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1 Introduction
In this paper, we investigate the existence criteria for the solutions of Caputo-type sequen-
tial fractional differential equations and inclusions:

(cDq + μcDq–1)x(t) = f
(
t, x(t), cDκx(t)

)
, t ∈ [0, 1], (1.1)

(cDq + μcDq–1)x(t) ∈ F
(
t, x(t), cDκx(t)

)
, t ∈ [0, 1], (1.2)

supplemented with nonlocal integro-multipoint boundary conditions:

⎧
⎪⎪⎨

⎪⎪⎩

ρ1x(0) + ρ2x(1) =
∑m–2

i=1 αix(σi) +
∑p–2

j=1 rj
∫ ηj
ξj

x(s) ds,

ρ3x′(0) + ρ4x′(1) =
∑m–2

i=1 δix′(σi) +
∑p–2

j=1 γj
∫ ηj
ξj

x′(s) ds,

0 < σ1 < σ2 < · · · < σm–2 < · · · < ξ1 < η1 < ξ2 < η2 < · · · < ξp–2 < ηp–2 < 1,

(1.3)

where cDq, cDκ denote the Caputo fractional derivatives of order q ∈ (1, 2] and κ ∈ (0, 1),
respectively, μ > 0, f is a given continuous function, F : [0, 1]×R×R →P(R) is a multival-
ued map (P(R) is the family of all nonempty subsets of R), ρ1,ρ2,ρ3,ρ4 are real constants
and αi, δi (i = 1, 2, . . . , m – 2), rj, γj (j = 1, 2, . . . , p – 2) are positive real constants.

The tools of fractional calculus such as fractional order differential and integral oper-
ators are found to be of great utility in developing the mathematical models related to
dynamical systems involving fractals and chaos. The modelers’ interest in such tools is
due to the fact that fractional order operators are nonlocal in nature and can trace the
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hereditary characteristics of many materials and processes involved in the problem. For a
detailed account of the subject, for example, see the books [1–6] and papers [7–10].

Fractional order single- and multivalued boundary value problems involving different
kinds of boundary conditions attracted significant attention during the last two decades.
The literature on this topic is now much enriched and contains a variety of results ranging
from the existence theory to the methods of solution for such problems [11–28].

The present work is motivated by a recent article [29] dealing with a fractional differ-
ential equation: cDqx(t) = f (t, x(t), cDβx(t)), 1 < q ≤ 2, 0 < β < 1, t ∈ (0, 1), equipped with
boundary conditions (1.3).

The rest of the paper is arranged as follows. In Sect. 2, we outline the basic concepts of
fractional calculus and prove an auxiliary lemma. Section 3 contains the main results for
the problem (1.1) and (1.3) and illustrative examples for the obtained results. In Sect. 4,
we prove the existence of solutions for the inclusion problem (1.2) and (1.3) for convex- as
well as nonconvex-valued maps involved in the given problem. The paper concludes with
some interesting observations.

2 Preliminaries
Let us begin this section with some preliminary concepts of fractional calculus [1, 4].

Definition 2.1 Let v be a locally integrable real-valued function on –∞ ≤ a < t < b ≤ +∞.
The Riemann–Liouville fractional integral Iα

a of v of order α ∈R (α > 0) is defined as

Iα
a v(t) =

1
Γ (α)

∫ t

a
(t – s)α–1v(s) ds,

where Γ denotes the Euler gamma function.

Definition 2.2 Let v, v(m) ∈ L1[a, b] for –∞ ≤ a < t < b ≤ +∞. The Riemann–Liouville
fractional derivative Dα

a of v of order α > 0 (m – 1 < α < m, m ∈ N) is defined as

Dα
a v(t) =

dm

dtm Im–α
a v(t) =

1
Γ (m – α)

dm

dtm

∫ t

a
(t – s)m–1–αv(s) ds,

while the Caputo fractional derivative cDα
a of v of order α ∈ R (m – 1 < α < m, m ∈ N) is

defined as

cDα
a v(t) = Dα

a

[
v(t) – v(a) – v′(a)

(t – a)
1!

– · · · – v(m–1)(a)
(t – a)m–1

(m – 1)!

]
.

Remark 2.3 If v ∈ Cm[a, b], then the Caputo fractional derivative cDα
a of order α ∈R (m –

1 < α < m, m ∈N) is defined as

cDα
a v(t) = Im–α

a v(m)(t) =
1

Γ (m – α)

∫ t

a
(t – s)m–1–αv(m)(s) ds.

In the present work, we denote the Riemann–Liouville fractional integral Iα
a and the

Caputo fractional derivative cDα
a with a = 0 by Iα and cDα , respectively.

To define the solution for problem (1.1) and (1.2), we consider the following lemma
dealing with its linear variant.
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Lemma 2.4 Let h ∈ C([0, 1],R). Then the integral solution for the sequential fractional
differential equation

(cDq + μcDq–1)x(t) = h(t), (2.1)

supplemented with the boundary conditions (1.3) is given by

x(t) =
m–2∑

i=1

φi(t)
∫ σi

0
eμ(s–σi)

(
Iq–1h(s)

)
ds

+
p–2∑

j=1

ψj(t)
∫ ηj

ξj

(∫ s

0
eμ(m–s)(Iq–1h(m)

)
dm

)
ds

+ Ω1(t)

[m–2∑

i=1

δiIq–1h(σi) +
p–2∑

j=1

γj

∫ ηj

ξj

(
Iq–1h(s)

)
ds – ρ4Iq–1h(1)

]

+ Ω2(t)
∫ 1

0
eμ(s–1)(Iq–1h(s)

)
ds +

∫ t

0
eμ(s–t)(Iq–1h(s)

)
ds, (2.2)

where

φi(t) =
1

μ�

[
μe–μt(B2αi + μB1δi) –

(
1 – e–μt)(A2αi + μA1δi)

]
,

ψj(t) =
1

μ�

[
μe–μt(B2rj + μB1γj) –

(
1 – e–μt)(A2rj + μA1γj)

]
,

(2.3)

Ω1(t) =
1

–μ�

[
μB1e–μt – A1

(
1 – e–μt)],

Ω2(t) =
1

–μ�

[
μe–μt(ρ4μB1 + ρ2B2) –

(
1 – e–μt)(ρ4μA1 + ρ2A2)

]
,

(2.4)

A1 = ρ1 + ρ2e–μ –
m–2∑

i=1

αie–μσi +
p–2∑

j=1

rj

μ

(
e–μηj – e–μξj

)
,

A2 = –μ

[

ρ3 + ρ4e–μ –
m–2∑

i=1

δie–μσi +
1
μ

p–2∑

j=1

γj
(
e–μηj – e–μξj

)
]

,

(2.5)

B1 =
1
μ

{

ρ2
(
1 – e–μ

)
–

m–2∑

i=1

αi
(
1 – e–μσi

)
–

p–2∑

j=1

[
rj(ηj – ξj) +

1
μ

(
e–μηj – e–μξj

)]
}

,

B2 = ρ3 + ρ4e–μ –
m–2∑

i=1

δie–μσi +
1
μ

p–2∑

j=1

(
e–μηj – e–μξj

)
,

(2.6)

with the assumption that

� = A1B2 – B1A2 �= 0. (2.7)

Proof Applying the integral operator Iq–1 on both sides of (2.1) and then solving the re-
sulting equation, we get

x(t) = ω0e–μt +
ω1

μ

(
1 – e–μt) +

∫ t

0
eμ(s–t)

(∫ s

0

(s – τ )q–2

Γ (q – 1)
h(τ ) dτ

)
ds, (2.8)
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where ωi (i = 0, 1) are unknown arbitrary constants. From (2.8), we have

x′(t) = –μω0e–μt + ω1e–μt – μ

∫ t

0
eμ(s–t)

(∫ s

0

(s – τ )q–2

Γ (q – 1)
h(τ ) dτ

)
ds

+
∫ t

0

(t – τ )q–2

Γ (q – 1)
h(τ ) dτ . (2.9)

Using (2.8) and (2.9) in the boundary conditions (1.2), we obtain

A1ω0 + B1ω1 = J1, A2ω0 + B2ω1 = J2, (2.10)

where Ai and Bi (i = 1, 2) are respectively given by (2.5) and (2.6), and

J1 =
m–2∑

i=1

αi

∫ σi

0
eμ(s–σi)

(
Iq–1h(s)

)
ds +

p–2∑

j=1

rj

∫ ηj

ξj

(∫ s

0
eμ(m–s)(Iq–1h(m)

)
dm

)
ds

– ρ2

∫ 1

0
eμ(s–1)(Iq–1h(s)

)
ds,

J2 =
m–2∑

i=1

δi

[
Iq–1h(σi) – μ

∫ σi

0
eμ(s–σi)

(
Iq–1h(s)

)
ds
]

+
p–2∑

j=1

γj

[∫ ηj

ξj

(
Iq–1h(s)

)
ds – μ

∫ ηj

ξj

(∫ s

0
eμ(m–s)(Iq–1h(m)

)
dm

)
ds
]

+ ρ4

[
μ

∫ 1

0
eμ(s–1)(Iq–1h(s)

)
ds – Iq–1h(1)

]
.

Solving system (2.10) for the unknown constants ω0, ω1 yields

ω0 =
1
�

{m–2∑

i=1

(B2αi + μB1δi)
∫ σi

0
eμ(s–σi)

(
Iq–1h(s)

)
ds

+
p–2∑

j=1

(B2rj + μB1γj)
∫ ηj

ξj

(∫ s

0
eμ(m–s)(Iq–1h(m)

)
dm

)
ds

– (ρ4μB1 + ρ2B2)
∫ 1

0

(
eμ(s–1)Iq–1h(s)

)
ds

– B1

m–2∑

i=1

δiIq–1h(σi) – B1

p–2∑

j=1

γj

∫ ηj

ξj

(
Iq–1h(s)

)
ds – ρ4B1Iq–1h(1)

}

,

ω1 =
1
�

{

–
m–2∑

i=1

(A2αi + μA1δi)
∫ σi

0
eμ(s–σi)

(
Iq–1h(s)

)
ds

–
p–2∑

j=1

(A2rj + μA1γj)
∫ ηj

ξj

(∫ s

0
eμ(m–s)(Iq–1h(m)

)
dm

)
ds

+ A1

m–2∑

i=1

δiIq–1h(σi) + A1

p–2∑

j=1

γj

∫ ηj

ξj

(
Iq–1h(s)

)
ds – ρ4A1Iq–1h(1)

+ (ρ4μA1 + ρ2A2)
∫ 1

0

(
eμ(s–1)Iq–1h(s)

)
ds

}

,
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where � is given by (2.7). Substituting the values of ω0 and ω1 into (2.8), together with the
notations (2.3) and (2.4), we get the solution (2.2). The converse follows by direct compu-
tation. This completes the proof. �

3 Main results for the problem (1.1) and (1.3)
Let X = {x|x ∈ C([0, 1],R) and cDκx ∈ C([0, 1],R)} be a space equipped with the norm
‖x‖X = supt∈[0,1] |x(t)| + supt∈[0,1] |cDκx(t)| = ‖x‖ + ‖cDκx‖, where cDκ denotes the standard
Caputo fractional derivative of order 0 < κ ≤ 1. As argued in [30], (X,‖ · ‖X) is a Banach
space.

By means of Lemma 2.4, we transform problem (1.1) and (1.3) into a fixed point problem
as x = Hx, where the operator H : X → X is defined by

(Hx)(t) =
m–2∑

i=1

φi(t)
∫ σi

0
eμ(s–σi)

(
Iq–1f

(
s, x(s), cDκx(s)

))
ds

+
p–2∑

j=1

ψj(t)
∫ ηj

ξj

(∫ s

0
eμ(m–s)(Iq–1f

(
m, x(m), cDκx(m)

))
dm

)
ds

+ Ω1(t)

[m–2∑

i=1

δi
(
Iq–1f

(
σi, x(σi), cDκx(σi)

))

+
p–2∑

j=1

γj

∫ ηj

ξj

(
Iq–1f

(
s, x(s), cDκx(s)

))
ds – ρ4Iq–1f

(
1, x(1), cDκx(1)

)
]

+ Ω2(t)
∫ 1

0
eμ(s–1)(Iq–1f

(
s, x(s), cDκx(s)

))
ds

+
∫ t

0
eμ(s–t)(Iq–1f

(
s, x(s), cDκx(s)

))
ds, t ∈ [0, 1], (3.1)

where φi, ψj and Ωi (i = 1, 2) are respectively given by (2.3) and (2.4). Furthermore, we
have

(Hx)′(t) =
m–2∑

i=1

φ′
i(t)

∫ σi

0
eμ(s–σi)

(
Iq–1f

(
s, x(s), cDκx(s)

))
ds

+
p–2∑

j=1

ψ ′
j (t)

∫ ηj

ξj

(∫ s

0
eμ(m–s)(Iq–1f

(
m, x(m), cDκx(m)

))
dm

)
ds

+ Ω ′
1(t)

[m–2∑

i=1

δi
(
Iq–1f

(
σi, x(σi), cDκx(σi)

))

+
p–2∑

j=1

γj

∫ ηj

ξj

(
Iq–1f

(
s, x(s), cDκx(s)

))
ds – ρ4Iq–1f

(
1, x(1), cDκx(1)

)
]

+ Ω ′
2(t)

∫ 1

0
eμ(s–1)(Iq–1f

(
s, x(s), cDκx(s)

))
ds

– μ

∫ t

0
eμ(s–t)(Iq–1f

(
s, x(s), cDκx(s)

))
ds

+ Iq–1f
(
t, x(t), cDκx(t)

)
, t ∈ [0, 1], (3.2)
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where

φ′
i(t) =

–e–μt

�

[
μ(B2αi + μB1δi) + A2αi + μA1δi

]
,

ψ ′
i (t) =

–e–μt

�

[
μ(B2rj + μB1γj) + A2rj + μA1γj

]
,

Ω ′
1(t) =

e–μt

�
[μB1 + A1],

Ω ′
2(t) =

e–μt

�

[
μ(ρ4μB1 + ρ2B1) + ρ4μA1 + ρ2A2

]
.

Next we fix some quantities as follows:

λ =
1

μΓ (q)

m–2∑

i=1

φ̂iσ
q–1
i

(
1 – e–μσi

)
+

1
μΓ (q + 1)

p–2∑

j=1

ψ̂j
(
η

q
j – ξ

q
j
)(

1 – e–μηj
)

+
Ω̂1

Γ (q + 1)

[

q

(m–2∑

i=1

δiσ
q–1
i + |ρ4|

)

+
p–2∑

j=1

γj
(
η

q
j – ξ

q
j
)
]

+
1

μΓ (q)
(Ω̂2 + 1)

(
1 – e–μ

)
, (3.3)

λ̂ = λ –
1

μΓ (q)
(
1 – e–μ

)
, (3.4)

φ̂i = max
t∈[0,1]

∣
∣φi(t)

∣
∣ =

1
μ|�|

[
μ|B2αi + μB1δi| +

(
1 – e–μ

)|A2αi + μA1δi|
]
,

ψ̂j = max
t∈[0,1]

∣
∣ψj(t)

∣
∣ =

1
μ|�|

[
μ|B2rj + μB1γj| +

∣
∣(A2rj + μA1γj)

∣
∣(1 – e–μ

)]
,

Ω̂1 = max
t∈[0,1]

∣
∣Ω1(t)

∣
∣ =

1
μ|�|

[
μ|B1| + |A1|

(
1 – e–μ

)]
,

Ω̂2 = max
t∈[0,1]

∣∣Ω2(t)
∣∣ =

1
μ|�|

[
μ|ρ4μB1 + ρ2B2| +

(
1 – e–μ

)|ρ4μA1 + ρ2A2|
]
;

λ1 =
1

μΓ (q)

m–2∑

i=1

φ̂′
iσ

q–1
i

(
1 – e–μσi

)
+

1
μΓ (q + 1)

p–2∑

j=1

ψ̂ ′
j
(
η

q
j – ξ

q
j
)(

1 – e–μηj
)

+
Ω̂ ′

1
Γ (q + 1)

[

q

(m–2∑

i=1

δiσ
q–1
i + |ρ4|

)

+
p–2∑

j=1

γj
(
η

q
j – ξ

q
j
)
]

+
1

μΓ (q)
Ω̂ ′

2
(
1 – e–μ

)
+

2 – e–μ

Γ (q)
, (3.5)

λ̂1 = λ1 –
2 – e–μ

Γ (q)
, (3.6)

φ̂′
i = max

t∈[0,1]

∣∣φ′
i(t)

∣∣ =
1

|�|
[
μ|B2αi + μB1δi| + |A2αi + μA1δi|

]
,

ψ̂ ′
j = max

t∈[0,1]

∣∣ψ ′
i (t)

∣∣ =
1

|�|
[
μ|B2rj + μB1γj| + |A2rj + μA1γj|

]
,

Ω̂ ′
1 = max

t∈[0,1]

∣∣Ω ′
1(t)

∣∣ =
1

|�|
[
μ|B1| + |A1|

]
,

Ω̂ ′
2 = max

t∈[0,1]

∣∣Ω ′
2(t)

∣∣ =
1

|�|
[
μ|ρ4μB1 + ρ2B2| + |ρ4μA1 + ρ2A2|

]
.
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In the following, for brevity, we use the notation

f̂
(
x(θ )

)
= f

(
θ , x(θ ), cDκx(θ )

)
. (3.7)

3.1 Existence result via Krasnoselskii’s fixed point theorem
Here we present an existence result for the problem (1.1) and (1.3), which relies on Kras-
noselskii’s fixed point theorem [31].

Theorem 3.1 Let f : [0, 1]×R×R → R be a continuous function satisfying the conditions:
(A1) There exists a constant L > 0 such that |f (t, x1, y1)– f (t, x2, y2)| ≤ L(|x1 –x2|+ |y1 –y2|)

for all t ∈ [0, 1], xi, yi ∈R, i = 1, 2;
(B1) There exists a function m ∈ C([0, 1],R+) such that |f (t, x, y)| ≤ m(t) for all (t, x, y) ∈

[0, 1] ×R×R.
Then the problem (1.1) and (1.3) has at least one solution on [0, 1] provided that

L
(

λ̂ +
1

Γ (2 – κ)
λ̂1

)
< 1, (3.8)

where λ̂, λ̂1 are given by (3.4) and (3.6), respectively.

Proof For ρ > ‖m‖(λ + λ1
Γ (2–κ) ), we consider the closed ball Bρ = {x ∈ X : ‖x‖X ≤ ρ} and

introduce the operators A and B on Bρ as follows:

(Ax)(t) =
m–2∑

i=1

φi(t)
∫ σi

0
eμ(s–σi)

(
Iq–1̂f

(
x(s)

))
ds

+
p–2∑

j=1

ψj(t)
∫ ηj

ξj

(∫ s

0
eμ(m–s)(Iq–1̂f

(
x(m)

))
dm

)
ds

+ Ω1(t)

[m–2∑

i=1

δi(Iq–1̂f
(
x(σi)

)

+
p–2∑

j=1

γj

∫ ηj

ξj

(
Iq–1̂f

(
x(s)

))
ds – ρ4Iq–1̂f

(
x(1)

)
]

+ Ω2(t)
∫ 1

0
eμ(s–1)(Iq–1̂f

(
x(s)

))
ds, t ∈ [0, 1], (3.9)

(Bx)(t) =
∫ t

0
eμ(s–t)(Iq–1̂f

(
x(s)

))
ds, t ∈ [0, 1]. (3.10)

For any x, y ∈ Bρ , it is straightforward to show that

∥∥(Hx)
∥∥

X = ‖Ax + Bx‖X ≤ ‖m‖
(

λ +
λ1

Γ (2 – κ)

)
< ρ,

which implies that Ax + By ∈ Bρ . Also, the operator B is completely continuous. Indeed, B
is uniformly bounded on Br as

‖Bx‖X ≤ 1 – e–μ

μΓ (q)
+

2 – e–μ

Γ (2 – κ)Γ (q)
.
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Observe that

∣∣Bx(t2) – Bx(t1)
∣∣

≤
∣∣∣
∣

∫ t1

0

[
eμ(s–t2) – eμ(s–t1)](Iq–1∣∣̂f

(
x(s)

)∣∣)ds +
∫ t2

t1

eμ(s–t2)(Iq–1∣∣̂f
(
x(s)

)∣∣)ds
∣∣∣
∣

≤ ‖m‖
∣∣
∣∣

∫ t1

0

[
eμ(s–t2) – eμ(s–t1)](Iq–11

)
ds +

∫ t2

t1

eμ(s–t2)(Iq–11
)

ds
∣∣
∣∣→ 0, as t1 → t2.

Also

∣∣Bx′(t2) – Bx′(t1)
∣∣

≤ ‖m‖μ
∣
∣∣
∣

∫ t1

0

[
eμ(s–t2) – eμ(s–t1)](Iq–11

)
ds +

∫ t2

t1

eμ(s–t2)(Iq–11
)

ds
∣
∣∣
∣

+
‖m‖

Γ (q – 1)

∣∣∣
∣

∫ t1

0

[
(t2 – s)q–2 – (t1 – s)q–2]ds +

∫ t2

t1

(t2 – s)q–2 ds
∣∣∣
∣→ 0,

and

∣
∣cDκBx(t2) – cDκBx(t1)

∣
∣ ≤

∫ t

0

(t – s)–κ

Γ (1 – κ)
∣
∣Bx′(t2) – Bx′(t1)

∣
∣ds

≤ 1
Γ (2 – κ)

∣
∣Bx′(t2) – Bx′(t1)

∣
∣→ 0,

as t1 → t2 independent of x. So B is equicontinuous. Using assumption (A1) and condi-
tion (3.8), it is easy to establish that operator A is a contraction. Thus the hypotheses of
Krasnoselskii’s fixed point theorem [31] hold true, and consequently we deduce by its con-
clusion that the problem (1.1) and (1.3) has at least one solution on [0, 1]. This completes
the proof. �

3.2 Uniqueness of solutions
Here we establish the uniqueness of solutions for the problem (1.1) and (1.3) by applying
a fixed point theorem due to Banach.

Theorem 3.2 Let assumption (A1) be satisfied and

L
(

λ +
λ1

Γ (2 – q)

)
< 1, (3.11)

where λ and λ1 are given by (3.3) and (3.5), respectively. Then there exists a unique solution
for the problem (1.1) and (1.3) on [0, 1].

Proof Let us define supt∈[0,1] |f (t, 0, 0)| = M and select

r̄ ≥ M(λ + λ1
Γ (2–q) )

1 – L(λ + λ1
Γ (2–q) )

to show that HBr̄ ⊂ Br̄ , where Br̄ = {x ∈ X : ‖x‖X ≤ r̄} and H is defined by (3.1).
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Using condition (A1), we have

∣∣̂f
(
x(θ )

)∣∣ =
∣∣f
(
θ , x(θ ), cDκx(θ )

)∣∣ =
∣∣f
(
θ , x(θ ), cDκx(θ )

)
– f (θ , 0, 0)

∣∣ +
∣∣f (θ , 0, 0)

∣∣

≤ L
(‖x‖ +

∥∥cDκx
∥∥) + M ≤ L‖x‖X + M ≤ Lr̄ + M.

Then, for x ∈ Br̄ , we obtain

∥∥(Hx)
∥∥ = sup

t∈[0,1]

∣∣(Hx)(t)
∣∣

≤ sup
t∈[0,1]

{m–2∑

i=1

∣∣φi(t)
∣∣
∫ σi

0
eμ(s–σi)

(
Iq–1∣∣̂f

(
x(s)

)∣∣)ds

+
p–2∑

j=1

∣
∣ψj(t)

∣
∣
∫ ηj

ξj

(∫ s

0
eμ(m–s)(Iq–1∣∣̂f

(
x(m)

)∣∣)dm
)

ds

+
∣∣Ω1(t)

∣∣
[m–2∑

i=1

|δi|(Iq–1∣∣̂f
(
x(σi)

∣∣)

+
p–2∑

j=1

|γj|
∫ ηj

ξj

(
Iq–1∣∣̂f

(
x(s)

)∣∣)ds + |ρ4|Iq–1∣∣̂f
(
x(1)

)∣∣
]

+
∣
∣Ω2(t)

∣
∣
∫ 1

0
eμ(s–1)(Iq–1∣∣̂f

(
x(s)

)∣∣)ds +
∫ t

0
eμ(s–t)(Iq–1∣∣̂f

(
x(s)

)∣∣)ds

}

≤ (Lr̄ + M)

{m–2∑

i=1

φ̂i

∫ σi

0
eμ(s–σi)

(
Iq–11

)
ds

+
p–2∑

j=1

ψ̂j

∫ ηj

ξj

(∫ s

0
eμ(m–s)(Iq–11

)
dm

)
ds

+ Ω̂1

[m–2∑

i=1

δi
(
Iq–11

)
+

p–2∑

j=1

γj

∫ ηj

ξj

(
Iq–11

)
ds – ρ4Iq–11

]

+ Ω̂2

∫ 1

0
eμ(s–1)(Iq–11

)
ds +

∫ t

0
eμ(s–t)(Iq–11

)
ds

}

≤ (Lr̄ + M)λ.

Also we have

∣∣(Hx)′(t)
∣∣ ≤

m–2∑

i=1

∣∣φ′
i(t)

∣∣
∫ σi

0
eμ(s–σi)

(
Iq–1∣∣̂f

(
x(s)

)∣∣)ds

+
p–2∑

j=1

∣
∣ψ ′

j (t)
∣
∣
∫ ηj

ξj

(∫ s

0
eμ(m–s)(Iq–1∣∣̂f

(
x(m)

)∣∣)dm
)

ds

+
∣∣Ω ′

1(t)
∣∣
[m–2∑

i=1

|δi|
(
Iq–1∣∣̂f

(
x(σi)

)∣∣)
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+
p–2∑

j=1

|γj|
∫ ηj

ξj

(
Iq–1∣∣̂f

(
x(s)

)∣∣)ds + |ρ4|Iq–1∣∣̂f
(
x(1)

)∣∣
]

+
∣∣Ω ′

2(t)
∣∣
∫ 1

0
eμ(s–1)(Iq–1∣∣̂f

(
x(s)

)∣∣)ds

+ μ

∫ t

0
eμ(s–t)(Iq–1∣∣̂f

(
x(s)

)∣∣)ds + Iq–1∣∣̂f
(
x(s)

)∣∣

≤ (Lr̄ + M)λ1.

Using the above inequality in the definition of Caputo fractional derivative with 0 < κ ≤ 1,
we get

∣∣cDκ (Hx)(t)
∣∣ ≤

∫ t

0

(t – s)–κ

Γ (1 – κ)
∣∣(Hx)′(s)

∣∣≤ (Lr̄ + M)λ1

∫ t

0

(t – s)–κ

Γ (1 – κ)
ds

≤ 1
Γ (2 – κ)

(Lr̄ + M)λ1.

Hence

∥∥(Hx)
∥∥

X =
∥∥(Hx)

∥∥ +
∥∥cDκ (Hx)

∥∥≤ (Lr̄ + M)λ +
1

Γ (2 – κ)
(Lr̄ + M)λ1 < r̄,

which clearly shows that Hx ∈ Br̄ for any x ∈ Br̄ . Thus HBr̄ ⊂ Br̄ .
Now, for x, y ∈ X and for each t ∈ [0, 1], we have

∣∣(Hx)(t) – (Hy)(t)
∣∣

≤
m–2∑

i=1

∣∣φi(t)
∣∣
∫ σi

0
eμ(s–σi)

(
Iq–1∣∣̂f

(
x(s)

)
– f̂

(
y(s)

)∣∣)ds

+
p–2∑

j=1

∣∣ψj(t)
∣∣
∫ ηj

ξj

(∫ s

0
eμ(m–s)(Iq–1∣∣̂f

(
x(m)

)
– f̂

(
y(m)

)∣∣)dm
)

ds

+
∣
∣Ω1(t)

∣
∣
[m–2∑

i=1

|δi|
(
Iq–1∣∣̂f

(
x(σi)

)
– f̂

(
y(σi)

)∣∣)

+
p–2∑

j=1

|γj|
∫ ηj

ξj

(
Iq–1∣∣̂f

(
x(s)

)
– f̂

(
y(s)

)∣∣)ds

+ |ρ4|Iq–1∣∣̂f
(
x(1)

)
– f̂

(
y(1)

)∣∣
]

+
∣
∣Ω2(t)

∣
∣
∫ 1

0
eμ(s–1)(Iq–1∣∣̂f

(
x(s)

)
– f̂

(
y(s)

)∣∣)ds

+
∫ t

0
eμ(s–t)(Iq–1∣∣̂f

(
x(s)

)
– f̂

(
y(s)

)∣∣)ds

≤ Lλ‖x – y‖X .

Also

∣∣(Hx)′(t) – (Hy)′(t)
∣∣

≤
m–2∑

i=1

∣∣φ′
i(t)

∣∣
∫ σi

0
eμ(s–σi)

(
Iq–1∣∣̂f

(
x(s)

)
– f̂

(
y(s)

)∣∣)ds
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+
p–2∑

j=1

∣
∣ψ ′

j (t)
∣
∣
∫ ηj

ξj

(∫ s

0
eμ(m–s)(Iq–1∣∣̂f

(
x(m)

)
– f̂

(
y(m)

)∣∣)dm
)

ds

+
∣
∣Ω ′

1(t)
∣
∣
[m–2∑

i=1

|δi|
(
Iq–1∣∣̂f

(
x(σi)

)
– f̂

(
y(σi)

)∣∣)

+
p–2∑

j=1

|γj|
∫ ηj

ξj

(
Iq–1∣∣̂f

(
x(s)

)
– f̂

(
y(s)

)∣∣)ds + |ρ4|Iq–1∣∣̂f
(
x(1)

)
– f̂

(
y(1)

)∣∣
]

+
∣∣Ω ′

2(t)
∣∣
∫ 1

0
eμ(s–1)(Iq–1∣∣̂f

(
x(s)

)
– f̂

(
y(s)

)∣∣)ds

+ μ

∫ t

0
eμ(s–t)(Iq–1∣∣̂f

(
x(s)

)
– f̂

(
y(s)

)∣∣)ds + Iq–1∣∣̂f
(
x(s)

)
– f̂

(
y(s)

)∣∣

≤ Lλ1‖x – y‖X ,

and moreover,

∣∣cDκ (Hx)(t) – cDκ (Hy)(t)
∣∣≤ 1

Γ (2 – κ)
Lλ1‖x – y‖X .

Consequently, we have

∥
∥(Hx) – (Hy)

∥
∥

X ≤ L
(

λ +
λ1

Γ (2 – q)

)
‖x – y‖X ,

which shows that H is a contraction by condition (3.11). Thus the operator H has a unique
fixed point by Banach fixed point theorem, which corresponds to a unique solution of the
problem (1.1) and (1.3) on [0, 1]. This completes the proof. �

3.3 An example
Consider the following nonlinear sequential fractional differential equation:

(
D7/5 + D2/5)x(t) =

1
t2 + 25

+
e–t

t4 + 16

(
tan–1(x(t)

)
+

|cD1/2x(t)|
(1 + |cD1/2x(t)|)

)
, t ∈ [0, 1], (3.12)

supplemented with the integro-multipoint boundary conditions:

ρ1x(0) + ρ2x(1) =
3∑

i=1

αix(σi) +
5∑

j=1

rj

∫ ηi

ξj

x(s) ds,

ρ3x′(0) + ρ4x′(1) =
3∑

i=1

δix′(σi) +
5∑

j=1

γj

∫ ηj

ξj

x′(s) ds.

(3.13)

Here q = 7/5, κ = 1/2, μ = 1, m = 5, p = 7, σ1 = 1/18, σ2 = 1/9, σ3 = 1/6, ξ1 = 1/5, η1 = 1/4,
ξ2 = 3/10, η2 = 7/20, ξ3 = 2/5, η3 = 9/20, ξ4 = 1/2, η4 = 11/20, ξ5 = 3/5, η5 = 13/20, α1 = 1,
α2 = 1/2, α3 = 1, δ1 = 3/4, δ2 = 1, δ3 = 3/2, r1 = 1/3, r2 = 2/3, r3 = 1, r4 = –1, r5 = 2, γ1 = –1/2,
γ2 = 1/2, γ3 = 2, γ4 = 1, γ5 = 3/2, ρ1 = 1/2, ρ2 = 3/4, ρ3 = –1, ρ4 = 2. Using the given data,
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we find that � = 4.3972, λ = 2.4121, λ̂ = 1.6997, λ1 = 4.1293, λ̂1 = 2.2898 (�, λ, λ̂, λ1 and
λ̂1 are respectively given by (2.7), (3.3), (3.4), (3.5), and (3.6)). Further we have

m(t) =
1

t2 + 25
+

(π + 2)e–t

2(t4 + 16)
, L =

1
16

, L
(

λ̂ +
1

Γ (2 – κ)
λ̂1

)
≈ 0.2677 < 1.

Clearly, the hypothesis of Theorem 3.1 holds true. In consequence, there exists a solution
to the problem (3.12)–(3.13) on [0, 1] by Theorem 3.1. Also

L
(

λ +
λ1

Γ (2 – κ)

)
≈ 0.4420 < 1,

which implies that the problem (3.12)–(3.13) has a unique solution on [0, 1] by Theo-
rem 3.2.

4 The case of inclusions
In this section, we investigate the existence of solutions for the multivalued (inclusion)
boundary value problem (1.2) and (1.3). Our first result deals with the case when the mul-
tivalued map F has convex values, while the second result is concerned with the nonconvex
multivalued maps.

For each x ∈ C([0, 1],R), the set

SF ,x =
{

f ∈ L1([0, 1],R
)

: f (t) ∈ F
(
t, x(t), cDκx(t)

)
for a.e. t ∈ [0, 1]

}

is known as the set of selections of the multivalued map F .

4.1 The case of upper semicontinuous (convex-valued) maps
Here we present an existence result for the problem (1.2) and (1.3) when the multivalued
map F is convex-valued. We make use of nonlinear alternative for Kakutani maps [32] to
derive the desired result.

Theorem 4.1 Assume that:
(C1) F : [0, 1] ×R

2 →P(R) is L1-Carathéodory and has nonempty, compact, and convex
values;

(C2) There exist a function g ∈ C([0, 1],R+) with ‖g‖ = supt∈[0,1] |g(t)| and nondecreasing
function Q : R+ →R

+ such that

∥
∥F(t, x, y)

∥
∥
P := sup

{|w| : w ∈ F(t, x, y)
}

≤ g(t)Q
(‖x‖ + ‖y‖), ∀(t, x, y) ∈ [0, 1] ×R×R;

(C3) There exists a constant K > 0 such that

K
‖g‖Q(K)(λ + λ1

Γ (2–κ) )
> 1,

where λ, λ1 are are given by (3.3) and (3.5), respectively.
Then the problem (1.2)–(1.3) has at least one solution on [0, 1].
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Proof We transform the problem (1.2)–(1.3) into a fixed point problem. Consider the mul-
tivalued map: N : X →P(X) defined by

N(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h ∈ X :

h(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑m–2
i=1 φi(t)

∫ σi
0 eμ(s–σi)(Iq–1v(s)) ds

+
∑p–2

j=1 ψj(t)
∫ ηj
ξj

(
∫ s

0 eμ(m–s)(Iq–1v(m)) dm) ds

+ Ω1(t)[
∑m–2

i=1 δi(Iq–1v(σi))

+
∑p–2

j=1 γj
∫ ηj
ξj

(Iq–1v(s)) ds – ρ4Iq–1v(1)]

+ Ω2(t)
∫ 1

0 eμ(s–1)(Iq–1v(s)) ds

+
∫ t

0 eμ(s–t)(Iq–1v(s)) ds, t ∈ [0, 1], v ∈ SF ,x.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

It is clear that the fixed points of N are solutions of problem (1.2)–(1.3). Now we proceed to
show that operator N satisfies all the conditions of the nonlinear alternative for Kakutani
maps [32]. The proof is given in several steps.

Step 1. N(x) is convex for each x ∈ X .
Indeed, if h1, h2 belong to N(x), then there exist v1, v2 ∈ SF ,x such that for each t ∈ [0, 1],
we have

hk(t) =
m–2∑

i=1

φi(t)
∫ σi

0
eμ(s–σi)

(
Iq–1vk(s)

)
ds

+
p–2∑

j=1

ψj(t)
∫ ηj

ξj

(∫ s

0
eμ(m–s)(Iq–1vk(m)

)
dm

)
ds + Ω1(t)

[m–2∑

i=1

δi
(
Iq–1vk(σi)

)

+
p–2∑

j=1

γj

∫ ηj

ξj

(
Iq–1vk(s)

)
ds – ρ4Iq–1vk(1)

]

+ Ω2(t)
∫ 1

0
eμ(s–1)(Iq–1vk(s)

)
ds +

∫ t

0
eμ(s–t)(Iq–1vk(s)

)
ds, k = 1, 2.

Let 0 ≤ μ ≤ 1. Then for each t ∈ [0, 1], we have

[
μh1 + (1 – μ)h2

]
(t)

=
m–2∑

i=1

φi(t)
∫ σi

0
eμ(s–σi)

(
Iq–1[μv1(s) + (1 – μ)v2(s)

])
ds

+
p–2∑

j=1

ψj(t)
∫ ηj

ξj

(∫ s

0
eμ(m–s)(Iq–1[μv1(m) + (1 – μ)v2(m)

])
dm

)
ds

+ Ω1(t)

[m–2∑

i=1

δi
(
Iq–1[μv1(σi) + (1 – μ)v2(σi)

])

+
p–2∑

j=1

γj

∫ ηj

ξj

(
Iq–1[μv1(s) + (1 – μ)v2(s)

])
ds



Ahmad et al. Advances in Difference Equations        (2019) 2019:290 Page 14 of 25

– ρ4Iq–1[μv1(1) + (1 – μ)v2(1)
]
]

+ Ω2(t)
∫ 1

0
eμ(s–1)(Iq–1[μv1(s) + (1 – μ)v2(s)

])
ds

+
∫ t

0
eμ(s–t)(Iq–1[μv1(s) + (1 – μ)v2(s)

])
ds.

Since F has convex values (SF ,x is convex),

μh1 + (1 – μ)h2 ∈ N(x).

Step 2. N(x) maps bounded sets (balls) into bounded sets in X .
For a positive number r, let Br = {x ∈ X : ‖x‖X ≤ r} be a bounded set in X. Then, for h ∈
N(x), x ∈ Br , there exists v ∈ SF ,x such that

h(t) =
m–2∑

i=1

φi(t)
∫ σi

0
eμ(s–σi)

(
Iq–1v(s)

)
ds

+
p–2∑

j=1

ψj(t)
∫ ηj

ξj

(∫ s

0
eμ(m–s)(Iq–1v(m)

)
dm

)
ds + Ω1(t)

[m–2∑

i=1

δi
(
Iq–1v(σi)

)

+
p–2∑

j=1

γj

∫ ηj

ξj

(
Iq–1v(s)

)
ds – ρ4Iq–1v(1)

]

+ Ω2(t)
∫ 1

0
eμ(s–1)(Iq–1v(s)

)
ds +

∫ t

0
eμ(s–t)(Iq–1v(s)

)
ds,

for some v ∈ SF ,xr . Then, for t ∈ [0, 1], we have

∣∣h(t)
∣∣ ≤

m–2∑

i=1

φ̂i

∫ σi

0
eμ(s–σi)

(
Iq–1∣∣v(s)

∣∣)ds

+
p–2∑

j=1

ψ̂j

∫ ηj

ξj

(∫ s

0
eμ(m–s)(Iq–1∣∣v(m)

∣∣)dm
)

ds

+ Ω̂1

[m–2∑

i=1

δi
(
Iq–1∣∣v(s)

∣∣) +
p–2∑

j=1

γj

∫ ηj

ξj

(
Iq–1∣∣v(1)

∣∣)ds – ρ4Iq–1∣∣v(1)
∣∣
]

+ Ω̂2

∫ 1

0
eμ(s–1)(Iq–1∣∣v(s)

∣
∣)ds +

∫ t

0
eμ(s–t)(Iq–1∣∣v(s)

∣
∣)ds

≤ ‖g‖Q
(‖x‖ +

∥
∥cDκx

∥
∥)
{m–2∑

i=1

φ̂i

∫ σi

0
eμ(s–σi)

(
Iq–11

)
ds

+
p–2∑

j=1

ψ̂j

∫ ηj

ξj

(∫ s

0
eμ(m–s)(Iq–11

)
dm

)
ds

+ Ω̂1

[m–2∑

i=1

δi
(
Iq–11

)
+

p–2∑

j=1

γj

∫ ηj

ξj

(
Iq–11

)
ds – ρ4Iq–11

]
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+ Ω̂2

∫ 1

0
eμ(s–1)(Iq–11

)
ds +

∫ t

0
eμ(s–t)(Iq–11

)
ds

}

≤ ‖g‖Q
(‖x‖X

)
λ,

which, when taking the norm for t ∈ [0, 1], yields ‖h‖ ≤ ‖g‖Q(r)λ. Also we have

∣∣h′(t)
∣∣ ≤

m–2∑

i=1

∣∣φ′
i(t)

∣∣
∫ σi

0
eμ(s–σi)

(
Iq–1∣∣v(s)

∣∣)ds

+
p–2∑

j=1

∣
∣ψ ′

j (t)
∣
∣
∫ ηj

ξj

(∫ s

0
eμ(m–s)(Iq–1∣∣v(m)

∣
∣)dm

)
ds

+
∣
∣Ω ′

1(t)
∣
∣
[m–2∑

i=1

|δi|
(
Iq–1∣∣v(σi)

∣
∣)

+
p–2∑

j=1

|γj|
∫ ηj

ξj

(
Iq–1∣∣v(s)

∣
∣)ds + |ρ4|Iq–1∣∣v(1)

∣
∣
]

+
∣∣Ω ′

2(t)
∣∣
∫ 1

0
eμ(s–1)(Iq–1∣∣v(s)

∣∣)ds

+ μ

∫ t

0
eμ(s–t)(Iq–1∣∣v(s)

∣
∣)ds + Iq–1∣∣v(s)

∣
∣

≤ ‖g‖Q
(‖x‖X

)
λ1 ≤ ‖g‖Q(r)λ1.

By definition of Caputo fractional derivative with 0 < κ ≤ 1, we get

∣
∣cDκh(t)

∣
∣ ≤

∫ t

0

(t – s)–κ

Γ (1 – κ)
∣
∣h′(t)

∣
∣≤ ‖g‖Q(r)λ1

∫ t

0

(t – s)–κ

Γ (1 – κ)
ds ≤ 1

Γ (2 – κ)
‖g‖Q(r)λ1.

Hence

‖h‖X = ‖h‖ +
∥
∥cDκh

∥
∥≤ ‖g‖Q(r)

(
λ +

λ1

Γ (2 – κ)

)
. (4.1)

Step 3. N maps bounded sets into equicontinuous sets of X .
Next we show that N maps bounded sets into equicontinuous sets of X. Let t1, t2 ∈ [0, 1]
with t1 < t2 and y ∈ Br , where Br is a bounded set of X. Then we obtain

∣∣h(t2) – h(t1)
∣∣≤

m–2∑

i=1

∣∣φi(t2) – φi(t1)
∣∣
∫ σi

0
eμ(s–σi)

(
Iq–1∣∣v(s)

∣∣)ds

+
p–2∑

j=1

∣
∣ψj(t2) – ψj(t1)

∣
∣
∫ ηj

ξj

(∫ s

0
eμ(m–s)(Iq–1∣∣v(m)

∣
∣)dm

)
ds

+
∣
∣Ω1(t2) – Ω1(t1)

∣
∣
[m–2∑

i=1

|δi|
(
Iq–1∣∣v(σi)

∣
∣) +

p–2∑

j=1

|γj|
∫ ηj

ξj

(
Iq–1∣∣v(s)

∣
∣)ds

+ |ρ4|Iq–1∣∣v(1)
∣
∣
]

+
∣
∣Ω2(t2) – Ω2(t1)

∣
∣
∫ 1

0
eμ(s–1)(Iq–1∣∣v(s)

∣
∣)ds
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+
∣
∣∣
∣

∫ t1

0

[
eμ(s–t2) – eμ(s–t1)](Iq–1∣∣v(s)

∣∣)ds +
∫ t2

t1

eμ(s–t2)(Iq–1∣∣v(s)
∣∣)ds

∣
∣∣
∣

≤ ‖g‖Q(r)

{m–2∑

i=1

∣
∣φi(t2) – φi(t1)

∣
∣
∫ σi

0
eμ(s–σi)

(
Iq–11

)
ds

+
p–2∑

j=1

∣
∣ψj(t2) – ψj(t1)

∣
∣
∫ ηj

ξj

(∫ s

0
eμ(m–s)(Iq–11

)
dm

)
ds

+
∣
∣Ω1(t2) – Ω1(t1)

∣
∣
[m–2∑

i=1

|δi|
(
Iq–11

)
+

p–2∑

j=1

|γj|
∫ ηj

ξj

(
Iq–11

)
ds

+ |ρ4|Iq–11

]

+
∣
∣Ω2(t2) – Ω2(t1)

∣
∣
∫ 1

0
eμ(s–1)(Iq–1)ds

+
∣
∣∣
∣

∫ t1

0

[
eμ(s–t2) – eμ(s–t1)](Iq–11

)
ds +

∫ t2

t1

eμ(s–t2)(Iq–11
)

ds
∣
∣∣
∣

}

,

∣∣h′(t2) – h′(t1)
∣∣≤ ‖g‖Q(r)

{m–2∑

i=1

∣∣φ′
i(t2) – φ′

i(t1)
∣∣
∫ σi

0
eμ(s–σi)

(
Iq–11

)
ds

+
p–2∑

j=1

∣
∣ψ ′

j (t2) – ψ ′
j (t1)

∣
∣
∫ ηj

ξj

(∫ s

0
eμ(m–s)(Iq–11

)
dm

)
ds

+
∣∣Ω ′

1(t2) – Ω ′
1(t1)

∣∣
[m–2∑

i=1

|δi|
(
Iq–11

)
+

p–2∑

j=1

|γj|
∫ ηj

ξj

(
Iq–11

)
ds

+ |ρ4|Iq–11

]

+
∣∣Ω ′

2(t2) – Ω ′
2(t1)

∣∣
∫ 1

0
eμ(s–1)(Iq–11

)
ds

+ μ

∣
∣∣
∣

∫ t1

0

[
eμ(s–t2) – eμ(s–t1)](Iq–11

)
ds +

∫ t2

t1

eμ(s–t2)(Iq–11
)

ds
∣
∣∣
∣

+
1

Γ (q – 1)

∣∣
∣∣

∫ t1

0

[
(t2 – s)q–2 – (t1 – s)q–2]ds +

∫ t2

t1

(t2 – s)q–2 ds
∣∣
∣∣

}

,

and

∣∣cDκh(t2) – cDκh(t1)
∣∣ ≤

∫ t

0

(t – s)–κ

Γ (1 – κ)
∣∣h′(t2) – h′(t1)

∣∣ds

≤ 1
Γ (2 – κ)

∣
∣h′(t2) – h′(t1)

∣
∣.

Obviously, the right-hand sides of the above inequalities tend to zero independently of
x ∈ Br as t2 – t1 → 0. As N satisfies the above assumptions, it follows by the Arzelá–Ascoli
theorem that N : X → X is completely continuous.

By virtue of Proposition 1.2 in [33], it is enough to establish that operator N : X → X
has a closed graph, which will imply that N is u.s.c. as it is already shown to be completely
continuous. This is done in our next step.

Step 4. N has a closed graph.
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Let xn → x∗, hn ∈ N(xn), and hn → h∗. We need to show that h∗ ∈ N(x∗). Now hn ∈ N(xn)
implies that there exists vn ∈ SF ,xn such that for each t ∈ [0, 1],

hn(t) =
m–2∑

i=1

φi(t)
∫ σi

0
eμ(s–σi)

(
Iq–1vn(s)

)
ds

+
p–2∑

j=1

ψj(t)
∫ ηj

ξj

(∫ s

0
eμ(m–s)(Iq–1vn(m)

)
dm

)
ds

+ Ω1(t)

[m–2∑

i=1

δi
(
Iq–1vn(σi)

)
+

p–2∑

j=1

γj

∫ ηj

ξj

(
Iq–1vn(s)

)
ds – ρ4Iq–1vn(1)

]

+ Ω2(t)
∫ 1

0
eμ(s–1)(Iq–1vn(s)

)
ds +

∫ t

0
eμ(s–t)(Iq–1vn(s)

)
ds.

We must show that there exists v∗ ∈ SF ,x∗ such that for each t ∈ [0, 1],

h∗(t) =
m–2∑

i=1

φi(t)
∫ σi

0
eμ(s–σi)

(
Iq–1v∗(s)

)
ds

+
p–2∑

j=1

ψj(t)
∫ ηj

ξj

(∫ s

0
eμ(m–s)(Iq–1v∗(m)

)
dm

)
ds + Ω1(t)

[m–2∑

i=1

δi
(
Iq–1v∗(σi)

)

+
p–2∑

j=1

γj

∫ ηj

ξj

(
Iq–1v∗(s)

)
ds – ρ4Iq–1v∗(1)

]

+ Ω2(t)
∫ 1

0
eμ(s–1)(Iq–1v∗(s)

)
ds +

∫ t

0
eμ(s–t)(Iq–1v∗(s)

)
ds.

Consider the continuous linear operator Θ : L1([0, 1],R) → C([0, 1],R) given by

v �→ Θ(v)(t) =
m–2∑

i=1

φi(t)
∫ σi

0
eμ(s–σi)

(
Iq–1v(s)

)
ds

+
p–2∑

j=1

ψj(t)
∫ ηj

ξj

(∫ s

0
eμ(m–s)(Iq–1v(m)

)
dm

)
ds

+ Ω1(t)

[m–2∑

i=1

δi
(
Iq–1v(σi)

)
+

p–2∑

j=1

γj

∫ ηj

ξj

(
Iq–1v(s)

)
ds – ρ4Iq–1v(1)

]

+ Ω2(t)
∫ 1

0
eμ(s–1)(Iq–1v(s)

)
ds +

∫ t

0
eμ(s–t)(Iq–1v(s)

)
ds.

Since ‖hn – h∗‖X → 0 as n → ∞, it follows from a closed graph result obtained in [34] that
Θ ◦ SF ,x is a closed graph operator. Moreover, we have hn ∈ Θ(SF ,xn ). Since xn → x∗, we
obtain

h∗(t) =
m–2∑

i=1

φi(t)
∫ σi

0
eμ(s–σi)

(
Iq–1v∗(s)

)
ds
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+
p–2∑

j=1

ψj(t)
∫ ηj

ξj

(∫ s

0
eμ(m–s)(Iq–1v∗(m)

)
dm

)
ds

+ Ω1(t)

[m–2∑

i=1

δi
(
Iq–1v∗(σi)

)
+

p–2∑

j=1

γj

∫ ηj

ξj

(
Iq–1v∗(s)

)
ds – ρ4Iq–1v∗(1)

]

+ Ω2(t)
∫ 1

0
eμ(s–1)(Iq–1v∗(s)

)
ds +

∫ t

0
eμ(s–t)(Iq–1v∗(s)

)
ds,

for some v∗ ∈ SF ,x∗
Step 5. We show there exists an open set U ⊆ C(J ,R) with x /∈ θN(x) for any θ ∈ (0, 1)
and all x ∈ ∂U .

Let θ ∈ (0, 1) and x ∈ θN(x). Then there exists v ∈ L1([0, 1],R) with v ∈ SF ,x such that, for
t ∈ J , we have

x(t) = θ

m–2∑

i=1

φi(t)
∫ σi

0
eμ(s–σi)

(
Iq–1v(s)

)
ds

+ θ

p–2∑

j=1

ψj(t)
∫ ηj

ξj

(∫ s

0
eμ(m–s)(Iq–1v(m)

)
dm

)
ds + θΩ1(t)

[m–2∑

i=1

δi
(
Iq–1v(σi)

)

+
p–2∑

j=1

γj

∫ ηj

ξj

(
Iq–1v(s)

)
ds – ρ4Iq–1v(1)

]

+ θΩ2(t)
∫ 1

0
eμ(s–1)(Iq–1v(s)

)
ds +

∫ t

0
eμ(s–t)(Iq–1v(s)

)
ds.

As in the first step, we can find that

‖x‖X

‖g‖Q(‖x‖X)(λ + λ1
Γ (2–κ) )

≤ 1. (4.2)

By condition (C3), there does not exist any solution x such that ‖x‖X �= K . Let us introduce
a set W = {x ∈ X : ‖x‖X < K}. The operator N : W → X is continuous and completely
continuous. From the choice of W , there is no w ∈ ∂W such that w = θN(w) for some
θ ∈ (0, 1). In consequence, we deduce by the nonlinear alternative for Kakutani maps [32]
that operator N has a fixed point w ∈ W which is a solution of the problem (1.2) and (1.3).
The proof is completed. �

4.2 The case of Lipschitz maps
Now we prove the existence of solutions for the boundary value problem (1.2) and (1.3)
with a nonconvex valued right-hand side by applying a fixed point theorem for multivalued
maps due to Covitz and Nadler [35].

Let (X, d) be a metric space induced from the normed space (X;‖ · ‖). Consider Hd :
P(X) ×P(X) →R∪ {∞} given by

Hd(U , V ) = max
{

sup
u∈U

d(u, V ), sup
v∈V

d(U , v)
}

,

where d(U , v) = infu∈U d(u; v) and d(u, V ) = infv∈V d(u; v). Then (Pcl,b(X), Hd) is a metric
space (see [36]), where Pcl,b(X) = {Y ∈P(X) : Y is closed and bounded}.
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Definition 4.2 A multivalued operator N : X → Pcl(X) is called (a) θ -Lipschitz if and
only if there exists θ > 0 such that Hd(N(x), N(y)) ≤ θd(x, y) for each x, y ∈ X; and (b) a
contraction if and only if it is θ -Lipschitz with θ < 1.

Lemma 4.3 ([35]) Let (X, d) be a complete metric space and Pcl(X) = {Y ∈ P(X) :
Y is closed}. If N : X →Pcl(X) is a contraction, then Fix N �= ∅.

Theorem 4.4 Assume that the following conditions hold:
(K1) F : [0, 1]×R

2 →Pcp(R) is such that F(·, x, y) : [0, 1] →Pcp(R) is measurable for each
x, y ∈R;

(K2) Hd(F(t, x, y), F(t, x̄, ȳ)) ≤ m(t)(|x – x̄|+ |y – ȳ|) for almost all t ∈ [0, 1] and x, x̄, y, ȳ ∈R

with m ∈ C([0, 1],R+) and d(0, F(t, 0, 0)) ≤ m(t) for almost all t ∈ [0, 1].
Then the inclusion problem (1.2) and (1.3) has at least one solution on [0, 1] if

‖m‖
(

λ +
λ1

Γ (2 – κ)

)
< 1, (4.3)

where λ, λ1 are given by (3.3) and (3.5), respectively.

Proof In order to show that the operator N : C([0, 1],R) → P(C([0, 1],R)) (introduced in
the beginning of the proof of Theorem 4.1) satisfies the assumptions of Lemma 4.3, we
proceed as follows.

Step I. N(x) is nonempty and closed for every v ∈ SF ,x.
Notice that SF ,x �= ∅ for each x by assumption (K2), and thus we can find a measurable
selection for F (see [37, Theorem III.6]). In order to show that N(x) ∈ Pcl(X) for each
x ∈ X, let {un}n≥0 ∈ N(x) be such that un → u (n → ∞) in X. Then u ∈ C(J ,R) and there
exists vn ∈ SF ,xn such that, for each t ∈ [0, 1], we have

un(t) =
m–2∑

i=1

φi(t)
∫ σi

0
eμ(s–σi)

(
Iq–1vn(s)

)
ds

+
p–2∑

j=1

ψj(t)
∫ ηj

ξj

(∫ s

0
eμ(m–s)(Iq–1vn(m)

)
dm

)
ds + Ω1(t)

[m–2∑

i=1

δi
(
Iq–1vn(σi)

)

+
p–2∑

j=1

γj

∫ ηj

ξj

(
Iq–1vn(s)

)
ds – ρ4Iq–1vn(1)

]

+ Ω2(t)
∫ 1

0
eμ(s–1)(Iq–1vn(s)

)
ds +

∫ t

0
eμ(s–t)(Iq–1vn(s)

)
ds.

Since F has compact values, one can pass onto a subsequence (if necessary) to find that vn

converges to v in L1([0, 1],R). Thus v ∈ SF ,x and for each t ∈ [0, 1], we have

un(t) → u(t) =
m–2∑

i=1

φi(t)
∫ σi

0
eμ(s–σi)

(
Iq–1v(s)

)
ds

+
p–2∑

j=1

ψj(t)
∫ ηj

ξj

(∫ s

0
eμ(m–s)(Iq–1v(m)

)
dm

)
ds
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+ Ω1(t)

[m–2∑

i=1

δi
(
Iq–1v(σi)

)
+

p–2∑

j=1

γj

∫ ηj

ξj

(
Iq–1v(s)

)
ds – ρ4Iq–1v(1)

]

+ Ω2(t)
∫ 1

0
eμ(s–1)(Iq–1v(s)

)
ds +

∫ t

0
eμ(s–t)(Iq–1v(s)

)
ds,

which implies that u ∈ N(x).
Step II. There exists θ̄ < 1 (θ̄ is given by (4.3)) such that

Hd
(
N(x), N(x̄)

)≤ θ̄‖x – x̄‖X for each x, x̄ ∈ C
(
[0, 1],R

)
.

Let x, x̄ ∈ X and h1 ∈ N(x). Then we can find v1(t) ∈ F(t, x(t), y(t)) such that, for each t ∈
[0, 1],

h1(t) =
m–2∑

i=1

φi(t)
∫ σi

0
eμ(s–σi)

(
Iq–1v1(s)

)
ds

+
p–2∑

j=1

ψj(t)
∫ ηj

ξj

(∫ s

0
eμ(m–s)(Iq–1v1(m)

)
dm

)
ds + Ω1(t)

[m–2∑

i=1

δi
(
Iq–1v1(σi)

)

+
p–2∑

j=1

γj

∫ ηj

ξj

(
Iq–1v1(s)

)
ds – ρ4Iq–1v1(1)

]

+ Ω2(t)
∫ 1

0
eμ(s–1)(Iq–1v1(s)

)
ds +

∫ t

0
eμ(s–t)(Iq–1v1(s)

)
ds.

By (K2), we have

Hd(F(t, x, y), F(t, x̄, ȳ) ≤ m(t)
(∣∣x(t) – x̄(t)

∣
∣ +

∣
∣y(t) – ȳ(t)

∣
∣).

So there exists w(t) ∈ F(t, x̄(t), ȳ(t)) such that

∣∣v1(t) – w
∣∣≤ m(t)

(∣∣x(t) – x̄(t)
∣∣ +

∣∣y(t) – ȳ(t)
∣∣), t ∈ [0, 1].

Define V : [0, 1] →P(R) by

V(t) =
{

w ∈R :
∣∣v1(t) – w

∣∣≤ m(t)
(∣∣x(t) – x̄(t)

∣∣ +
∣∣y(t) – ȳ(t)

∣∣)}.

In view of the fact that the multivalued operator V(t) ∩ F(t, x̄(t), ȳ(t)) is measurable (see
[37, Proposition III.4]), we can find a function v2(t) which is a measurable selection for
V and such that v2(t) ∈ F(t, x̄(t), ȳ(t)). Then, for each t ∈ [0, 1], we have |v1(t) – v2(t)| ≤
m(t)(|x(t) – x̄(t)| + |y(t) – ȳ(t)|). For each t ∈ [0, 1], we define

h2(t) =
m–2∑

i=1

φi(t)
∫ σi

0
eμ(s–σi)

(
Iq–1v2(s)

)
ds

+
p–2∑

j=1

ψj(t)
∫ ηj

ξj

(∫ s

0
eμ(m–s)(Iq–1v2(m)

)
dm

)
ds + Ω1(t)

[m–2∑

i=1

δi
(
Iq–1v2(σi)

)
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+
p–2∑

j=1

γj

∫ ηj

ξj

(
Iq–1v2(s)

)
ds – ρ4Iq–1v2(1)

]

+ Ω2(t)
∫ 1

0
eμ(s–1)(Iq–1v2(s)

)
ds +

∫ t

0
eμ(s–t)(Iq–1v2(s)

)
ds.

Thus,

∣
∣h1(t) – h2(t)

∣
∣ ≤

m–2∑

i=1

∣
∣φi(t)

∣
∣
∫ σi

0
eμ(s–σi)

(
Iq–1∣∣v2(s) – v1(s)

∣
∣)ds

+
p–2∑

j=1

∣∣ψj(t)
∣∣
∫ ηj

ξj

(∫ s

0
eμ(m–s)(Iq–1∣∣v2(m) – v1(m)

∣∣)dm
)

ds

+
∣∣Ω1(t)

∣∣
[m–2∑

i=1

|δi|
(
Iq–1∣∣v2(σ ) – v1(σ )

∣∣)

+
p–2∑

j=1

|γj|
∫ ηj

ξj

(
Iq–1∣∣v2(s) – v1(s)

∣∣)ds – ρ4Iq–1∣∣v2(1) – v1(1)
∣∣
]

+
∣
∣Ω2(t)

∣
∣
∫ 1

0
eμ(s–1)(Iq–1∣∣v2(s) – v1(s)

∣
∣)ds

+
∫ t

0
eμ(s–t)(Iq–1∣∣v2(s) – v1(s)

∣∣)ds

≤
{m–2∑

i=1

φ̂i

∫ σi

0
eμ(s–σi)

(
Iq–11

)
ds

+
p–2∑

j=1

ψ̂j

∫ ηj

ξj

(∫ s

0
eμ(m–s)(Iq–11

)
dm

)
ds

+ Ω̂1

[m–2∑

i=1

δi
(
Iq–11

)
+

p–2∑

j=1

γj

∫ ηj

ξj

(
Iq–11

)
ds – ρ4Iq–11

]

+ Ω̂2

∫ 1

0
eμ(s–1)(Iq–11

)
ds +

∫ t

0
eμ(s–t)(Iq–11

)
ds

}

‖m‖‖x – x‖

≤ λ‖m‖‖x – x‖X .

Hence ‖h1 – h2‖ ≤ λ‖m‖‖x – x‖X . In a similar manner, we obtain

∣
∣h′

1(t) – h′
2(t)

∣
∣ ≤

{m–2∑

i=1

∣
∣φ′

i(t)
∣
∣
∫ σi

0
eμ(s–σi)

(
Iq–11

)
ds

+
p–2∑

j=1

∣∣ψ ′
j (t)

∣∣
∫ ηj

ξj

(∫ s

0
eμ(m–s)(Iq–11

)
dm

)
ds +

∣∣Ω ′
1(t)

∣∣
[m–2∑

i=1

|δi|
(
Iq–11

)

+
p–2∑

j=1

|γj|
∫ ηj

ξj

(
Iq–11

)
ds + |ρ4|Iq–11

]

+
∣
∣Ω ′

2(t)
∣
∣
∫ 1

0
eμ(s–1)(Iq–11

)
ds
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+ μ

∫ t

0
eμ(s–t)(Iq–11

)
ds + Iq–11

}

‖m‖‖x – x‖X

≤ λ1‖m‖‖x – x‖X ,

and

∣
∣cDκh1(t) – cDκh2(t)

∣
∣≤

∫ t

0

(t – s)–κ

Γ (1 – κ)
∣
∣h′

1(s) – h′
2(s)

∣
∣ds ≤ 1

Γ (2 – κ)
λ1‖m‖‖x – x‖X .

Thus

‖h1 – h2‖X ≤ ‖m‖
(

λ +
λ1

Γ (2 – κ)

)
‖x – x̄‖X .

Analogously, interchanging the roles of x and x, we obtain

Hd
(
N(x), N(x̄)

)≤ ‖m‖
(

λ +
λ1

Γ (2 – κ)

)
‖x – x̄‖X .

From the foregoing arguments, we deduce that N is a contraction. Thus it follows by
Lemma 4.3 that N has a fixed point x which is a solution of (1.2) and (1.3). This completes
the proof. �

4.3 Examples
Consider the sequential fractional differential inclusion

(cD7/5 + D2/5)x(t) ∈ F
(
t, x(t), cD1/2x(t)

)
, t ∈ [0, 1], (4.4)

equipped with conditions (3.13).
In order to illustrate Theorem 4.1, we take

F
(
t, x(t), cD1/2x(t)

)
=
[

1√
t2 + 144

(
1
3

sin
(
x(t)

)
+

1
2

|cD1/2x(t)|
(1 + |cD1/2x(t)|) +

1
2

)
,

1
(t + 15)

(
1

16
e–x4(t) +

1
5

sin
(cD1/2x(t)

)
+

1
2

)]
. (4.5)

It is easy to find that g(t) = 1√
t2+144

with ‖g‖ = 1/12, Ω(K) = (K + 3)/3. By condition (C3),
we find that K > 0.7333. Thus all the assumptions of Theorem 4.1 hold, and consequently
the inclusion (4.4) equipped with boundary conditions (3.13) and F given by (4.5) has a
solution on [0, 1].

For illustrating Theorem 4.4, we consider the following multivalued map:

F
(
t, x(t), cD1/2x(t)

)
=
[

1
t + 10

x(t) +
1

t2 + 15
cos

(
D1/2x(t)

)
,

1
t2 + 25

tan–1(x(t)
)

+
1

t2 + 49
cD1/2x(t) +

1
98

]
. (4.6)

By condition (D2), we get m(t) = 1/(t + 10) with ‖m‖ = 1/10. Moreover,

‖m‖
(

λ +
λ1

Γ (2 – κ)

)
≈ 0.70715 < 1
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(the values of λ and λ1 are taken from Sect. 3.1). Clearly, all the hypotheses of Theorem 4.4
are satisfied. Therefore there exists at least one solution on [0, 1] for the inclusion (4.4) with
F given by (4.6), equipped with boundary conditions (3.13).

5 Conclusions
In this paper, we have addressed new problems of sequential fractional differential equa-
tions and inclusions supplemented with nonlocal integro-multipoint boundary condi-
tions. The single- and multivalued maps involved in the given problems depend on the
unknown function, together with its lower-order fractional derivative. Our results are not
only new in the given configuration but also yield several new results as special cases by
fixing the parameters appearing in the problems. Some of these results are mentioned
below.

• Our results correspond to purely nonlocal multipoint and multistrip boundary
conditions if we take ρi = 0 (i = 1, 2, 3, 4) in the given problems.

• For ρ1 = ρ3 = 0, ρ2 = ρ4 = 1, we obtain the results for terminal nonlocal multipoint and
multistrip conditions:

x(1) =
m–2∑

i=1

αix(σi) +
p–2∑

j=1

rj

∫ ηi

ξj

x(s) ds, x′(1) =
m–2∑

i=1

δix′(σi) +
p–2∑

j=1

γj

∫ ηj

ξj

x′(s) ds.

• The results for sequential fractional differential equations and inclusions equipped
with periodic/antiperiodic type boundary conditions of the form: x(0) = –(ρ2/ρ1)x(1),
x′(0) = –(ρ4/ρ3)x′(1) follow by fixing rj = γj = αj = δj = 0, j = 1, . . . , p. Further, the results
for antiperiodic boundary conditions can be recorded by taking ρ2/ρ1 = 1 = ρ4/ρ3.

• The results associated with nonseparated nonlocal multipoint and multistrip
conditions can be obtained by letting rj = 0 = γj, j = 1, . . . , p and αj = 0 = δj, j = 1, . . . , p,
respectively.

In the context of sequential fractional differential equations and inclusions together with
nonlocal integro-multipoint boundary conditions, the present work is quite versatile in
nature and significantly contributes to the existing literature on the topic. Moreover, sev-
eral new results follow as special cases of the present ones.
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