2P(1) ϕ(2)
η2

2P(2) · · · ϕ(n)
η2

2P(n)
...

...
. . .

...
ϕ(1)
ηn

nP(1) ϕ(2)
ηn

2nP(2) · · · ϕ(n)
ηn

nP(n)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (3.3)

M22 =
αηkρ1

〈k〉

⎛

⎜
⎜
⎜
⎜
⎜
⎝

ϕ(1)
η1

P(1) ϕ(2)
η1

P(2) · · · ϕ(n)
η1

P(n)
ϕ(1)
η2

2P(1) ϕ(2)
η2

2P(2) · · · ϕ(n)
η2

2P(n)
...

...
. . .

...
ϕ(1)
ηn

nP(1) ϕ(2)
ηn

2nP(2) · · · ϕ(n)
ηn

nP(n)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (3.4)

M23 =
αηkρ2

〈k〉

⎛

⎜
⎜
⎜
⎜
⎜
⎝

ϕ(1)
η1

P(1) ϕ(2)
η1

P(2) · · · ϕ(n)
η1

P(n)
ϕ(1)
η2

2P(1) ϕ(2)
η2

2P(2) · · · ϕ(n)
η2

2P(n)
...

...
. . .

...
ϕ(1)
ηn

nP(1) ϕ(2)
ηn

2nP(2) · · · ϕ(n)
ηn

nP(n)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (3.5)

here V11 = (β + μ)I , V21 = –βI , V22 = (γ + μ)I , V32 = –γ I , V33 = μI , I is the identity matrix,
and 0 is the zero matrix. The basic reproductive number is denoted by

R0 = ρ
(
MV –1) =

〈ϕ(k)k〉(μρ1 + γρ2)(α(μ + β) + βδ)
〈k〉μ(γ + μ)(β + μ)

,

where 〈ϕ(k)k〉 =
∑

i=1 kϕ(k)P(k), i = 1, 2, . . . , n.

3.2 Existence of equilibriums
Theorem 1 Consider system (2.1) and define R0 = 〈ϕ(k)k〉

〈k〉
(α(μ+β)+δβ)(μρ1+γρ2)

μ(β+μ)(μ+γ ) . There always
exists an information-elimination equilibrium E0(ηk , 0, 0, 0) when R0 < 1. When R0 > 1, the
system has an information-prevailing equilibrium E∗(A∗

k , H∗
k , F∗

k , B∗
k).

Proof To get the information-prevailing equilibrium solution E∗(A∗
k , H∗

k , F∗
k , B∗

k), we need
to make the right-hand side of the system equal to zero. It should satisfy

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

b(k) – αkA∗
k(t)(ρ1θ

∗
1 (t) + ρ2θ

∗
2 (t)) – δkA∗

k(t)(ρ1θ
∗
1 (t) + ρ2θ

∗
2 (t)) – μA∗

k(t) = 0,

δkA∗
k(t)(ρ1θ

∗
1 (t) + ρ2θ

∗
2 (t)) – βH∗

k (t) – μH∗
k (t) = 0,

αkA∗
k(t)(ρ1θ

∗
1 (t) + ρ2θ

∗
2 (t)) + βH∗

k (t) – γ F∗
k (t) – μF∗

k (t) = 0,

γ F∗
k (t) – μB∗

k(t) = 0,

(3.6)

where θ∗
1 = 〈k〉–1 ∑n

i=1
ϕ(k)
ηk

P(k)F∗
k (t), θ∗

2 = 〈k〉–1 ∑n
i=1

ϕ(k)
ηk

P(k)B∗
k(t). We obtain from (3.6)

that

A∗ =
(β + μ)(γ + μ)

kρ∗(α(β + μ) + βδ)
F∗,

H∗ =
δ(γ + μ)

α(β + μ) + βδ
F∗,

B∗ =
γ

μ
F∗,

(3.7)
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where ρ = ρ1θ1 + ρ2θ2. From (3.7) we get θ∗
2 = γ θ∗

1 /μ. Considering the normalization con-
dition, we obtain

F∗ =
μkρ∗(α(β + μ) + δβ)ηk

(kρ∗(δ + α) + μ)(γ + μ)(β + μ)
. (3.8)

Inserting it into (2.2), we obtain that

θ∗
1 =

1
〈k〉

n∑

i=1

ϕ(k)
ηk

P(k)
k(μρ1 + γρ2)(α(β + μ) + δβ)ηk

(kρ∗(δ + α) + μ)(β + μ)(γ + μ)
θ∗

1 = f
(
θ∗

1
)
. (3.9)

Clearly, θ∗
1 = 0 satisfies above equation, and if θ∗

1 = 0, then θ∗
2 = 0 and H∗

k = F∗
k = B∗

k = 0,
which is an information-elimination equilibrium of (2.1). It is easy to verify that f (θ∗

1 ) is a
convex and increasing function when f (θ∗

1 )|θ∗
1 =1 < 1. So if θ∗

1 has an another solution in [0,
1], it must satisfy

df (θ∗
1 )

dθ∗
1

∣
∣
∣
θ∗

1 =0
=

〈ϕ(k)k〉
〈k〉

(α(μ + β) + δβ)(μρ1 + γρ2)
μ(β + μ)(μ + γ )

= R0 > 1, (3.10)

and we can obtain the basic reproductive number

R0 =
〈ϕ(k)k〉

〈k〉
(α(μ + β) + δβ)(μρ1 + γρ2)

μ(β + μ)(μ + γ )
> 1. (3.11)

So, a nontrivial solution exists if and only if R0 > 1. Inserting the nontrivial solu-
tion of (3.7) into Eq. (3.6), we obtain F∗

k . Then by (3.7) and (3.8), we can easily get
0 < A∗

k , H∗
k , F∗

k , B∗
k < ηk for k = 1, 2, . . . , n. Thus, the equilibrium E∗(A∗

k , H∗
k , F∗

k , B∗
k) is well-

defined. Hence, when R0 > 1, only one positive equilibrium E∗(A∗
k , H∗

k , F∗
k , B∗

k) of system
(2.1) exists. The proof is completed. �

Remark
(1) The basic reproductive number R0 depends on some model parameters and

fluctuations of the degree distribution. It can be found that R0 has no correlation
with the degree-dependent new immigration individuals b(k). It seems that the
attraction parameters α and the infection rate ρ1,ρ2 have the same effects, because
R0 will increase when they increase, the effects will be explored by the detailed
numerical calculation.

(2) If ϕ(k) = k,β = 0, and b(k) = μ (i.e., new immigration individuals are balanced by
emigration rate), then the model can be simplified to the network based SIB model
with R0 = 〈k2〉

〈k〉
v(lβ1+εβ2)

l(l+ε) , which is investigated in [43].

4 Global dynamics of the model
In this section, qualitative analysis of the model is presented. Firstly, we consider the local
asymptotical stability of the information-elimination equilibrium E0.

Theorem 2 For system (2.5), the information-elimination equilibrium E0 is locally asymp-
totically stable if R0 < 1.
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Proof For the purpose of using the comparison theorem to prove the global stability of the
information-elimination equilibrium, we assume that H1 = z1, H2 = z2, . . . , Hn = zn, F1 =
zn+1, F2 = zn+2, . . . , Fn = z2n, B1 = z2n+1, B2 = z2n+2, . . . , Bn = z3n, and z = (z1, . . . , zn, zn+1, . . . ,
z2n, z2n+1, . . . , z3n)T , then system (2.5) can be written as

dz
dt

= Az + N(z),

where

A = M – V , N(z) = –

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ρ(z1 + zn+1 + z2n+1)
2ρ(z2 + zn+2 + z2n+2)

...
nρ(zn + z2n + z3n)

(n + 1)ρ(zn + z2n + z3n)
...

2nρ(zn + z2n + z3n)
0
...
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

3n×1

,

the matrices M and V satisfy (3.1); and, as one can see above, N(z) is negative. So dz
dt ≤

Az. We can find that the off-diagonal elements of matrix A are nonnegative, hence, the
quasimonotone system dz∗

dt ≤ Az∗ is obtained, which is a linear system and only has one
equilibrium E0{(0, 0, 0)}. Based on Lemma 1 in [45], we find that the eigenvalues of the
matrix A all have negative real parts when R0 < 1, so the linear system is stable, and then
Hk → 0, Fk → 0, Bk → 0 as t → ∞, k = 1, 2, 3, . . . , n. Using the comparison theorem in [44],
it follows that Hk → 0, Fk → 0, Bk → 0 as t → ∞, k = 1, 2, 3, . . . , n, for the nonlinear system
(2.5) when R0 < 1. So the information-elimination equilibrium is globally asymptotically
stable in Ω∗ when R0 < 1. This completes the proof. �

In this section, the global attractivity of the information-prevailing equilibrium is dis-
cussed.

Theorem 3 Suppose that (Ak(t), Hk(t), Fk(t), Bk(t)) is a solution of (2.1), satisfying

Ak(0) > 0, Hk(0) > 0, Fk(0) > 0 and Bk(0) > 0.

If R0 > 1, then limt→∞ inf{Ak(t), Hk(t), Fk(t), Bk(t)} = {A∗
k , H∗

k , F∗
k , B∗

k}, where (A∗
k , H∗

k , F∗
k ,

B∗
k ) is the unique information-prevailing equilibrium of (2.1) for k = 1, 2, . . . , n.

Proof Let us consider the Lyapunov function:

W (t) =
[(

Ak – A∗
k
)

–
(
Hk – H∗

k
)

–
(
Fk – F∗

k
)

–
(
Bk – B∗

k
)]2,

W ′(t) = 2
[(

Ak – A∗
k
)

–
(
Hk – H∗

k
)

–
(
Fk – F∗

k
)

–
(
Bk – B∗

k
)][

A′
k + H ′

k + F ′
k + B′

k
]

= 2
[(

Ak – A∗
k
)

–
(
Hk – H∗

k
)

–
(
Fk – F∗

k
)

–
(
Bk – B∗

k
)]
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Figure 2 The flow diagram of the AHF1F2Bmodel

× [
b(k) – μAk – μHk – μFk – μBk

]
.

Because E∗(A∗
k , H∗

k , F∗
k , B∗

k) satisfies (2.2), it follows that

b(k) – μA∗
k – μH∗

k – μF∗
k – μB∗

k = 0.

In other words, b(k) = μA∗
k – μH∗

k – μF∗
k – μB∗

k . Then, we can get

W ′(t) = 2
[(

Ak – A∗
k
)

–
(
Hk – H∗

k
)

–
(
Fk – F∗

k
)

–
(
Bk – B∗

k
)]

× [
μA∗

k + μH∗
k + μF∗

k + μB∗
k – μAk – μHk – μFk – μBk

]

= 2
[(

Ak – A∗
k
)

–
(
Hk – H∗

k
)

–
(
Fk – F∗

k
)

–
(
Bk – B∗

k
)]

× [
μ

(
A∗

k – Ak
)

– μ
(
H∗

k – Hk
)

– μ
(
F∗

k – Fk
)

– μ
(
B∗

k – Bk
)]

= –2μ
[(

Ak – A∗
k
)

–
(
Hk – H∗

k
)

–
(
Fk – F∗

k
)

–
(
Bk – B∗

k
)]2 ≤ 0.

Thus, the information-prevailing equilibrium E∗(A∗
k , H∗

k , F∗
k , B∗

k) is globally asymptoti-
cally stable by LaSalle Invariance Principle [46]. This completes the proof. �

5 A preferential information spreading model with competitive mechanism
Competition is ubiquitous in human society [47, 48]. Bo Zhao et al. studied the compet-
ing spreading processes of epidemic and awareness in multiplex networks, they found
that strong capacities of awareness diffusion and self-protection of individuals could lead
to a much higher spreading threshold and a smaller outbreak size [49]. Comparing to e-
commerce networks, a product may have multiple merchants on sale, and different mer-
chants may also offer different degrees of preferential for this product, which will trig-
ger competition. Therefore, a preferential information spreading model with competitive
mechanism is proposed. In the process of competition, we consider the difference of the
preferential degree of the product and people’s hesitation psychology. The model flow di-
agram is shown in Fig. 2.

Here F1k(t), F2k(t) represent the individuals who forwarded preferential information
from shop 1 and shop 2, respectively. The parameter β represents the probability that a
hesitator becomes a forwarder. A forwarder becomes a beneficiary with a probability of γ .
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The attractivity parameters α1 and α2 are used to describe the preferential degree of the
product in shops 1 and 2, respectively. The hesitation parameters δ1 and δ2 are used to de-
scribe the hesitation degree of adherents to the product preferential information in shops
1 and 2, respectively. Parameter ρ1(ρ2) is the spread rate for an adherent after contacting
with a forwarder in shop 1 (shop 2), ρ3 is the spread rate for an adherent after contacting
with a beneficiary. In this model, we assume b(k) = μ. Based on these assumptions above,
the model can be described by the following system of ordinary differential equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dAk (t)
dt = b(k) – (α1 + δ1)k(ρ1θ1(t) + ρ3θ3(t))Ak(t)

– (α2 + δ2)k(ρ2θ2(t) + ρ3θ3(t))Ak(t) – μAk(t),
dHk (t)

dt = δ1k(ρ1θ1(t) + ρ3θ3(t))Ak(t)

+ δ2k(ρ2θ2(t) + ρ3θ3(t))Ak(t) – 2βHk(t) – μHk(t),
dF1k (t)

dt = α1k(ρ1θ1(t) + ρ3θ3(t))Ak(t) + βHk(t) – γ F1k(t) – μF1k(t),
dF2k (t)

dt = α2k(ρ2θ2(t) + ρ3θ3(t))Ak(t) + βHk(t) – γ F2k(t) – μF2k(t),
dBk (t)

dt = γ F1k(t) + γ F2k(t) – μBk(t).

(5.1)

Here θ1(θ2) denotes the probability that an adherent contacts with a forwarder in shop 1
(shop 2) at time t, θ3 denotes the probability that an adherent contacts with a beneficiary
at time t, which satisfies the relation

⎧
⎪⎪⎨

⎪⎪⎩

θ1(t) =
∑n

i=1
ϕ(i)

i P(i|k) F1i(t)
Ni(t) = 〈k〉–1 ∑n

i=1
ϕ(i)
ηi

P(i)F1i(t),

θ2(t) =
∑n

i=1
ϕ(i)

i P(i|k) F2i(t)
Ni(t) = 〈k〉–1 ∑n

i=1
ϕ(i)
ηi

P(i)F2i(t),

θ3(t) =
∑n

i=1
ϕ(i)

i P(i|k) Bi(t)
Ni(t) = 〈k〉–1 ∑n

i=1
ϕ(i)
ηi

P(i)Bi(t).

(5.2)

Theorem 4 Consider model (5.1) and define

R∗
0 =

〈ϕ(k)k〉
〈k〉

× [(α1(2β + μ) + βδ1)μρ1 + (α2(2β + μ) + βδ2)μρ2 + ((α1 + α2)(2β + μ) + 2β(δ1 + δ2))γρ3]
μ(2β + μ)(μ + γ )

,

then the following statements hold:
(1) There always exists an information-elimination equilibrium E∗

0 = {(1, 0, 0, 0, 0)}k

when R∗
0 < 1.

(2) There is an information-prevailing equilibrium E∗
1 = {(A∗

k , H∗
k , F1∗

k , F2∗
k , B∗

k)}k when
R∗

0 > 1.

Proof According to the formulas of system (5.1) and due to b(k) = μ, one can eas-
ily find that E∗

0(1, 0, 0, 0, 0) is always an equilibrium of system (5.1), which is called
information-elimination equilibrium. To get the information-prevailing equilibrium E∗

1 =
(A∗, H∗, F1∗, F2∗, B∗), we need to make the right-hand side of system (5.1) equal to zero,
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so it should satisfy

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b – (α1 + δ1)k(ρ1θ
∗
1 (t) + ρ3θ

∗
3 (t))A∗

k(t)

– (α2 + δ2)k(ρ2θ
∗
2 (t) + ρ3θ

∗
3 (t))A∗

k(t) – μA∗
k(t) = 0,

δ1k(ρ1θ
∗
1 (t) + ρ3θ

∗
3 (t))A∗

k(t) + δ2k(ρ2θ
∗
2 (t) + ρ3θ

∗
3 (t))A∗

k(t)

– 2βH∗
k (t) – μH∗

k (t) = 0,

α1k(ρ1θ
∗
1 (t) + ρ3θ

∗
3 (t))A∗

k(t) + βH∗
k (t) – γ F1∗

k(t) – μF1∗
k(t) = 0,

α2k(ρ2θ
∗
2 (t) + ρ3θ

∗
3 (t))A∗

k(t) + βH∗
k (t) – γ F2∗

k(t) – μF2∗
k(t) = 0,

γ F1∗
k(t) + γ F2∗

k(t) – μB∗
k(t) = 0,

(5.3)

and a direct calculation yields

A∗ =
μ

(μ + k)[(δ1 + α1)(ρ1θ
∗
1 + ρ3θ

∗
3 ) + (δ2 + α2)(ρ2θ

∗
2 + ρ3θ

∗
3 )]

,

H∗ =
μk(δ1(ρ1θ

∗
1 + ρ3θ

∗
3 ) + δ2(ρ2θ

∗
2 + ρ3θ

∗
3 ))

(2β + μ)(μ + k[(δ1 + α1)(ρ1θ
∗
1 + ρ3θ

∗
3 ) + (δ2 + α2)(ρ2θ

∗
2 + ρ3θ

∗
3 )])

,

F1∗ =
μk((2β + μ)α1(ρ2θ

∗
2 + ρ3θ

∗
3 ) + β[δ1(ρ1θ

∗
1 + ρ3θ

∗
3 ) + δ2(ρ2θ

∗
2 + ρ3θ

∗
3 )])

(2β + μ)(μ + k[(δ1 + α1)(ρ1θ
∗
1 + ρ3θ

∗
3 ) + (δ2 + α2)(ρ2θ

∗
2 + ρ3θ

∗
3 )])

, (5.4)

F2∗ =
μk((2β + μ)α2(ρ2θ

∗
2 + ρ3θ

∗
3 ) + β[δ1(ρ1θ

∗
1 + ρ3θ

∗
3 ) + δ2(ρ2θ

∗
2 + ρ3θ

∗
3 )])

(2β + μ)(μ + k[(δ1 + α1)(ρ1θ
∗
1 + ρ3θ

∗
3 ) + (δ2 + α2)(ρ2θ

∗
2 + ρ3θ

∗
3 )])

,

B∗ =
γμk((2β + μ)[α1(ρ1θ

∗
1 + ρ3θ

∗
3 ) + α2(ρ2θ

∗
2 + ρ3θ

∗
3 )] + 2β[δ1(ρ1θ

∗
1 + ρ3θ

∗
3 ) + δ2(ρ2θ

∗
2 + ρ3θ

∗
3 )])

μ(γ + μ)(2β + μ)(μ + k[(δ1 + α1)(ρ1θ
∗
1 + ρ3θ

∗
3 ) + (δ2 + α2)(ρ2θ

∗
2 + ρ3θ

∗
3 )])

,

as well as ρ(t) =
∑

i P(i)(ρ1F1i + ρ2F2i + ρ3Bi) ≤ ρ1 + ρ2 + ρ3.
Obviously, ρ = 0 satisfies (5.3). Hence, Ak = 1 and Hk = F1k = F2k = Bk = 0 is an equilib-

rium of (5.1), which is called the information-elimination equilibrium.
Substituting F1k , F2k , and Bk of (5.1) into ρ , an equation of the form ρf (ρ) = 0 is ob-

tained, where

f (ρ) = 1 –
(α1(2β + μ) + βδ1)μρ1 + (α2(2β + μ) + βδ2)μρ2 + ((2β + μ)(α1 + α2) + 2β(δ1 + δ2))γρ3

〈k〉μ(γ + μ)(2β + μ)

×
∑

i

ϕ(k)kP(i).

Since f ′(ρ) > 0 and f (ρ1 + ρ2 + ρ3) > 0, the equation f (ρ) = 0 has a unique nontrivial so-
lution if and only if f (0) < 0, i.e., [(α1(2β + μ) + βδ1)μρ1 + (α2(2β + μ) + βδ2)μρ2 + γ ((2β +
μ)(α1 + α2) + 2β(δ1 + δ2))ρ3]〈ϕ(k)k〉/〈k〉(γ + μ)(2β + μ) > 1. So, we can get the basic repro-
ductive number

R∗
0 =

〈ϕ(k)k〉
〈k〉

× [(α1(2β + μ) + βδ1)μρ1 + (α2(2β + μ) + βδ2)μρ2 + ((α1 + α2)(2β + μ) + 2β(δ1 + δ2))γρ3]
μ(2β + μ)(μ + γ )

,

hence, a nontrivial solution exists if and only if R∗
0 > 1, completing the proof. �
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Figure 3 The relationship between the basic reproductive number R0 and the parameters on scale-free
networks

6 Numerical simulation and discussion
First, we perform some sensitivity analysis of the basic reproductive number R0 in terms
of model (2.1) parameters on scale-free networks. Obviously,

∂R0

∂ρ1
=

〈ϕ(k)k〉(α(β + μ) + δβ)
〈k〉(β + μ)(γ + μ)

,
∂R0

∂ρ2
=

〈ϕ(k)k〉γ (α(β + μ) + δβ)
〈k〉μ(β + μ)(γ + μ)

,

∂R0

∂β
=

〈ϕ(k)k〉δ(μρ1 + γρ2)
〈k〉(γ + μ)(β + μ)2 ,

∂R0

∂γ
=

〈ϕ(k)k〉(ρ2 – ρ1)(α(β + μ) + δβ)
〈k〉(β + μ)(γ + μ)2 ,

∂R0

∂α
=

〈ϕ(k)k〉(μρ1 + γρ2)
〈k〉μ(γ + μ)

,
∂R0

∂δ
=

〈ϕ(k)k〉β(μρ1 + γρ2)
〈k〉μ(γ + μ)(β + μ)

.

Some interesting results can be found as follows. In Fig. 3(a), the parameters are chosen
as follows: β = 0.15,γ = 0.25,α = 0.3, δ = 0.1,μ = 0.1; we can see that larger ρ1 or ρ2 can
lead to larger R0. In Fig. 3(b), the parameters are chosen as follows: ρ1 = 0.3,ρ2 = 0.25,α =
0.35, δ = 0.4,γ = 0.4; it shows that larger β can lead to larger R0, but R0 increase as μ

decreases. In Fig. 3(c), the parameters are chosen as follows: ρ1 = 0.25,ρ2 = 0.3,β = 0.15,
which shows that larger γ or δ can lead to larger R0 when ρ1 < ρ2. Figure 3(d) shows that
larger α can lead to larger R0 and larger γ can lead to a decrease in R0 when ρ1 > ρ2. From
Fig. 3(a), (c), and (d), we can see that the simultaneous effect of the two parameters has
a greater impact on the basic reproductive number. At the same time, variance of degree
distribution ϕ(k)λ(k) manifests in the diversity in contact patterns. Particularly, the ratio
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Figure 4 Population changes for each compartment over time when R0 < 1 (a) and R0 > 1 (b)

ϕ(k)λ(k)/〈k〉 is the parameter defining the level of heterogeneity of the network, which
shows the impact of network topology.

In this section, we conduct simulations to investigate the dynamics of the model param-
eters and network topology structures to support and explain our theoretical results. Here
the degree distribution is P(k) = ck–l(2 < l ≤ 3) in which l = 3 and c satisfies

∑n
k=1 P(k) = 1

[50],
∑n

k=1 P(k) = 1, n = 4000, b(k) = b/n; if we choose ϕ(k) = km with m = 1, then some
interesting phenomena can be observed in our simulations.

Figure 4 shows the time series for A(t), H(t), F(t), and B(t), which are the globally average
densities of the four states. The initial values of Figs. 4–8 are A(t) = 0.9, H(t) = 0, F(t) = 0.1
and B(t) = 0. In Fig. 4(a), if we choose ρ1 = 0.02,ρ2 = 0.01, δ = 0.1,μ = 0.04,β = 0.06,γ =
0.05,α = 0.4, then the basic reproductive number R0 = 0.758 < 1. It shows that, when
R0 < 1, the number of forwarders will diminish finally over time, even for a large frac-
tion of the forwarder nodes at the beginning, the preferential information spreading will
die out eventually, and all nodes will become adherents, i.e., A(t) = 1, H(t) = 0, F(t) = 0, and
B(t) = 0 as t → ∞ when R0 < 1. It suggests that the information-eliminate equilibrium is
locally stable when R0 < 1, in agreement with Theorem 2. The parameters in Fig. 4(b) are
chosen as ρ1 = 0.25,ρ2 = 0.1,α = 0.6,β = 0.3,γ = 0.2, δ = 4,μ = 0.1,α = 0.6, and then the
basic reproductive number R0 = 3.07 > 1. It is shown that when R0 > 1, even for a small
fraction of the forwarder nodes at the beginning, the density of forwarder is maintaining
at a positive constant, which means that the preferential information spreading will be
persistent on the network, in accordance with Theorems 3 and 4.

Figure 5 shows the dynamics behaviors of forwarders with different degree when the
basic reproductive number R0 < 1 and R0 > 1. We find that the larger degree leads to larger
value of the preferential information spreading level.

Figure 6 shows the effects of attractivity parameter α in H200 and F200. We choose the
parameters as follows: ρ1 = 0.2,ρ2 = 0.15,γ = 0.2, δ = 0.15,β = 0.1, with α = 0.1, 0.4, 0.7, 0.9
from bottom to top. It can be observed that the higher the attractivity rate α, the fewer
the hesitators. That is, the greater the degree of preferential, the less hesitant people will
be to forward the preferential information.

Figure 7 shows the effects of parameter δ in H200 and F200. We choose ρ1 = 0.25,ρ2 =
0.1,γ = 0.15,α = 0.5,β = 0.1, with δ = 0.05, 0.1, 0.3, 0.5 from bottom to top. One can see
that the higher the hesitation of the customer, the fewer individuals will be able to forward
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Figure 5 Dynamical behavior of forwarder with different degree when R0 < 1 (a) and R0 > 1 (b)

Figure 6 The density of H200 and F200 under different α

Figure 7 The density of H200 and F200 under different δ

the preferential information. Therefore, reducing the degree of hesitation of the customer,
that is, improving the promotion strategy and effective customer service guidance, can
promote the spreading of the preferential information.
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Figure 8 The density of F200 under different β in (a) and γ in (b)

Figure 8 shows the effects of parameter β and γ in F200. The parameters in Fig. 8(a) are
chosen as follows: ρ1 = 0.2,ρ2 = 0.15,γ = 0.15,α = 0.6, δ = 0.2, β is chosen as 0.1, 0.4, 0.7,
0.9. This implies that the product’s attractiveness parameter (the degree of preferential)
plays a strong role in contributing the spreading of preferential information. In Fig. 8(b),
β = 0.2, the parameter γ is chosen as 0.1, 0.4, 0.7, 0.9. It can be seen that if it is easier to
get preferential, the number of beneficiaries will increase.

Figure 9 compares the density of susceptible (adherent), sharer, beneficiary in the SIB
and AHFB models. In Fig. 9(a), we choose parameters μ = 0.2,β = 0.2,α = 0.4,ρ1 =
0.1,ρ2 = 0.01, R0 = 0.5008 in AHFB model. In Fig. 9(b) and (c), we choose μ = 0.1,β =
0.3,α = 0.7,ρ1 = 0.5,ρ2 = 0.01, R0 = 4.223. It can be easily seen that the peak value of each
state’ density of SIB model is higher than that of AHFB model. It illustrates that the hes-
itation mechanism can reduce the level of preferential information spreading, but it can
reflect people’s identification of some preferential information and people’s rational shop-
ping during shopping.

Figure 10 shows the time series for A(t), H(t), F1(t), F2(t), and B(t) in preferential in-
formation competition model, which are the globally average densities of the five states.
The initial value of Fig. 10 is A(t) = 0.8, H(t) = 0, F1(t) = 0.1, F2(t) = 0.1, and B(t) = 0.
In Fig. 10(a), we choose the parameters as μ = 0.04,ρ1 = 0.05,ρ2 = 0.05,ρ3 = 0.01, δ1 =
0.15, δ2 = 0.1,β = 0.15,γ = 0.25,α1 = 0.4,α2 = 0.3, forwarders 1 and 2 will disappear fi-
nally over time. And in Fig. 10(b), the parameters are chosen as ρ1 = 0.08,ρ2 = 0.08,ρ3 =
0.05, δ1 = 0.15, δ2 = 0.2,β = 0.24,γ = 0.22,α1 = 0.5,α2 = 0.4. We can see that the population
of forwarders will be maintained at a positive constant, which means that the information
spreading will persistent.

Figure 11 further studies the impact of preferential levels on competition mechanisms.
In Figs. 11(a), if the merchant’s preferential strength is less (0 < α1,α2 ≤ 0.1), we choose
α2 = 0.03,α1 = 0.031, . . . , 0.039, 0.04. It can see that in the process of competition, when
the degree of merchandise preference is 0.001 more than that of competitors, a larger
number of forwarders can be obtained, when the preference is increased again, the de-
gree of increase is smaller. In Fig. 11(b), if the merchant’s preferential strength is large
(0.1 < α1,α2 < 1), we choose α2 = 0.5,α1 = 0.51, . . . , 0.59, 0.6. We can see that in the compe-
tition process, when the degree of merchandise preference is 0.01 higher than that of the
competitor, the number of forwarders will increase significantly, and when the preference
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Figure 9 Population changes for each compartment over time in SIB and SHFBmodels

Figure 10 Population changes for each compartment over time in competition model when R0 < 1 (a) and
R0 > 1 (b)

is increased again, the degree of increase is not obvious. From this we can find the best
preferential policies in the competition process.

Figure 12 shows the impact of beneficiary spreading rate on hesitators and forwarders.
The parameters are chosen as ρ1 = 0.2,ρ2 = 0.2, δ1 = 0.15, δ2 = 0.15,β = 0.24,γ1 = 0.25,α1 =
0.5,α2 = 0.5, and ρ3 is chosen as 0.05, 0.1, 0.2. It shows that the beneficiary spreading rate
has little effect on the hesitators, but it has a great influence on the forwarders. Hence,
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Figure 11 The density of F1 and F2 under different α1,α2

Figure 12 The density of H200 and F1200 + F2200 under different ρ3

increasing the acknowledged comment and positive feedback of the beneficiaries can help
to increase the number of forwarders.

7 Conclusion
In this paper, we propose a novel AHFB model to describe the dynamic behavior of pref-
erential information spreading on scale-free networks. We obtain the basic reproductive
number R0 with the next generation matrix method, which is closely related to the topol-
ogy of the underlying networks and some model parameters. Interestingly, the basic re-
productive number R0 has no relationship with the degree-dependent new register b(k).
More specifically, by using the comparison principle and Lyapunov function, we prove that
the information-eliminate equilibrium E0 is globally asymptotically stable when R0 < 1;
the preferential information is uniformly persistent on the network when R0 > 1. In all
cases, the effects of attractiveness in preferential information and the hesitation psychol-
ogy of customers on the information spreading dynamics have been discussed. It seems
that increasing the attractiveness parameter α or decreasing the hesitation parameter δ
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can improve preferential information spreading. Moreover, we study the preferential in-
formation spreading model with competitive mechanism and analyze corresponding dy-
namics behavior, then we draw a conclusion that the degree of preferential for products
in the process of commodity competition is a core competitiveness factor. We have found
that the degree of merchandise preference is 0.001 or 0.01 more than that of competitors
and the number of forwarders will increase significantly. At the same time, increasing the
spreading rate of beneficiaries, that is, the acknowledged comment and positive feedback
of the beneficiaries can help promote the sale of products. The study has valuable guiding
significance in effectively managing and controlling preferential information spreading on
scale-free networks.

Acknowledgements
We thank the referees and the editor for their careful reading of the original manuscript and many valuable comments
and suggestions that greatly improved the presentation of this paper.

Funding
This work is supported by the National Natural Science Foundation of China under Grant 61672112, 61873287, Project in
Hubei Province Department of Education under Grant B2016036 and Yangtze University Excellent Doctoral and Master’s
Thesis Cultivation Program Funding Project.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors contributed equally to this work. All authors read and approved the final manuscript.

Author details
1National Demonstration Center for Experimental Electrical and Electronic Education, Yangtze University, Jingzhou, P.R.
China. 2School of Electronics and Information, Yangtze University, Jingzhou, P.R. China. 3College of Information Science
and Engineering, Central South University, Changsha, P.R. China.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 26 January 2019 Accepted: 27 June 2019

References
1. Zeng, Z.Y., Rui Shen, L.I.: A survey of the research on propagation model of network public opinion. J. China Acad.

Electron. Inf. Technol. 11(6), 588–593 (2016)
2. Wang, Z., Zhao, H., Lai, Z., et al.: Improved SIR epidemic model of social network marketing effectiveness and

experimental simulation. Syst. Eng. 36(8), 2024–2034 (2016)
3. Meng, Q., Zhang, N., Zhao, X., et al.: The governance strategies for public emergencies on social media and their

effects: a case study based on the microblog data. Electron. Mark. 26(1), 15–29 (2016)
4. Wu, W.W.: The cooperation-competition model for the hot topics of Chinese micro-blogs. Appl. Mech. Mater. 380,

2724–2727 (2013)
5. Barabási, A.L.: The network takeover. Nat. Phys. 8, 14 (2011)
6. Lee, J.S., Lin, K.S.: Electron. Commer. Res. Appl. 12, 1–13 (2013)
7. Cordasco, G., Gargano, L., Rescigno, A.A.: Active influence spreading in social networks. Theor. Comput. Sci. 764,

15–29 (2019)
8. Li, C.: A study on time-delay rumor propagation model with saturated control function. Adv. Differ. Equ. 1, 255 (2017)
9. Zhan, X.S., Guan, Z.H., Zhang, X.H., et al.: Optimal tracking performance and design of networked control systems

with packet dropouts. J. Franklin Inst. 350(10), 3205–3216 (2013)
10. Zan, Y.: DSIR double-rumors spreading model in complex networks. Chaos Solitons Fractals 110, 191–202 (2018)
11. Lin, T., Fan, C., Liu, C., et al.: Optimal control of a rumor propagation model with latent period in emergency event.

Adv. Differ. Equ. 1, 54 (2015)
12. Zhang, Y., Wang, Z., Zou, L., Fang, H.: Event-based finite-time filtering for multi-rate systems with fading

measurements. IEEE Trans. Aerosp. Electron. Syst. 53(3), 1431–1441 (2017)
13. Liu, X., Li, T., Xu, H., et al.: Spreading dynamics of an online social information model on scale-free networks. Physica A

514, 497–510 (2019)
14. Zhan, X.X., Liu, C., Zhou, G., et al.: Coupling dynamics of epidemic spreading and information diffusion on complex

networks. Appl. Math. Comput. 332, 437–448 (2018)
15. Zhan, X.S., Guan, Z.H., et al.: Best tracking performance of networked control systems based on communication

constraints. Asian J. Control 16(4), 1155–1163 (2014)
16. Li, T., Liu, X., Wu, J., et al.: An epidemic spreading model on adaptive scale-free networks with feedback mechanism.

Physica A 450, 649–656 (2016)



Liu et al. Advances in Difference Equations        (2019) 2019:279 Page 19 of 19

17. Zhan, X.S., Wu, J., Jiang, T., et al.: Optimal performance of networked control systems under the packet dropouts and
channel noise. ISA Trans. 58, 214–221 (2015)

18. Jiang, X.W., Ding, L., Guan, Z.H., et al.: Bifurcation and chaotic behavior of a discrete-time Ricardo–Malthus model.
Nonlinear Dyn. 71(3), 437–446 (2013)

19. Zhu, X., Wang, W., Cai, S., et al.: Dynamics of social contagions with local trend imitation. Sci. Rep. 8(1), 7335 (2018)
20. Zhang, L., Zhu, L., Yang, Y.: Describing the information spreading on a small-world network based on state space.

Proc. Comput. Sci. 107, 91–96 (2017)
21. Lim, S., Shin, J., Kwak, N., et al.: Phase transitions for information diffusion in random clustered networks. Eur. Phys. J. B

89(9), 188–203 (2016)
22. Liu, X., He, D., Yang, L., et al.: A novel negative feedback information dissemination model based on online social

network. Physica A 513, 371–389 (2019)
23. Du, J., Jiang, C., Chen, K.C., et al.: Community-structured evolutionary game for privacy protection in social networks.

IEEE Trans. Inf. Forensics Secur. 13(3), 574–589 (2018)
24. Kanavos, A., Perikos, I., Hatzilygeroudis, I., et al.: Emotional community detection in social networks. Comput. Electr.

Eng. 65, 449–460 (2018)
25. Zhang, Y., Wang, Z., Alsaadi, F.E.: Detection of intermittent faults for nonuniformly sampled multirate systems with

dynamic quantization and missing measurements. Int. J. Control 1–23 (2018)
26. Zhang, Y., Wang, Z., Ma, L.: Variance-constrained state estimation for networked multi-rate systems with

measurement quantization and probabilistic sensor failures. Int. J. Robust Nonlinear Control 26(16), 3507–3523
(2016)

27. Zhai, X., Zhou, W., Fei, G., et al.: Null model and community structure in multiplex networks. Sci. Rep. 8(1), 3245 (2018)
28. Kan, J.Q., Zhang, H.F.: Effects of awareness diffusion and self-initiated awareness behavior on epidemic spreading-an

approach based on multiplex networks. Commun. Nonlinear Sci. Numer. Simul. 44, 193–203 (2017)
29. Du, J., Jiang, C., Chen, K.C., et al.: Community-structured evolutionary game for privacy protection in social networks.

IEEE Trans. Inf. Forensics Secur. 13(3), 574–589 (2018)
30. Zhu, P., Wang, X., Zhi, Q., et al.: Analysis of epidemic spreading process in multi-communities. Chaos Solitons Fractals

109, 231–237 (2018)
31. Kanavos, A., Perikos, I., Hatzilygeroudis, I., et al.: Emotional community detection in social networks. Comput. Electr.

Eng. 65, 449–460 (2018)
32. Ally, A.F., Zhang, N.: Effects of rewiring strategies on information spreading in complex dynamic networks. Commun.

Nonlinear Sci. Numer. Simul. 57, 97–110 (2018)
33. Lin, T., Fan, C., Liu, C., et al.: Optimal control of a rumor propagation model with latent period in emergency event.

Adv. Differ. Equ. 1, 54 (2015)
34. Liu, X., Li, T., Tian, M.: Rumor spreading of a SEIR model in complex social networks with hesitating mechanism. Adv.

Differ. Equ. 1, 391 (2018)
35. Huang, S., Chen, F., Chen, L.: Global dynamics of a network-based SIQRS epidemic model with demographics and

vaccination. Commun. Nonlinear Sci. Numer. Simul. 43, 296–310 (2017)
36. Li, T., Wang, Y., Guan, Z.H.: Spreading dynamics of a SIQRS epidemic model on scale-free networks. Commun.

Nonlinear Sci. Numer. Simul. 19, 686–692 (2014)
37. Trpevski, D., Tang, W.K.S., Kocarev, L.: Model for rumor spreading over networks. Phys. Rev. E 81(5), 056102 (2010)
38. Huo, L., Wang, L., Song, N., et al.: Rumor spreading model considering the activity of spreaders in the homogeneous

network. Physica A 468, 855–865 (2017)
39. Liu, W., Li, T., Liu, X., et al.: Spreading dynamics of a word-of-mouth model on scale-free networks. IEEE Access 6,

65563–65572 (2018)
40. Jiang, X.W., Zhan, X.S., Jiang, B.: Stability and Neimark–Sacker bifurcation analysis for a discrete single genetic negative

feedback autoregulatory system with delay. Nonlinear Dyn. 76(2), 1031–1039 (2014)
41. Xu, H., Li, T., Liu, X., Dong, J.: Spreading dynamics of an online social rumor model with psychological factors on

scale-free networks. Physica A 252, 234–246 (2019)
42. Fu, M., Yang, H., Feng, J., et al.: Preferential information dynamics model for online social networks. Physica A 506,

993–1005 (2018)
43. Wan, C., Li, T., Guan, Z.H., et al.: Spreading dynamics of an e-commerce preferential information model on scale-free

networks. Physica A 467, 192–200 (2017)
44. van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for

compartmental models of disease transmission. Math. Biosci. 180, 29–48 (2002)
45. Glavas, M., Weinberg, J.: Stability Analysis of Nonlinear Systems. Marcel Dekker, New York (1989)
46. Lasalle, J.P.: The Stability of Dynamical Systems. SIAM, Philadelphia (1976)
47. Mišić, B., Betzel, R.F., Nematzadeh, A., et al.: Cooperative and competitive spreading dynamics on the human

connectome. Neuron 86(6), 1518–1529 (2015)
48. Xie, X., Xue, Y., Wu, R.: Global attractivity of a discrete competition model of plankton allelopathy with infinite

deviating arguments. Adv. Differ. Equ. 1, 303 (2016)
49. Yu, S.: Extinction for a discrete competition system with feedback controls. Adv. Differ. Equ. 1, 9 (2017)
50. Zhu, G.H., Fu, X.C., Chen, G.R.: Spreading dynamics and global stability of a generalized epidemic model on complex

heterogeneous networks. Appl. Math. Model. 36, 5808–5817 (2012)


	Spreading dynamics of a preferential information model with hesitation psychology on scale-free networks
	Abstract
	Keywords

	Introduction
	Model formulation
	The basic reproductive number and existence of equilibriums
	The basic reproductive number R0
	Existence of equilibriums

	Global dynamics of the model
	A preferential information spreading model with competitive mechanism
	Numerical simulation and discussion
	Conclusion
	Acknowledgements
	Funding
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


