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Abstract
In this paper, we investigate the pth mean almost periodic solution to a neutral
stochastic evolution equation with infinite delay and Poisson jumps. We give a
sufficient condition for the existence and uniqueness of pth mean almost periodic
solution and the condition depends on the continuity of coefficients and the power
of a fractional operator. We give an example to illustrate the abstract results.
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1 Introduction
The theory of almost periodicity was introduced in the 1920s by Bochner and Bohr, from
then on, it has been well developed in dynamical systems and differential equations. Al-
most periodic solutions of stochastic differential equations driven by white Gaussian noise
have been studied extensively for the reason that random fluctuations come ubiquitously
with all kinds of natural and unnatural systems in the real world (see [11]). More and more
people are interested in studying the almost periodic solution of stochastic differential
equations since the works of Da Prato et al. [8, 18]. The concept of pth mean almost pe-
riodicity has been widely studied in stochastic differential equations (see [5, 6, 10]) since
it was firstly considered by Bezandry [4] in 2007. However, in contrast to the extensive
studies on almost periodicity of solutions to stochastic differential equations driven by
Gaussian noises, there has been little systematic investigation on other systems perturbed
by Poisson jump. The main reason for this, in our opinion, is that Poisson jumps destroyed
maybe the recurrent property completely. Some results about this question have been pre-
sented in the existing literature [11, 17, 19]. Recently, Wang and Liu [19] defined Poisson
almost periodicity and investigated the existence and uniqueness of the quadratic mean
almost periodic solutions to stochastic evolution equations perturbed by Lévy noise. Liu
and Sun [11], Sun and Wang [17] studied almost automorphic solutions to stochastic dif-
ferential equations with Lévy noise. More work can be found in [1, 2, 7, 12, 13, 15, 16].

Motivated by the above work, we consider the existence and uniqueness of pth mean
almost periodic solutions to the neutral stochastic evolution equations with infinite delay
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and Poisson jumps have the form

⎧
⎪⎪⎨

⎪⎪⎩

d[x(t) – G(t, x(t), xt)] = [Ax(t) + f (t, x(t), xt)] dt + g(t, x(t), xt) dW (t)

+
∫

Z F(t, x(t), y)Ñ(dt, dy), t ∈R,

xt0 = ϕ ∈ B,

(1.1)

where B is a phase space, A is a closed densely defined bounded linear operator, G and
f are Lp(Ω ;K)-valued continuous functions, g and F are L(Ω , Lp(Ω ;K))-valued jointly
continuous functions, W = {W (t)}t∈R is a Q-valued two-sided Wiener process, Ñ denotes
the compensated Poisson random measure of a Poisson random measure Np with intensity
measure ν and xt is B-valued stochastic process.

The paper is organized as follows. In Sect. 2, we recall some definitions and lemmas. In
Sect. 3, we prove two key lemmas and study the existence and uniqueness of the pth mean
almost periodic solution to (1.1) by means of fixed point methods and the semigroup of
operators. In the last section, we show an example to illustrate our main result.

2 Preliminaries
In this section, we briefly introduce some basic notations and facts. Let K be a real separa-
ble Hilbert space with inner product (·, ·)K. We denote L(K,K) as the space of all bounded
linear operators from K to K. Let (Ω ,F , P) be a filtered complete probability space satis-
fying the usual conditions. Suppose {p(t), t ≥ 0} is a σ -finite stationary Ft-adapted Pois-
son point process taking values in a measurable space (S,B(S)), where Z ⊂ S = R

d – {0}.
Ñ (dt, dy) = Np(dt, dy) – ν(dy)|dt| denotes the compensated Poisson random measure of
a Poisson random measure Np with intensity measure ν , which is independent of Q-
Wiener process W . For the definition of the Poisson jumps process and its basic prop-
erties and for further details, we refer the reader to the monograph [3]. The initial value
ϕ = {ϕ(θ ) : –∞ < θ ≤ 0} is an F0-measurable B-valued random variable independent of W
with finite second moment. The B-valued stochastic process xt : Ω → B, t ∈R, is defined
by setting xt = {x(t + θ )(ω) : θ ∈ (–∞, 0]}.

Let A be a linear operator from K to K and {S(t), t ≥ 0} be an analytic semigroup with
infinitesimal generator A. Suppose 0 ∈ ρ(A); it is well known that, for any α ∈ (0, 1], the
fractional power (–A)α can be defined under some conditions which is a closed linear
operator with domain D((–A)α). Moreover, D((–A)α) is dense in K, and the expression

‖h‖α =
∥
∥(–A)αh

∥
∥
K

, h ∈D
(
(–A)α

)
,

defines a norm in D((–A)α). If Kα denotes the space D((–A)α) endowed with the norm
‖ · ‖α , then the following properties are well known (see Pazy [14]).

Lemma 2.1
(1) Let 0 < α ≤ 1. Then Kα is a Banach space.
(2) For every 0 < α ≤ 1 there exists Mα > 0 such that

∥
∥(–A)αS(t)

∥
∥ ≤ Mαt–αe–λt (2.1)

for all t > 0 and λ > 0.
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(3) If 0 < β ≤ α, then the injection Kα ↪→Kβ is continuous.
(4) For 0 ≤ α ≤ 1, there exists a constant C such that

∥
∥(–A)–α

∥
∥ ≤ C. (2.2)

Definition 2.1 ([9]) The phase space B((–∞, 0],K) (denoted simply by B) is the space of
F0-measurable functions mapping (–∞, 0] into K, and endowed with a semi-norm ‖ · ‖B ,
such that the next assumptions hold:

(A1) If x : (–∞,σ + a) 	→K, a > 0, σ ∈ R, is continuous on [σ ,σ + a) and x ∈ B, then for
every t ∈ [σ ,σ + a) the following hold:

(a1) xt ∈ B;
(a2) ‖x(t)‖K ≤ N1‖xt‖B for some constant N1 > 0 independent of x;
(a3) there are two measurable functions N2, N3 : [0,∞) 	→ [0,∞), N2 indepen-

dent of x such that N2 is continuous, and N3 is locally bounded, and

‖xt‖B ≤ N2(t – σ ) sup
σ≤s≤t

∥
∥x(s)

∥
∥
K

+ N3(t – σ )‖xσ‖B .

(A2) The space B is complete.
(A3) For the function x satisfying (A1), its corresponding history t → xt is continuous

function in t ∈ [σ ,σ + a).
(A4) If (yn)n∈N is a uniformly bounded sequence in C((–∞, 0],K) such that yn admits a

compact support for every n and yn → y in the compact-open topology, then y ∈ B
and ‖yn – y‖B → 0, as n → ∞.

In this paper, for convenience, we assume thatB0 = {y ∈ B : y(0) = 0} and that there exists
a constant L > 0 such that

‖y‖B ≤L sup
θ≤0

∥
∥y(θ )

∥
∥ (2.3)

for each y ∈ B (see Proposition 7.1.1 in [9] for many details).

Definition 2.2 Let S0(t) : B → B be a C0-semigroup defined by

(
S0(t)y

)
(θ ) =

⎧
⎨

⎩

y(0), θ ∈ [–t, 0],

y(t + θ ), θ ∈ (–∞, –t).

The phase space B is a fading memory space if ‖S0(t)y‖B → 0 for every y ∈ B0, as t → ∞.
Moreover, B is a uniform fading memory space whenever ‖S0(t)‖B0 → 0, as t → ∞.

For the definition of the Q-Wiener process and its basic properties, we refer the reader
to the monograph [6] for details. We now briefly recall some basic results about Poisson
almost periodic and pth mean almost periodic stochastic process. For the more details on
these materials we refer to Bezandry and Diagana [5] and Wang and Liu [19]. Clearly, for
p ≥ 2, the space Lp(Ω ,K) is a Banach space when it is equipped with the norm

‖ · ‖Lp(Ω ,K) =
(
E‖ · ‖p

K

) 1
p .
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For convenience, if there is no confusion, usually the subscripts of norms ‖ · ‖K and
‖ · ‖Lp(Ω ,K) will be omitted. A stochastic process x : R → Lp(Ω ;K) is said to be continu-
ous whenever

lim
t→s

E
∥
∥x(t) – x(s)

∥
∥p = 0.

Definition 2.3 (Bochner almost periodicity) A continuous stochastic process x : R →
Lp(Ω ;K) is said to be pth mean almost periodic if for every sequence of real numbers {s̃n},
there exist a subsequence {sn} and a continuous stochastic process x̃ : R→ Lp(Ω ;K) such
that

lim
n→∞ sup

t∈R
E
∥
∥x(t + sn) – x̃(t)

∥
∥p = 0.

Moreover, a continuous function g : R× Lp(Ω ;K) → Lp(Ω ;K) with (t, x) 	→ g(t, x) is said
to be pth mean almost periodic in t uniformly in compact subsets of Lp(Ω ;K) if for ev-
ery sequence {s̃n} of real numbers and any compact subset K ⊂ Lp(Ω ;K), there exist a
subsequence {sn} and a continuous function g̃ : R× Lp(Ω ;K) → Lp(Ω ;K) such that

lim
n→∞ sup

t∈R,x∈K
E
∥
∥g(t + sn, x) – g̃(t, x)

∥
∥p = 0.

One needs to mention that an almost periodic process is a usual Lp(Ω ;K)-valued almost
periodic function, so the Bochner almost periodicity is equivalent to the Bohr almost peri-
odicity (see [5]). We denote by AP(R; Lp(Ω ;K)) the collection of all pth mean almost peri-
odic stochastic processes x : R → Lp(Ω ;K), and we denote by AP(R× Lp(Ω ;K); Lp(Ω ;K))
the collection of all almost periodic functions g : R× Lp(Ω ;K) → Lp(Ω ;K).

Lemma 2.2 If x ∈ AP(R; Lp(Ω ;K)), then the mapping t → E‖x(t)‖p is uniformly continu-
ous, and there exists a constant M1 > 0 such that E‖x(t)‖p ≤ M1 for all t ∈R.

Let CUB(R; Lp(Ω ;K)) denote the collection of all continuous and uniformly bounded
stochastic processes x : R → Lp(Ω ;K). It is easy to check that CUB(R; Lp(Ω ;K)) is a Ba-
nach space when it is equipped with the norm

‖x‖∞ = sup
t∈R

(
E
∥
∥x(t)

∥
∥p) 1

p .

Lemma 2.3 AP(R; Lp(Ω ;K)) ⊂ CUB(R; Lp(Ω ;K)) is a closed subspace.

Recall that a σ -finite random measure N on a measurable space (R+ × S,B(R+ × S)) is
called a Poisson random measure with intensity measure ν if:

(1) for every B = (t1, t2] × Z ∈ B(R+ × S), N (B) < ∞ has a Poisson distribution with
mean EN (B) = ν(Z)(t2 – t1);

(2) if B1, B2, . . . are disjoint, the random variables N (B1),N (B1), . . . are independent.
Here R+ = [0,∞]. It is well known that a Poisson random measure N can be characterized
by a Poisson point process p = {p(t), t ≥ 0} as follows:

N
(
(t1, t2] × Z

)
:=

∑

s∈(t1,t2]

1Z

(
p(s)

)
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for Z ⊆ B(S). Thus, we denote the Poisson random measure by Np. Define the compen-
sated Poisson random measure Ñ by

Ñ (t,Z) = Np(t,Z) – tν(Z).

Then Ñ is a martingale valued measure. For the writing needs, we simply introduce the
two-sided compensated Poisson random measure as follows: Given two independent,
identically distributed Poisson point processes, define the compensated Poisson random
measure

Ñ (t,Z) =

⎧
⎨

⎩

Np(t,Z) – tν(Z), t ≥ 0;

Np(–t,Z) + tν(Z), t < 0.
(2.4)

Then Ñ is a martingale valued two-sided compensated Poisson random measure.

Definition 2.4 A function F : R × Lp(Ω ;K) × Z → Lp(Ω ;K) is said to be Poisson pth
mean almost periodic in t ∈R uniformly in compact subsets of Lp(Ω ,K) if F is continuous
in the following sense:

∫

Z

E
∥
∥F(t, Y , x) – F(t̃, Ỹ , x)

∥
∥p

ν(dx) → 0,

as (t̃, Ỹ ) → (t, Y ), and for every sequence {s̃n} of real numbers, there exist a subsequence
{sn} and for any compact subsetK ⊂ Lp(Ω ;K), a function F̃ : R×Lp(Ω ;K)×Z → Lp(Ω ;K)
continuous such that

lim
n→∞ sup

t∈R,Y∈K

∫

Z

E
∥
∥F(t + sn, Y , x) – F̃(t, Y , x)

∥
∥p

ν(dx) → 0.

We denoted by PAP(R× Lp(Ω ;K) × Z; Lp(Ω ;K)) the collection of all Poisson almost pe-
riodic functions F : R× Lp(Ω ;K) × Z → Lp(Ω ;K).

The next lemma shows the basic properties of Poisson almost periodic functions.

Lemma 2.4 If Ψ ,Ψ1,Ψ2 : R× Lp(Ω ;K) ×Z → Lp(Ω ;K) are Poisson almost periodic func-
tions in t uniformly in compact subsets of Lp(Ω ;K), then:

(i) Ψ1 + Ψ2 is Poisson almost periodic.
(ii) λΨ is Poisson almost periodic for every scalar λ.

(iii) There exists a constant M̃ = M̃(K) > 0 such that

sup
t∈R,Z∈K

∫

Z

E
∥
∥Ψ (t, Z, x)

∥
∥p

ν(dx) ≤ M̃,

for any compact subset K ⊂ Lp(Ω ;K),

Proof It is obvious that the statements (i) and (ii) are true. For (iii), for some compact
subset K ⊂ Lp(Ω ;K), if

sup
t∈R,Z∈K

∫

Z

E
∥
∥Ψ (t, Z, x)

∥
∥p

ν(dx) = ∞,
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then there exists a sequence {s̃n} of real numbers and a sequence {Z̃n} ⊂K such that

lim
n→∞

∫

Z

E
∥
∥Ψ (s̃n, Z̃, x)

∥
∥p

ν(dx) = ∞.

Since Ψ : R× Lp(Ω ;K) ×K→ Lp(Ω ;K) is Poisson almost periodic function, there exist a
subsequence {sn} ⊂ {s̃n} and a function Ψ̃ : R× Lp(Ω ;K) ×K → Lp(Ω ;K) such that

lim
n→∞ sup

t∈R,Z∈K

∫

Z

E
∥
∥Ψ (t + sn, Z, x) – Ψ̃ (t, Z, x)

∥
∥p

ν(dx) = 0. (2.5)

Notice that, for each t ∈R,

sup
Z∈K

∫

Z

E
∥
∥Ψ̃ (t, Z, x)

∥
∥p

ν(dx) < ∞.

By taking t = 0 in (2.5), we get

lim
n→∞ sup

Z∈K

∫

Z

E
∥
∥Ψ (sn, Z, x)

∥
∥p

ν(dx) < ∞,

which gives a contradiction. Thus the statement (iii) is true. �

3 pth mean almost periodic mild solution
In this section, we study the existence of pth mean almost periodic mild solution to (1.1).
For later use, we have to prove two key lemmas as follows.

Lemma 3.1 Let the function f : R×Lp(Ω ;K)×B → Lp(Ω ;K) be pth mean almost periodic
in t ∈R uniformly in (x1, y1) ∈ H×B, where H ⊂ Lp(Ω ;K)×B is compact. If f is a Lipschitz
function in the following sense:

∥
∥f (t, x1, y1) – f (t, x2, y2)

∥
∥ < M2

(‖x1 – x2‖ + ‖y1 – y2‖B
)

for all (x1, y1), (x2, y2) ∈ Lp(Ω ;K) × B, t ∈ R, and some constant M2 > 0, then, for any pth
mean almost periodic process φ(t) : R → Lp(Ω ;K), the stochastic process t → f (t,φ(t),φt)
is pth mean almost periodic.

Proof Let φ : R → Lp(Ω ;K) be a pth mean almost periodic process. Then, by Theo-
rem 1.2.7 in [20], the B-valued stochastic process φt = {φ(t + θ ) : –∞ < θ ≤ 0} is also pth
mean almost periodic. Thus, for each ε > 0, there exists a constant l(ε) > 0 such that every
interval with the length l(ε) contains a number τ satisfying

E
∥
∥φ(t + τ ) – φ(t)

∥
∥p ≤ ε

22p–1Mp
2

, for all t ∈R

and

E‖φt+τ – φt‖p ≤ ε

22p–1Mp
2

, for all t ∈R.
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Noting that f is pth mean almost periodic in t ∈R uniformly in H×B, we get

E
∥
∥f

(
t + τ ,φ(t),φt

)
– f

(
t,φ(t),φt

)∥
∥p ≤ ε

2p

for all t ∈ R and ε > 0. It follows that

E
∥
∥f

(
t + τ ,φ(t + τ ),φt+τ

)
– f

(
t,φ(t),φt

)∥
∥p

= 2p–1E
(∥
∥f

(
t + τ ,φ(t + τ ),φt+τ

)
– f

(
t + τ ,φ(t),φt

)∥
∥p

+
∥
∥f

(
t + τ ,φ(t),φt

)
– f

(
t,φ(t),φt

)∥
∥p)

≤ 2p–1Mp
2E

(∥
∥φ(t + τ ) – φ(t)

∥
∥ + ‖φt+τ – φt‖B

)p

+ 2p–1E
∥
∥f

(
t + τ ,φ(t),φt

)
– f

(
t,φ(t),φt

)∥
∥p

≤ 22(p–1)Mp
2E

(∥
∥φ(t + τ ) – φ(t)

∥
∥p + ‖φt+τ – φt‖p

B
)

+ 2p–1 ε

2p

≤ ε

2
+

ε

2
= ε

for all t ∈ R and ε > 0. Combining this with the definition of Bohr almost periodicity, we
see that f (t,φ(t),φt) is pth mean almost periodic. �

Lemma 3.2 Assume that F ∈ PAP(R × Lp(Ω ;K) × Z; Lp(Ω ;K)), moreover, for all Y , Ỹ ∈
Lp(Ω ;K), t ∈R,

∫

Z

E
∥
∥F(t, Y , x) – F(t, Ỹ , x)

∥
∥p

ν(dx) ≤ kE‖Y – Ỹ‖p,

where constant k > 0 is independent of t, then the function D : R× Z → Lp(Ω ;K) given by
D(t, x) := F(t, Y (t), x) is Poisson almost periodic, for any almost periodic process Y : R →
Lp(Ω ;K).

Proof Given a sequence {s̃n} of real numbers. For any almost periodic process Y , there
exist a subsequence {sn} of {s̃n} and a continuous process Ỹ : R→ Lp(Ω ;K) such that

lim
n→∞ E

∥
∥Y (t + sn) – Ỹ (t)

∥
∥p = 0 (3.1)

uniformly in t ∈ R. Since the function F is Poisson almost periodic, there exist a subse-
quence {sn} of {s̃n} and a continuous function F̃ : R× Lp(Ω ;K) × Z → Lp(Ω ;K) such that

lim
n→∞

∫

Z

E
∥
∥F(t + sn, Y , x) – F̃(t, Y , x)

∥
∥p

ν(dx) = ∞ (3.2)

uniformly in (t, Y ) ∈R×K, where K is a compact subset of Lp(Ω ;K).
Consider the function D̃ : R×Z → Lp(Ω ;K) given by D̃(t, x) := F̃(t, Ỹ (t), x). Noting that

D(t + sn, x) – D̃(t, x) = F
(
t + sn, Y (t + sn), x

)

– F
(
t + sn, Ỹ (t), x

)
+ F

(
t + sn, Ỹ (t), x

)
– F̃

(
t, Ỹ (t), x

)
,
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we find that

∫

Z

E
∥
∥D(t + sn, x) – D̃(t, x)

∥
∥p

ν(dx)

≤ 2p–1
∫

Z

E
∥
∥F

(
t + sn, Y (t + sn), x

)
– F

(
t + sn, Ỹ (t), x

)∥
∥p

ν(dx)

+ 2p–1
∫

Z

E
∥
∥F

(
t + sn, Ỹ (t), x

)
– F̃

(
t, Ỹ (t), x

)∥
∥p

ν(dx)

≤ 2p–1kE
∥
∥Y (t + sn) – Ỹ (t)

∥
∥p + 2p–1

∫

Z

E
∥
∥F

(
t + sn, Ỹ (t), x

)
– F̃

(
t, Ỹ (t), x

)∥
∥p

ν(dx)

for every t ∈ R and n ≥ 1. By Bochner’s criterion (see [17, p. 4] for details), the closure of
the range R(Y ) of Y : R → Lp(Ω ;K) is a compact subset of Lp(Ω ;K), so is closure of the
range R(Ỹ ) of Ỹ . It follows from (3.1) and (3.2) that

lim
n→∞

∫

Z

E
∥
∥D(t + sn, x) – D̃(t, x)

∥
∥p

ν(dx) = 0

uniformly in t ∈R. This completes the proof. �

Definition 3.1 An (Ft)-progressively process {x(t)}t∈R is called a mild solution of the
problem (1.1) on R if it satisfies the corresponding stochastic integral equation

x(t) = S(t – t0)
[
ϕ(0) – G

(
t0,ϕ(0),ϕ

)]
+ G

(
t, x(t), xt

)

+
∫ t

t0

AS(t – s)G
(
s, x(s), xs

)
ds +

∫ t

t0

S(t – s)f
(
s, x(s), xs

)
ds

+
∫ t

t0

S(t – s)g
(
s, x(s), xs

)
dW (s) +

∫ t

t0

∫

Z

S(t – s)F
(
s, x(s), y

)
Ñ(ds, dy) (3.3)

for all t ≥ t0, and t0 ∈ R.

Now, in order to prove the main result in this paper, we introduce the following assump-
tions:

(H1) Let A be a bounded linear operator on K whose associated analytic semigroup
{S(t), t ≥ 0} satisfies the following:

∥
∥S(t)

∥
∥ ≤ Me–γ t , t ≥ 0, (3.4)

for some γ > 0, M > 0.
(H2) Let the function G : R× Lp(Ω ,K) × B → Lp(Ω ,Kα) be pth mean almost periodic

in t uniformly in compact subsets of Lp(Ω ,Kα). Moreover, there exist a constant
α ∈ ( 1

p , 1) such that, for any (x1, y1), (x2, y2) ∈ Lp(Ω ,K) ×B,

∥
∥(–A)αG(t, x1, y1) – (–A)αG(t, x2, y2)

∥
∥ ≤LG

(‖x1 – x2‖ + ‖y1 – y2‖B
)
,

where the constant LG > 0. We further assume that G(t, 0, 0) = 0.
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(H3) Let the function g : R× Lp(Ω ,K) ×B → L(Ω , Lp(Ω ,K)) be pth mean almost peri-
odic in t uniformly in compact subsets of L(Ω , Lp(Ω ,K)), and there exists a constant
Lg > 0 such that

∥
∥g(t, x1, y1) – g(t, x2, y2)

∥
∥ ≤Lg

(‖x1 – x2‖ + ‖y – y2‖B
)

for any (x1, y1), (x2, y2) ∈ Lp(Ω ,K) ×B.
(H4) Let the function f : R×Lp(Ω ,K)×B → Lp(Ω ,K) be pth mean almost periodic in t

uniformly in compact subsets of Lp(Ω ,K) ×B, and let there exist a constant Lf > 0
such that

∥
∥f (t, x1, y1) – f (t, x2, y2)

∥
∥ ≤Lf

(‖x1 – x2‖ + ‖y1 – y2‖B
)

for any (x1, y1), (x2, y2) ∈ Lp(Ω ,K) ×B.
(H5) Let the function F : R × Lp(Ω ,K) × Z → Lp(Ω ,K) be Poisson almost periodic in

t uniformly in compact subsets of Lp(Ω ,K) × Z, and for any x(t), x̃(t) ∈ Lp(Ω ;K),
let there exist a constant LF > 0 such that

∫

Z

∥
∥F

(
s, x(s–), z

)
– F

(
s, x̃(s–), z

)∥
∥p

ν(dz) ≤LF
(‖x – x̃‖p).

The main result will be presented as below.

Theorem 3.1 Let (H1)–(H5) be satisfied. Then the problem (1.1) has a unique pth mean
almost periodic mild solution whenever

Θ := 5p–1
{

2p–1(1 + Lp)
[

Cp + Mp
1–αΓ p–1

(

1 –
p(1 – α)

p – 1

)

λ–pαLp
G

+
Mp

γ p Lp
f + C′(p)

(
M2

2γ

) p
2
Lp

g

]

+ C(p)Mp
[(LF

2γ

) p
2

+
LF

pγ

]}

< 1, (3.5)

where the constants C, Mα , λ are given in Lemma 2.1, and γ , LG, Lg , Lf , LF are given in
Assumptions (H1)–(H5), and L is given in (2.3).

Proof Clearly, the mild solution (3.3) of (1.1) is equivalent to

x(t) = G
(
t, x(t), xt

)
+

∫ t

–∞
AS(t – s)G

(
s, x(s), xs

)
ds

+
∫ t

–∞
S(t – s)f

(
s, x(s), xs

)
ds +

∫ t

–∞
S(t – s)g

(
s, x(s), xs

)
dW (s)

+
∫ t

–∞
S(t – s)

∫

Z

F
(
s, x(s–), y

)
Ñ(ds, dy).

We need to show that the above equation has a unique pth mean almost periodic mild
solution. Define the operator Λ on AP(R, Lp(P,K)) by

Λx(t) := G
(
t, x(t), xt

)
+

∫ t

–∞
AS(t – s)G

(
s, x(s), xs

)
ds



Gao and Yan Advances in Difference Equations        (2019) 2019:296 Page 10 of 17

+
∫ t

–∞
S(t – s)f

(
s, x(s), xs

)
ds +

∫ t

–∞
S(t – s)g

(
s, x(s), xs

)
dW (s)

+
∫ t

–∞
S(t – s)

∫

Z

F
(
s, x(s–), y

)
Ñ(ds, dy)

= G
(
t, x(t), xt

)
+ Φ1x(t) + Φ2x(t) + Φ3x(t) + Φ4x(t) (3.6)

for all t ∈R. We now show that Λx(t) is pth mean almost periodic and Λ admits a unique
fixed point. This will be done in two steps.

Step I. Λx(t) is pth mean almost periodic. By the proof of Theorem 3.1 in [10] with a
minor modification, we can show that Φ1x(t) and Φ2x(t) are pth mean almost periodic.
Indeed, if x(t) is pth mean almost periodic, by (H2), (H4) and Lemma 3.1, we find that
(–A)αG(s, x(s), xs) and f (s, x(s), xs) are pth mean almost periodic. Therefore, for each ε > 0
there exists l(ε) > 0 such that every interval with length l(ε) contains a constant τ satisfying

E
∥
∥(–A)αG

(
t + τ , x(t + τ ), xt+τ

)
– (–A)αG

(
t, x(t), xt

)∥
∥p <

ελαp

Mp
1–αΓ p(α)

(3.7)

and

E
∥
∥f

(
t + τ , x(t + τ ), xt+τ

)
– f

(
t, x(t), xt

)∥
∥p <

εγ p

Mp , for all t ∈R. (3.8)

By applying (2.1), (H2), the Hölder inequality and (3.7), we have

E
∥
∥Φ1x(t + τ ) – Φ1x(t)

∥
∥p

= E
∥
∥
∥
∥

∫ t

–∞
AS(t – s)

[
G

(
s + τ , x(s + τ ), xs+τ

)
– G

(
s, x(s), xs

)]
dt

∥
∥
∥
∥

p

= E
∥
∥
∥
∥

∫ t

–∞
(–A)1–αS(t – s)

[
(–A)αG

(
s + τ , x(s + τ ), xs+τ

)
– (–A)αG

(
s, x(s), xs

)]
ds

∥
∥
∥
∥

p

≤ Mp
1–α

(∫ t

–∞
e–λ(t–s)(t – s)(α–1) ds

)p–1

×
(∫ t

–∞
e–λ(t–s)(t – s)(α–1)E

∥
∥(–A)αG

(
s + τ , x(s + τ ), xs+τ

)

– (–A)αG
(
s, x(s), xs

)∥
∥p ds

)

≤ Mp
1–α

(∫ t

–∞
e–λ(t–s)(t – s)(α–1) ds

)p

× ελαp

Mp
1–αΓ p(α)

≤ ελαp

Γ p(α)

(∫ t

–∞
e–λ(t–s)(t – s)(α–1) ds

)p

≤ ε, for all t ∈ R.

For Φ2, by (H1), (H4), the Hölder inequality and (3.8), we have

E
∥
∥Φ2x(t + τ ) – Φ2x(t)

∥
∥p

= E
∥
∥
∥
∥

∫ t

–∞
S(t – s)

[
f
(
s + τ , x(s + τ ), xs+τ

)
– f

(
s, x(s), xs

)]
dt

∥
∥
∥
∥

p

≤ Mp
(∫ t

–∞
e–γ (t–s) ds

)p–1
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×
(∫ t

–∞
e–γ (t–s)E

∥
∥f

(
s + τ , x(s + τ ), xs+τ

)
– f

(
s, x(s), xs

)∥
∥p ds

)

≤ Mp
(∫ t

–∞
e–γ (t–s) ds

)p

× εγ p

Mp

≤ εγ p
(∫ t

–∞
e–γ (t–s) ds

)p

≤ ε, for all t ∈R.

Similarly, by the proof of Theorem 5.1 in [5, pp. 131–132] with minor modifications, we
find that Φ3x(t) is pth mean almost periodic.

Now, we will prove that Φ4x(t) is almost periodic. Denote D(t, y) := F(t, x(t–), y) for F ∈
PAP(R×Lp(Ω ,K)×Z; Lp(Ω ,K)) and let s̃n be an arbitrary sequence of real numbers. Then
D(t, y) is Poisson almost periodic and there exist a subsequence sn of s̃n and continuous
functions D̃ such that

lim sup
n→∞,y∈R

∫

Z

E
∥
∥D(t + sn, y) – D̃(t, y)

∥
∥p

ν(dy) = 0. (3.9)

Let Ñ1(σ , ·) := Ñ (σ + sn, ·) – Ñ (sn, ·) for each σ ∈ R, Ñ1 and Ñ has the same law. Let
σ = s – sn, by Kunita’s first inequality [3] and (H1), we derive

E
∥
∥
∥
∥

∫ t+sn

–∞

∫

Z

S(t + sn – s)D(s, y)Ñ (ds, dy) –
∫ t

–∞

∫

Z

S(t – s)D̃(s, y)Ñ (ds, dy)
∥
∥
∥
∥

p

= E
∥
∥
∥
∥

∫ t

–∞

∫

Z

S(t – s)
[
D(σ + sn, y) – D̃(σ , y)

]
Ñ (ds, dy)

∥
∥
∥
∥

p

≤ C(p)
{

E
(∫ t

–∞

∫

Z

∥
∥S(t – s)

[
D(σ + sn, y) – D̃(σ , y)

]∥
∥2

ν(dy) ds
) p

2

+ E
(∫ t

–∞

∫

Z

∥
∥S(t – s)

[
D(σ + sn, y) – D̃(σ , y)

]∥
∥p

ν(dy) ds
)}

≤ C(p)
{(∫ t

–∞

∫

Z

∥
∥S(t – s)

∥
∥2E

∥
∥D(σ + sn, y) – D̃(σ , y)

∥
∥2

ν(dy) ds
) p

2

+
∫ t

–∞

∫

Z

∥
∥S(t – s)

∥
∥pE

∥
∥D(σ + sn, y) – D̃(σ , y)

∥
∥p

ν(dy) ds
}

≤ C(p)
{(∫ t

–∞
M2e–2γ (t–σ )

∫

Z

E
∥
∥D(σ + sn, y) – D̃(σ , y)

∥
∥2

ν(dy) ds
) p

2

+
∫ t

–∞
Mpe–pγ (t–σ )

∫

Z

E
∥
∥D(σ + sn, y) – D̃(σ , y)

∥
∥p

ν(dy) ds
}

,

where C(p) > 0 is a constant. Combining this with (3.9), we find that Φ4x(t) is pth mean
almost periodic in t. Thus, we have showed that the operator Λx(t) is pth mean almost
periodic.

Step II. Λ has a unique fixed point. Assume that both x(t) and y(t) are almost periodic
solutions of (1.1), and x(t) �= y(t). We derive from (3.6) that

E
∥
∥Λx(t) – Λy(t)

∥
∥p ≤ 5p–1

{

E
∥
∥G

(
t, x(t), xt

)
– G

(
t, y(t), yt

)∥
∥p
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+ E
∥
∥
∥
∥

∫ t

–∞
AS(t – s)

[
G

(
s, x(s), xs

)
– G

(
s, y(s), ys

)]
ds

∥
∥
∥
∥

p

+ E
∥
∥
∥
∥

∫ t

–∞
S(t – s)

[
f
(
s, x(s), xs

)
– f

(
s, y(s), ys

)]
ds

∥
∥
∥
∥

p

+ E
∥
∥
∥
∥

∫ t

–∞
S(t – s)

[
g
(
s, x(s), xs

)
– g

(
s, y(s), ys

)]
dW (s)

∥
∥
∥
∥

p

+ E
∥
∥
∥
∥

∫ t

–∞

∫

Z

S(t – s)
[
F
(
s, x(s), z

)
– F

(
s, y(s), z

)]
Ñ (ds, dz)

∥
∥
∥
∥

p}

≡ 5p–1
5∑

i=1

ψi

for all t ∈ R. By (H1), (H2) and (2.2), we have

ψ1 = E
∥
∥G

(
t, x(t), xt

)
– G

(
t, y(t), yt

)∥
∥p

≤ E
∥
∥(–A)–α

∥
∥p∥∥(–A)αG

(
t, x(t), xt

)
– (–A)αG

(
t, y(t), yt

)∥
∥p

≤ CpLp
G sup

t∈R
E
(∥
∥x(t) – y(t)

∥
∥ + ‖xt – yt‖B

)p

≤ Cp2p–1(1 + Lp)Lp
G sup

t∈R
E
(∥
∥x(t) – y(t)

∥
∥p)

≤ Cp2p–1(1 + Lp)Lp
G‖x – y‖p

∞.

Applying (2.2), we get

ψ2 = E
∥
∥
∥
∥

∫ t

–∞
AS(t – s)

[
G

(
s, x(s), xs

)
– G

(
s, y(s), ys

)]
ds

∥
∥
∥
∥

p

= E
∥
∥
∥
∥

∫ t

–∞
(–A)1–αS(t – s)(–A)α

[
G

(
s, x(s), xs

)
– G

(
s, y(s), ys

)]
ds

∥
∥
∥
∥

p

≤
∫ t

–∞
M1–α(t – s)–(1–α)e–λ(t–s)E

∥
∥(–A)α

[
G

(
s, x(s), xs

)
– G

(
s, y(s), ys

)]
ds

∥
∥p,

by (H2) and the Hölder inequality, we have

ψ2 ≤ Mp
1–α

(∫ t

–∞
e–λ(t–s)(t – s)

p(α–1)
p–1 ds

)p–1

×
∫ t

–∞
e–λ(t–s)E

∥
∥(–A)αG

(
s, x(s), xs

)
– G

(
s, y(s), ys

)∥
∥p ds

≤ Mp
1–α

(

Γ

(

1 –
p(1 – α)

p – 1

)

λ
p(1–α)

p–1 –1
)p–1

×
(

1
λ

)

Lp
G sup

t∈R
E
(∥
∥x(t) – y(t)

∥
∥ + ‖xt – yt‖B

)p

≤ Mp
1–α

(

Γ

(

1 –
p(1 – α)

p – 1

)

λ
p(1–α)

p–1 –1
)p–1

×
(

1
λ

)

Lp
G2p–1 sup

t∈R
E
(∥
∥x(t) – y(t)

∥
∥ + ‖xt – yt‖p

B
)
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≤ Mp
1–α

(

Γ

(

1 –
p(1 – α)

p – 1

)

λ
p(1–α)

p–1 –1
)p–1

×
(

1
λ

)

Lp
G2p–1(1 + Lp) sup

t∈R
E
(∥
∥x(t) – y(t)

∥
∥
)

≤ Mp
1–α

(

Γ

(

1 –
p(1 – α)

p – 1

)

λ
p(1–α)

p–1 –1
)p–1

×
(

1
λ

)

Lp
G2p–1(1 + Lp)‖x – y‖p

∞

= Mp
1–αΓ p–1

(

1 –
p(1 – α)

p – 1

)

λ–pαLp
G2p–1(1 + Lp)‖x – y‖p

∞

for all t ∈ R. By (H1), (H4) and the Hölder inequality, we also have

ψ3 ≤ E
(∫ t

–∞

∥
∥S(t – s)

∥
∥
∥
∥f

(
s, x(s), xs

)
– f

(
s, y(s), ys

)∥
∥ds

)p

≤
(∫ t

–∞
Me–γ (t–s) ds

)p–1

×
∫ t

–∞
Me–γ (t–s)E

∥
∥f

(
s, x(s), xs

)
– f

(
s, y(s), ys

)∥
∥p ds

≤
(∫ t

–∞
Me–γ (t–s) ds

)p

sup
t∈R

E
∥
∥f

(
t, x(t), xt

)
– f

(
t, y(t), yt

)∥
∥p,

moreover, we can easily find from (H4) that

ψ3 ≤ Mp

γ p Lp
f sup

t∈R
E
(∥
∥x(t) – y(t)

∥
∥ + ‖xt – yt‖B

)p

≤ Mp

γ p Lp
f 2p–1 sup

t∈R
E
(∥
∥x(t) – y(t)

∥
∥p + ‖xt – yt‖p

B
)

≤ Mp

γ p Lp
f 2p–1(1 + Lp)‖x – y‖p

∞

for all t ∈ R. By (H1) and the B-D-G inequalities, there exists a constant C′(p) > 0 such
that

ψ4 ≤ C′(p)E
∥
∥
∥
∥

∫ t

–∞

∥
∥S(t – s)

[
g
(
s, x(s), xs

)
– g

(
s, y(s), ys

)]∥
∥2

Lp(Ω ,K) ds
∥
∥
∥
∥

p
2

≤ C′(p)E
∥
∥
∥
∥

∫ t

–∞
M2e–2γ (t–s)∥∥g

(
s, x(s), xs

)
– g

(
s, y(s), ys

)∥
∥2

Lp(Ω ,K) ds
∥
∥
∥
∥

p
2

,

moreover, by (H3) and an elementary inequality, we have

ψ4 ≤ C′(p)
(∫ t

–∞
M2e–2γ (t–s) ds

) p
2
Lp

g sup
t∈R

E
(∥
∥x(t) – y(t)

∥
∥ + ‖xt – yt‖B

)p

≤ C′(p)
(

M2

2γ

) p
2
Lp

g 2p–1 sup
t∈R

E
(∥
∥x(t) – y(t)

∥
∥p + ‖xt – yt‖p

B
)

≤ C′(p)
(

M2

2γ

) p
2
Lp

g 2p–1(1 + Lp) sup
t∈R

E
(∥
∥x(t) – y(t)

∥
∥
)

≤ C′(p)
(

M2

2γ

) p
2
Lp

g 2p–1(1 + Lp)‖x – y‖p
∞
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for all t ∈ R. For ψ5, by Kunita’s inequality (see [3]), we find that there exists a constant
C(p) > 0 such that

ψ5 ≤ C(p)
{

E
(∫ t

–∞

∫

Z

∥
∥S(t – s)

[
F
(
s, x(s), z

)
– F

(
s, y(s), z

)]∥
∥2

ν(dz) ds
) p

2

+ E
(∫ t

–∞

∫

Z

∥
∥S(t – s)

[
F
(
s, x(s), z

)
– F

(
s, y(s), z

)]∥
∥p

ν(dz) ds
)}

,

we can derive from (H1) and (H5) that

ψ5 ≤ C(p)
{(∫ t

–∞
M2e–2γ (t–s)

∫

Z

E
∥
∥F

(
s, x(s), z

)
– F

(
s, y(s), z

)∥
∥2

ν(dz) ds
) p

2

+
∫ t

–∞
Mpe–pγ (t–s)

∫

Z

E
∥
∥F

(
s, x(s), z

)
– F

(
s, y(s), z

)∥
∥p

ν(dz) ds
}

≤ C(p)
{(

M2

2γ
LF E

∥
∥x(t) – y(t)

∥
∥2

) p
2

+
MpLF

pγ
E
∥
∥x(t) – y(t)

∥
∥p

}

≤ C(p)
[(

M2LF

2γ

) p
2

+
MpLF

pγ

]

sup
t∈R

E
∥
∥x(t) – y(t)

∥
∥p

≤ C(p)Mp
[(LF

2γ

) p
2

+
LF

pγ

]

‖x – y‖p
∞

for all t ∈ R. Thus, we have showed the desired estimate

E
∥
∥Λx(t) – Λy(t)

∥
∥p ≤ Θ‖x – y‖p

∞

for all t ∈ R, which implies that

∥
∥Λx(t) – Λy(t)

∥
∥∞ ≤ p√

Θ‖x – y‖∞

for all t ∈R, i.e., Λ is a contraction when (3.5) holds. It follows from the contraction prin-
ciple that there exists a unique fixed point x(t) for Λ in AP(R; Lp(Ω ,K)) such that Λx = x,
which implies that (1.1) admits a unique almost periodic mild solution. �

4 Examples
In this section, we give an example to illustrate the result obtained. First, we show a fading
memory phase space Bh. For any a > 0, define

B =
{
ψ : [–a, 0] →K is bounded and measurable

}

with the norm

‖ψ‖[–a,0] = sup
s∈[–a,0]

E
∥
∥ψ(s)

∥
∥, ψ ∈ B,

and

Bh =
{

ψ : (–∞, 0] →K

∣
∣
∣

∫ 0

–∞
h(s) sup

s≤θ≤0
E
(‖ψ‖)ds < ∞

}

, (4.1)
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where h : (–∞, 0] → (0,∞) is a given continuous function with l =
∫ 0

–∞ h(t) dt < ∞. If Bh

is endowed with the norm

‖ψ‖Bh =
∫ 0

–∞
h(s)‖ψ‖[s,0] ds,

then (Bh,‖ · ‖Bh ) is a Banach space and satisfies all conditions in Definition 2.1.
Consider the neutral stochastic differential equations with infinite delays and jumps

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d[u(t,η) –
√

ρ

M 1
4

‖(–A)
3
4 ‖

sin(t + u(t,η) + u(t – h,η))]

= [ ∂2

∂η2 u(t,η) + √
ρ sin(t + u(t,η) + u(t – h,η))] dt

+ √
ρ sin(t + u(t,η) + u(t – h,η)) dW (t) +

∫

Z

√
ρzu(t–)Ñ (dt, dz), t > 0,

u(t, 0) = u(t, 1) = 0, 0 ≤ η ≤ 1,

u(θ , ·) = ϕ(θ )(·), –∞ < θ ≤ 0,

(4.2)

where W (t) is a standard cylindrical Wiener process and Z = {z ∈ R : 0 < |z| ≤ b, b > 0}.
Let K = L2[0, 1] and the operator A = � be the classical Laplacian defined by

(Au)(η) =
∂2u
∂η2

with domain D(A) = {u ∈ K : u, u′ are absolutely continous, u′′ ∈ K, u(0) = u(1)}, then A
has eigenvalues

{
–π2, –4π2, . . . , –n2π2, . . .

}

and it generates an analytic semigroup {S(t)}t≥0 on K satisfying ‖S(t)‖ ≤ e–π2t . By taking
the phase space B as (4.1) with h(t) = et , –∞ < t < 0 and letting

G(t, x, xt)(η) =
√

ρ

M 1
4
‖(–A) 3

4 ‖
sin

(
t + u(t,η) + u(t – h,η)

)
,

f (t, x, xt)(η) =
√

ρ sin
(
t + u(t,η) + u(t – h,η)

)
,

g(t, x, xt)(η) =
√

ρ sin
(
t + u(t,η) + u(t – h,η)

)
,

F(t, x, z)(η) =
√

ρzu(t,η),

where ρ > 0, M 1
4

> 0 are the two corresponding constants in Lemma 2.1, we then rewrite
the system (4.2) into the abstract form (1.1). Moreover, it is not difficult to check that G,
f , g , F satisfy the conditions (H2)–(H5) with p = 2. Taking α = 3

4 and λ = π1/3, we get

l =
∫ 0

–∞
et dt = 1, γ = π2, M = 1, LG =

√
ρ

M 1
4

,

and

Lf = Lg =
√

ρ, LF =
√

ρ

∫

Z

z2ν(dz).
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For (–A)– 3
4 (see [14, p. 70]), we have

∥
∥(–A)– 3

4
∥
∥ ≤ 1

Γ ( 3
4 )

∫ ∞

0
t– 1

4
∥
∥S(t)

∥
∥dt ≤ π– 3

2 = C.

Theorem 3.1 implies that the system (4.2) has a unique mild square mean almost periodic
solution, provided

4
(

1
π3 + ρ +

ρ

π4 +
ρ

2π2

)

+
1
π2 ρ

∫

Z

z2ν(dz) <
1
5

.
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