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Abstract
In this article, we present a method to approximate the solution of a fractional Ricatti
equation based on the ABFD in the Caputo sense. The proposed method depends on
the fractional operational matrix of the fractional derivative. We present two
examples. The results show the agreement between the exact and the approximate
solutions with different choices of γ . Form the numerical results; we see that the
proposed method give accurate results.
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1 Introduction
Fractional calculus is used to describe several problems in biology, physics, engineering,
and applied mathematics. Fractional derivatives are investigated in two major ways: as lo-
cal and nonlocal derivatives. There are several definitions for the local derivatives. These
definitions are considered as a direct generalization of the ordinary derivatives; see [1, 2].
However, these definitions do not consider the history of the functions during computing
the derivative. Other definitions are the nonlocal fractional derivatives such as the Ca-
puto and ABFD definitions; see [3, 4]. The fractional Ricatti equation (FRE) is investigated
based on different definitions of fractional derivatives. For example, see [5–7]. Akgul, et
al., discussed several fractional problems using different methods such as the reproducing
kernel Hilbert space method [8–16], while Alquran, et al., used a fractional power series
method [17–24]. In this article, we consider the following class of equations:

£γ

(
u(x)

)
+ μ(x)u(x) + ν(x)u2(x) = ξ (x), x ∈ (0, 1), 0 < γ ≤ 1,

u(0) = α,

where u ∈ H1(0, 1), μ, ν , ξ are continuous functions on [0,1] We organize our paper as
follows. In Sect. 2, we present the preliminaries which we used in this paper. Method of
the solution is given in Sect. 3. Some numerical results are presented in Sect. 4 to show
the efficiency of the proposed method. Finally, we draw some conclusions and closing
remarks.

2 Preliminaries
We present the basic definitions and theorems which we use in this article.
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Definition 1 ([4]) Let u ∈ H1(0, 1) = {u ∈ L2(0, 1) : u′ ∈ L2(0, 1)} and 0 < γ ≤ 1. The ABFD
in the Caputo sense of u of order γ is defined by

£γ

(
u(x)

)
=

B(γ )
1 – γ

∫ x

0
u′(s)Eγ

(
–γ

(x – s)γ

1 – γ

)
ds. (1)

For simplicity, we choose B(γ ) = 1. The fractional integral is defined as follows.

Definition 2 ([4]) The fractional integral is given by

Iγ u(x) =
1 – γ

B(γ )
u(x) +

γ

B(γ )Γ (γ )

∫ x

0
u(s)(x – s)γ –1 ds. (2)

Theorem 3 Let u ∈ H1(0, 1) such that £(u) exists. Then

Iγ
(
£γ

(
u(x)

))
= u(x) – u(0). (3)

Proof See [2]. �

The fractional Legendre polynomials are {FLr(x) : r = 0, 1, 2, . . .} which are defined by

FLr(x) = Lr
(
2xγ – 1

)
, r = 0, 1, 2, . . . , (4)

where {Lr(x) : r = 0, 1, 2, . . .} are the Legendre polynomials. Then

∫ 1

0
FLr(x) FLs(x)w(x) dx =

⎧
⎨

⎩

1
(2r+1)γ , r = s,

0, r �= s,
(5)

where w(x) = xγ –1. Also, FLr(x) is given as

FLr(x) =
r∑

j=0

(–1)j+r (r + j)!
(r – j)!

xjγ

(j!)2 . (6)

Theorem 4 Let g ∈ C1[0, 1]. Then

g(x) =
∞∑

r=0

gr FLr(x), (7)

where

gr = (2r + 1)γ
∫ 1

0
g(x) FLr(x)w(x) dx. (8)

For the proof of these properties, see [6].

Theorem 5 Iγ FLr(x) is a linear combination of {FL0(x), FL1(x), . . . , FLr+1(x)}.
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Proof Simple calculations imply that

Iγ FLr(x) =
1 – γ

B(γ )
FLr(x) +

γ

B(γ )Γ (γ )

∫ x

0
FLr(s)(x – s)γ –1 ds

=
1 – γ

B(γ )
FLr(x) +

γ

B(γ )Γ (γ )

∫ x

0

r∑

j=0

(–1)j+r (r + j)!
(r – j)!

sjγ

(j!)2 (x – s)γ –1 ds

=
1 – γ

B(γ )
FLr(x) +

γ

B(γ )Γ (γ )

r∑

j=0

(–1)j+r (r + j)!
(r – j)!

1
(j!)2

∫ x

0
sjγ (x – s)γ –1 ds

=
1 – γ

B(γ )
FLr(x) +

γ

B(γ )

r∑

j=0

(–1)j+r (r + j)!
(r – j)!

1
(j!)2

Γ (1 + jγ )
Γ (1 + γ (1 + j))

x(j+1)r . (9)

Thus, Iγ FLr(x) is a linear combination of {FL0(x), FL1(x), . . . , FLr+1(x)}. �

3 Method of solution
We want to investigate the operational matrix of Iγ . Define the set of k block pulse func-
tions on [0, 1) by

{
p0(x), p1(x), . . . , pk–1(x)

}
,

where

pr(x) =

⎧
⎨

⎩
1, r

k ≤ x < r+1
k ,

0, x ∈ [0, 1) – [ r
k , r+1

k ),
r = 0, 1, . . . , k – 1. (10)

Then

pr(x)ps(x) =

⎧
⎨

⎩
pr(x), r = s,

0, r �= s,
(11)

and

∫ 1

0
pr(x)ps(x) dx =

⎧
⎨

⎩

1
k , r = s,

0, r �= s,
(12)

where 0 ≤ r, s ≤ k – 1. If g ∈ L2[0, 1], then

g(x) =
k–1∑

r=0

gkpr(x). (13)

Multiply both sides by ps(x) then integrate from 0 to 1 to get

∫ 1

0
g(x)ps(x) dx =

k–1∑

r=0

gr

∫ 1

0
pr(x)ps(x) dx

=
gs

k
, (14)
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which implies that

gs = k
∫ 1

0
g(x)ps(x) dx. (15)

Thus,

g(x) = GT P(x), (16)

where

G = k

⎛

⎜
⎜⎜⎜
⎝

∫ 1
0 g(x)p0(x) dx

∫ 1
0 g(x)p1(x) dx

...
∫ 1

0 g(x)pk–1(x) dx

⎞

⎟
⎟⎟⎟
⎠

, p =

⎛

⎜
⎜⎜⎜
⎝

p0(x)
p1(x)

...
pk–1(x)

⎞

⎟
⎟⎟⎟
⎠

.

Theorem 6 Iγ P = ΩP where

Ω =

⎛

⎜⎜
⎜⎜
⎝

a b b · · · b
b a b · · · b
...

. . . . . . . . .
...

b b b · · · a

⎞

⎟⎟
⎟⎟
⎠

,

where

a =
1 – γ

B(γ )
+

1
B(γ )Γ (γ )kγ

, b =
1

B(γ )Γ (γ )kγ
.

Proof For any 0 ≤ r ≤ k – 1

Iγ pr(x) =
1 – γ

B(γ )
pr(x) +

γ

B(γ )Γ (γ )

∫ x

0
pr(s)(x – s)γ –1 ds

=
1 – γ

B(γ )
pr(x) +

γ

B(γ )Γ (γ )

∫ r+1
k

r
k

(
r + 1

k
– s

)γ –1

ds

=
1 – γ

B(γ )
pr(x) +

1
B(γ )Γ (γ )kγ

=
1 – γ

B(γ )
pr(x) +

1
B(γ )Γ (γ )kγ

k–1∑

r=0

pr(x). (17)

Thus,

Iγ P = ΩP, (18)
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where

Ω =

⎛

⎜
⎜⎜
⎜
⎝

a b b · · · b
b a b · · · b
...

. . . . . . . . .
...

a a a · · · a

⎞

⎟
⎟⎟
⎟
⎠

(19)

and

a =
1 – γ

B(γ )
+

1
B(γ )Γ (γ )kγ

, b =
1

B(γ )Γ (γ )kγ
. (20)

�

Theorem 7 Let

FL(x) =

⎛

⎜⎜
⎜⎜
⎝

FL0(x)
FL1(x)

...
FLk–1(x)

⎞

⎟⎟
⎟⎟
⎠

.

Then

FL(x) = FP P(x), (21)

where FP is a k × k matrix with

(FP)r,s =
r∑

j=0

(–1)j+r (r + j)!
(r – j)!

1
(j!)2

(
(s + 1)jγ +1 – sjγ +1

(jγ + 1)kjγ

)
. (22)

Proof For any r ∈ {0, 1, . . . , k – 1}, FLr(x) ∈ L2[0, 1]. Thus from Eq. (14), we get

FLr(x) =
k–1∑

s=0

(FP)r,sps(x). (23)

Hence, from Eq. (15), we get

(FP)r,s = k
∫ 1

0
FLr(x) ps(x) dx

= k
r∑

j=0

(–1)j+r (r + j)!
(r – j)!

1
(j!)2

∫ s+1
k

s
k

xjγ dx

=
r∑

j=0

(–1)j+r (r + j)!
(r – j)!

1
(j!)2

(
(s + 1)jγ +1 – sjγ +1

(jγ + 1)kjγ

)
. (24)

�

Theorem 8 FP is an invertible matrix.
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Proof From Theorem 7,

FL(x)
(
FL(x)

)T = FP P(x)
(
P(x)

)T FPT . (25)

Hence,

∫ 1

0
FL(x)

(
FL(x)

)T xγ –1 dx = FP
∫ 1

0
P(x)

(
P(x)

)T xγ –1 dx FPT . (26)

From Eqs. (6) and (12), we have

∫ 1

0
FL(x)

(
FL(x)

)T xγ –1 dx =
1
γ

⎛

⎜⎜
⎜⎜
⎜
⎝

1 0 · · · 0

0 1
3

. . .
...

...
. . . . . . 0

0 · · · 0 1
2k–1

⎞

⎟⎟
⎟⎟
⎟
⎠

= Λ1 (27)

and

∫ 1

0
P(x)

(
P(x)

)T xγ –1 dx =
1

γ kγ

⎛

⎜⎜⎜
⎜⎜
⎝

1 0 · · · 0

0 2γ – 1
. . .

...
...

. . . . . . 0
0 · · · 0 kγ – (k – 1)γ

⎞

⎟⎟⎟
⎟⎟
⎠

= Λ2. (28)

Therefore,

Λ1 = FPΛ2 FPT . (29)

Thus,

det(FP) =

√√
√√

∏k–1
r=0

1
γ (2r+1)

∏k–1
r=0

(r+1)γ –rγ
γ kγ

�= 0. (30)

Hence, FP is invertible. �

Theorem 9 Iγ FL(x) = Ψ FL(x) where

Ψ = FP Ω FP–1. (31)

Proof Let

Iγ FL(x) = Ψ FL(x). (32)
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From Eqs. (19) and (22)

Iγ FL(x) = Ψ FP P(x) (33)

and

Iγ FL(x) = FP Iγ P(x)

= FP Ω P(x). (34)

Hence,

Ψ FP P(x) = FP Ω P(x), (35)

which implies that

Ψ FP = FP Ω (36)

or

Ψ = FP Ω FP–1. (37)

Now, let u ∈ C1[0, 1], then

u(x) =
∞∑

r=0

ur FLr(x), (38)

where

ur = (2r + 1)γ
∫ 1

0
u(x) FLr(x)xγ –1 dx. (39)

Let

Uk(x) =
k–1∑

r=0

ur FLr(x) = UT FL(x), (40)

where

U =

⎛

⎜⎜
⎜⎜
⎝

u0

u1
...

uk–1

⎞

⎟⎟
⎟⎟
⎠

.

Thus,

£r
(
u(x)

)
= UT FL(x) = UT FP P(x). (41)
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Using Theorem 3, we get

u(x) – α = Iγ UT FL(x)

= UT Iγ FL(x)

= UT Ψ FL(x)

= UT Ψ FP P(x), (42)

which implies that

u(x) = UTΨ FP P(x) + α. (43)

Thus, Eq. (1) implies that

UT FP P(x) + μ(x)
(
UTΨ FP P(x) + α

)
+ ν(x)

(
UTΨ FP P(x) + α

)2 = Ξ FP P(x), (44)

where ξ (x) = Ξ FP P(x). If

UT Ψ FP =
(
κ1 κ2 · · · κk

)
, (45)

then

(
UTΨ FP P(x) + α

)2 =
(
κ

2
1 + 2κ1α κ

2
2 + 2κ2α · · · κ

2
k + 2κkα

)
P(x) + α2. (46)

Hence,

(
�1(U) + μ(x)�2(U) + ν(x)�3(U)

)
P(x) = �4(x), (47)

where

�1(U) = UT FP, (48)

�2(U) = UT Ψ FP, (49)

�3(U) =
(
κ

2
1 + 2κ1ακ

2
2 + 2κ2α · · ·κ2

k + 2κkα
)

, (50)

�4(x) = Ξ FP P(x) – αμ(x) – α2ν(x). (51)

To solve Eq. (48), we use the collocation points

tr =
r + 1
k + 1

, r = 0, 1, . . . , k – 1. (52)

Then we solve the generated nonlinear system to find U using Mathematica. �

4 Numerical results
We present two examples to show the efficiency of the proposed method.
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Example 1 Consider the following problem:

£ 1
2

(
u(x)

)
+ u(x) + u2(x) = f (x), 0 < x < 1,

u(0) = 1,

where

f (x) = x2 + 1 +
(
x2 + 1

)2 – 4 – 4x

+
8
√

x(3 + 2x)
3
√

π
+ 4exErfc(

√
x).

The exact solution is

u(x) = x2 + 1.

Let k = 7. Let Q = {p0(x), p0(x), . . . , p6(x)} be the set of block pulse functions on [0, 1) where

pr(x) =

⎧
⎨

⎩
1, r

7 ≤ x < r+1
7 ,

0, otherwise,
r = 0, 1, . . . , 6.

Let

f (x) =
6∑

r=0

grpr(x) = GT P(x).

From Eq. (22), we have

G =

⎛

⎜⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎝

2.03186
2.21914
2.59375
3.16995
3.97389
5.04267
6.42401

⎞

⎟⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎠

, P(x) =

⎛

⎜⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎝

p0(x)
p1(x)
p2(x)
p3(x)
p4(x)
p5(x)
p6(x)

⎞

⎟⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎠

.

From Eqs. (23) and (24), we have

Ω =

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜
⎝

1
2 + 1√

6π

1√
6π

1√
6π

1√
6π

1√
6π

1√
6π

1√
6π

1√
6π

1
2 + 1√

6π

1√
6π

1√
6π

1√
6π

1√
6π

1√
6π

1√
6π

1√
6π

1
2 + 1√

6π

1√
6π

1√
6π

1√
6π

1√
6π

1√
6π

1√
6π

1√
6π

1
2 + 1√

6π

1√
6π

1√
6π

1√
6π

1√
6π

1√
6π

1√
6π

1√
6π

1
2 + 1√

6π

1√
6π

1√
6π

1√
6π

1√
6π

1√
6π

1√
6π

1√
6π

1
2 + 1√

6π

1√
6π

1√
6π

1√
6π

1√
6π

1√
6π

1√
6π

1√
6π

1
2 + 1√

6π

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟
⎠

.
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From Eq. (32), we have

FP =

⎛

⎜⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎝

1 1 1 1 1 1 1
–0.496 –0.079 0.193 0.413 0.603 0.772 0.927
–0.083 –0.479 –0.437 –0.239 0.049 0.3977 0.791
0.313 0.112 –0.265 –0.433 –0.345 0.005 0.613

–0.158 0.324 0.228 –0.135 –0.395 –0.280 0.416
–0.076 –0.126 0.280 0.235 –0.155 –0.384 0.227
0.125 –0.228 –0.083 0.281 0.146 –0.309 0.068

⎞

⎟⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎠

.

It is easy to see that FP is invertible, since det(FP) = 1.4895 × 10–3 �= 0. From Eq. (37), we
have

Ψ = FP Ω FP–1

=

⎛

⎜⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

2.1 –6.3 × 10–4 2.1 × 10–4 1.1 × 10–2 4.2 × 10–4 –7.6 × 10–4 –8.2 × 10–4

0.5 0.50 6.6 × 10–4 3.5 × 10–3 5.4 × 10–4 –4.5 × 10–4 –2.3 × 10–4

4.5 × 10–5 –4.4 × 10–5 0.50 –6.4 × 10–4 5.3 × 10–5 2.3 × 10–5 1.8 × 10–5

3.7 × 10–5 2 × 10–4 –2.3 × 10–5 0.50 –1.4 × 10–4 1.4 × 10–4 4.4 × 10–5

–8 × 10–5 1.1 × 10–4 –2.1 × 10–4 –3.5 × 10–4 0.50 8.6 × 10–5 9.9 × 10–6

1.4 × 10–4 –1.1 × 10–4 –9.7 × 10–5 5.3 × 10–4 6.3 × 10–5 0.50 –3.4 × 10–5

1.2 × 10–5 –1.4 × 10–4 4.0 × 10–5 6.2 × 10–4 1.1 × 10–4 –1.1 × 10–4 0.50

⎞

⎟⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

.

By Eq. (47), we get

U =

⎛

⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

1.2
0.4

0.28571428569
0.1

0.01428571428
0
0

⎞

⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎠

.

Thus,

u7(x) =
6∑

r=0

ur FLr(x) = 1 + x2.

Hence, we get the exact solution.

Example 2 Consider the following problem:

£γ

(
u(x)

)
+ u(x) + u2(x) = f (x), 0 < x < 1, 0 < γ < 1,

u(0) = 1,

where

f (x) = xγ +1 + x2γ +2 +
1 + γ

1 – γ
Γ (1 + γ )x1+γ Eγ ,γ +2

(
–γ xγ

1 – γ

)
.
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Table 1 Absolute errors

γ R(γ )

0.3 1.21 ∗ 10–13

0.6 2.10 ∗ 10–13

0.9 2.32 ∗ 10–13

0.99 2.79 ∗ 10–13

Figure 1 The exact and the approximate solutions for γ = 0.3, 0.6, 0.9, and 0.99, dots: approximate solutions,
joint lines: exact solutions

The exact solution is

u(x) = xγ +1.

Let

R(γ ) = max
r=0,1,...,100

∣
∣∣
∣u30

(
r

100

)
– u

(
r

100

)∣
∣∣
∣.

Then the absolute errors for different choices of γ are given in Table 1.
The graph of the exact and the approximate solutions for γ = 0.3, 0.6, 0.9, and 0.99 are

given in Fig. 1.

5 Closing remarks
In this article, we present a method to approximate the solution of FRE based on the ABFD
in Caputo sense. The numerical method is based on the fractional operational matrix of
the fractional derivative. We present two examples. In the first example, we get the exact
solution. In the second one, the absolute error is of order 10–13. Results are given in Ta-
ble 1. Figure 1 presents the agreement between the exact and the approximate solutions
in Example 2 for different choices of γ . From the numerical results, we see that the pro-
posed method gives accurate results. It is advisable to use it for other nonlinear fractional
differential equations.
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