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Abstract
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1 Introduction and preliminaries
Throughout this paper we denote the set of continuous functions, b-metric space, b-
metric-like space, and quasi-b-metric space by X = C(J), b-MS, b-MLS, and b-QMS, re-
spectively, where J = [0, 1].

In [24], the authors presented a new class of αqsp -admissible mappings and proved some
consequences in b-MLS. In 2016, Nawab Hussain et al. [10] stated some conclusions in
ordered b-QMS.

The existence of a solution for problem

Dκw(η) = h
(
η, w(η)

) (
η ∈ [0, 1], 1 < κ ≤ 2

)
(1)

has been studied widely by many authors.
In [6], Baleanu, Rezapour and Mohammadi studied Eq. (1) by α-ψ-contractions. Similar

ideas have also been considered by some authors; see, for example, [2, 3, 8, 9, 14–16, 18–
20], and the references therein.

In [1], the authors obtained some conclusions for α-ψ-Geraghty type mappings in b-MS.
Recently in [4], Afshari, Kalantari and Baleanu obtained solutions of equation (1) by α-ψ-
Geraghty type mappings in b-MS. In this paper, using α- and αqsp -admissible mappings,
we find solutions for some fractional differential equations in b-MLS and b-QMS.

Definition 1.1 ([12, 17]) The Riemann–Liouville derivative for a continuous function h
is defined by

Dκh(η) =
1

Γ (m – κ)

(
d

dη

)m ∫ η

0

h(ζ )
(η – ζ )κ–m+1 dζ

(
m = [κ] + 1

)
,

where the right-hand side is defined on (0,∞).
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Definition 1.2 ([21]) Let g : X → X, where X is nonempty, and α : X × X → [0,∞) be
given, then g is α-admissible if for s, t ∈ X, α(s, t) ≥ 1 implies α(gs, gt) ≥ 1.

Definition 1.3 ([5]) Let X be a nonempty set. The map bl : X × X → R
+ is said to be

metric-like on X if for any w, y, z ∈ X, the following hold:
(i) bl(w, y) = 0 implies w = y;

(ii) bl(w, y) = bl(y, w);
(iii) bl(w, y) ≤ s(bl(w, z) + bl(z, y)).

The pair (X, bl) called a b-MLS.

Let α : X × X → [0,∞) and p, q ≥ 1 be arbitrary constants, then g : X → X is αqsp -
admissible if α(w, y) ≥ qsp implies α(gw, gy) ≥ qsp for all w, y ∈ X. We further consider
the following properties:

(Hsp ) If {wn} ⊆ X with wn → w ∈ X and α(wn, wn+1) ≥ sp, then there exists a subsequence
{wnk } of {wn} such that α(wnk , w) ≥ sp for all k ∈ N .

Let Θ be the set of all mappings γ : [0,∞) → [0, 1) such that γ (tn) → 1 implies that
tn → 0.

Proposition 1.4 ([24]) Let (X, bl) be a complete b-MLS with parameter s ≥ 1, let g : X → X
and α : X × X → [0,∞). Suppose

(i) g is αsp -admissible;
(ii) There exists γ ∈ Θ such that

α(w, y)bl(gw, gy) ≤ γ
(
bl(w, y)

)
bl(w, y); (2)

(iii) There exists w0 ∈ X with α(w0, gw0) ≥ sp;
(iv) Either g is continuous or property (Hsp ) is satisfied.

Then g has a fixed point.

2 Main result
We endow X with

bl(w, y) = max
t∈J

(∣∣w(t)
∣
∣ +

∣
∣y(t)

∣
∣)p, (3)

for w, y ∈ X, where p > 1. Then (X, bl) is a complete b-MLS with s = 2p–1. Now we study
the problem

–Dκw(η) = f
(
η, w(η)

)
, η ∈ (0, 1), (4)

with the boundary condition (BC)

w(0) = w′(0) = w′(1) = 0, 2 < κ < 3, (5)

where f ∈ C(J × [0, +∞),R) and Dκ is the Riemann–Liouville derivative.
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Lemma 2.1 ([23]) Given f ∈ C(J ×X,R) and 2 < κ < 3, the unique solution of (4) with (BC)
(5) is given by w(η) =

∫ 1
0 G(η, ζ )f (ζ , w(ζ )) dζ , where

G(η, ζ ) =

⎧
⎨

⎩

ηκ–1(1–ζ )κ–2–(η–ζ )κ–1

Γ (κ) , 0 ≤ ζ ≤ η ≤ 1,
ηκ–1(1–ζ )κ–2

Γ (κ) , 0 ≤ η ≤ ζ ≤ 1.
(6)

Lemma 2.2 ([23]) The function G(η, ζ ) defined by (6) satisfies the following condition:

ηκ–1ζ (1 – ζ )κ–2

Γ (κ)
≤ G(η, ζ ) ≤ ζ (1 – ζ )κ–2

Γ (κ)
, 0 ≤ η, ζ ≤ 1.

Theorem 2.3 Suppose there exists ϕ : R2 →R such that
(i) There exists p > 1 such that

∣
∣f

(
η, w(η)

)∣∣ +
∣
∣f

(
η, y(η)

)∣∣

≤ 1
2p–1 Γ (κ + 1)(κ – 1)

(
γ
(∣∣w(η)

∣
∣ +

∣
∣y(η)

∣
∣)p) 1

p
(∣∣w(η)

∣
∣ +

∣
∣y(η)

∣
∣),

for w ∈ C(J), η ∈ J ;
(ii) Inequality ϕ(w(η), y(η)) ≥ 0 implies

ϕ

(∫ 1

0
G(η, ζ )f

(
ζ , w(ζ )

)
dζ ,

∫ 1

0
G(η, ζ )f

(
ζ , y(ζ )

)
dζ

)
≥ 0;

(iii) If {wn} ⊆ C(J), wn → w in C(J) and ϕ(wn, wn+1) ≥ 0, then there exists a subsequence
{wnk } of {wn} such that ϕ(wnk , w) ≥ 0 for all k ∈ N ;

(iv) There exists w0 ∈ C(J) with ϕ(w0(η),
∫ 1

0 G(η, ζ )f (ζ , w0(ζ )) dζ ) ≥ 0.
Then problem (4) has at least one solution in (X, bl).

Proof By Lemma 2.1, w ∈ C(J) is a solution of (4) if and only if it is a solution of w(η) =
∫ 1

0 G(η, ζ )f (ζ , w(ζ )) dζ . Define T : C(J) → C(J) by Tw(η) =
∫ 1

0 G(η, ζ )f (ζ , w(ζ )) dζ , for all
η ∈ J . We find a fixed point of T . Observe that

(∣∣Tw(η)
∣∣ +

∣∣Ty(η)
∣∣)p

=
(∣

∣∣
∣

∫ 1

0
G(η, ζ )f

(
ζ , w(ζ )

)
dζ

∣
∣∣
∣ +

∣
∣∣
∣

∫ 1

0
G(η, ζ )f

(
ζ , y(ζ )

)
dζ

∣
∣∣
∣

)p

≤
[∫ 1

0
G(η, ζ )

∣
∣f

(
ζ , w(ζ )

)∣∣ +
∫ 1

0
G(η, ζ )

∣
∣f

(
ζ , y(ζ )

)∣∣dζ

]p

=
[∫ 1

0
G(η, ζ )

(∣∣f
(
ζ , w(ζ )

)∣∣ +
∣
∣f

(
ζ , y(ζ )

)∣∣)dζ

]p

≤
[∫ 1

0
G(η, ζ )

1
2p–1 Γ (κ + 1)(κ – 1)

(
γ
(∣∣w(η)

∣∣ +
∣∣y(η)

∣∣)p) 1
p
(∣∣w(η)

∣∣ +
∣∣y(η)

∣∣)dη

]p

≤ 1
2p(p–1) γ

(∣∣w(η)
∣∣ +

∣∣y(η)
∣∣)p(∣∣w(η)

∣∣ +
∣∣y(η)

∣∣)p,
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with ϕ(w(η), y(η)) ≥ 0. Define α : C(J) × C(J) → [0,∞) by

α(w, y) =

⎧
⎨

⎩
2p(p–1), ϕ(w(η), y(η)) ≥ 0,η ∈ J ,

0, else.

So

α(w, y)bl(Tw, Ty) ≤ γ
(
bl(w, y)

)
bl(w, y), γ ∈ S.

Considering (ii), α(w, y) ≥ 2p(p–1) = sp implies ϕ(w(η), y(η)) ≥ 0 and ϕ(T(w), T(y)) ≥ 0 im-
plies α(T(w), T(y)) ≥ 2p(p–1) = sp, w ∈ C(J). Thus, T is α-admissible. From (iv), there exists
w0 ∈ C(J) with α(w0, Tw0) ≥ 1. By (iii) and Proposition 1.4, we notice that w∗ ∈ C(J) with
w∗ = Tw∗. �

Corollary 2.4 Suppose that for η ∈ J and w, y ∈ C(J) there exists p > 1 such that

∣
∣f

(
η, w(η)

)∣∣ +
∣
∣f

(
η, y(η)

)∣∣ ≤ 45
√

π

2p+3

(
γ
(∣∣w(η)

∣
∣ +

∣
∣y(η)

∣
∣)p) 1

p
(∣∣w(η)

∣
∣ +

∣
∣y(η)

∣
∣),

also conditions (ii)–(v) from Theorem 2.3 hold for f , where G(η, ζ ) is given in (6). Then the
problem

–
D 5

2

Dη
w(η) = f

(
η, w(η)

)
, η ∈ J , (7)

where

w(0) = w′(0) = w′(1) = 0,

has at least one solution in (X, bl).

Lemma 2.5 ([13]) If f ∈ C(J × [0,∞),R), then the problem

Dκ
0+z(η) + f

(
η, z(η)

)
= 0 (0 < η < 1, 1 < κ < 2),

z(0) = z(1) = 0.
(8)

has a unique positive solution

z(η) =
∫ 1

0
G(η, ζ )f

(
ζ , z(ζ )

)
dζ ,

where G(η, ζ ) is as follows:

G(η, ζ ) =
1

Γ (κ)

⎧
⎨

⎩
(η(1 – ζ ))κ–1 – (η – ζ )κ–1, ζ ≤ η,

(η(1 – ζ ))κ–1, η ≤ ζ .
(9)
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Lemma 2.6 ([22]) Function G(η, ζ ) in Lemma 2.5 has the following feature:

κ – 1
Γ (κ)

ηκ–1(1 – η)(1 – ζ )κ–1ζ ≤ G(η, ζ ) ≤ 1
Γ (κ)

ηκ–1(1 – η)κ–1(1 – ζ )κ–2,

where η, ζ ∈ J , 1 < κ < 2.

From Theorem 2.11, we get the following result.

Corollary 2.7 Suppose for η ∈ J and w, y ∈ C(J) there exists p > 1 such that

∣
∣f

(
η, w(η)

)∣∣ +
∣
∣f

(
η, y(η)

)∣∣ ≤ 1
M2p–1 γ

((∣∣w(η)
∣
∣ +

∣
∣y(η)

∣
∣)p) 1

p
(∣∣w(η)

∣
∣ +

∣
∣y(η)

∣
∣),

where M = supη∈J
∫ 1

0 G(η, ζ ) dζ , also conditions (ii)–(iv) from Theorem 2.3 are satisfied,
where G(η, ζ ) is given in (9). Then problem (8) has at least one solution.

Example 2.8 Endow X = C(J) with

bl(w, y) = max
η∈J

(∣∣w(η)
∣∣ +

∣∣y(η)
∣∣)2, (10)

then (X, d) is a complete b-MLS with s = 2.
Let ϕ(w, y) = wy and wn(η) = ηn2

n2+1 . We consider f : J ×X →R+ and the following periodic
boundary value problem for w, y ∈ X:

–D
5
2 w(η) = f

(
η, w(η)

)
, η ∈ (0, 1), (11)

with the boundary condition (BC)

w(0) = w′(0) = w′(1) = 0,

where f satisfies in the following condition:

∣∣f
(
η, w(η)

)∣∣ +
∣∣f

(
η, y(η)

)∣∣ ≤ 45
√

π

64
(
γ
(∣∣w(η)

∣∣ +
∣∣y(η)

∣∣)2) 1
2
(∣∣w(η)

∣∣ +
∣∣y(η)

∣∣).

If w0(η) = η then

ϕ

(
w0(η),

∫ 1

0
G(η, ζ )h

(
ζ , w0(ζ )

)
dζ

)
≥ 0,

for all η ∈ J , also ϕ(w(η), y(η)) = w(η)y(η) ≥ 0 implies that

ϕ

(∫ 1

0
G(η, ζ )f

(
ζ , w(ζ )

)
dζ ,

∫ 1

0
G(η, ζ )f

(
ζ , y(ζ )

)
dζ

)
≥ 0.

It is obvious that condition (iii) in Theorem 2.4 holds. Hence, from Theorem 2.4 problem
(7) has at least one solution.
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Definition 2.9 ([11]) Let X be a nonempty set, s ≥ 1, and suppose qb : X × X → [0,∞),
for all w, y ∈ X, satisfies the following:

(qb1 ) qb(w, y) = 0 if and only if w = y;
(qb2 ) qb(w, y) ≤ s(qb(w, z) + qb(z, y)) for all w, y, z ∈ X .

The pair (X, qb) is called a b-QMS.

Theorem 2.10 ([10]) Let (X, qb) be a complete b-QMS, g : X → X, and suppose there exists
α : X × X → [0,∞) with

α(w, y)qb(gw, gy) ≤ kqb(w, y), (12)

for all w, y ∈ X, k ∈ [0, s–1). Also assume
(i) g is α-admissible;

(ii) There exists w0 ∈ X such that α(w0, gw0) ≥ 1;
(iii) If wn → w, then lim supn→∞ qb(wn, y) ≥ qb(w, y), for all y ∈ X ;
(iv) If {wn} ⊆ X , α(wn, wn+1) ≥ 1, for all n ∈ N , and wn → w ∈ X , then there exists {wn(k)}

of {wn} with α(wn(k), w) ≥ 1, for k ∈ N .
Then there exists w ∈ X with g(w) = w.

Let qb : X × X → [0,∞) be given by

qb(w, y) =

⎧
⎨

⎩
‖(w – y)2‖∞ + ‖w‖∞, w, y ∈ X, w �= y,

0 otherwise,
(13)

where

‖w‖∞ = sup
η∈J

∣∣w(η)
∣∣.

Then (X, qb) is a complete b-QMS with s = 2, but (X, qb) is not b-MS.

Theorem 2.11 Suppose
(i) There exists k ∈ [0, 1

2 ) such that |f (η, w(η))| ≤ kΓ (κ + 1)(κ – 1)‖w‖∞, and

∣∣f
(
η, w(η)

)
– f

(
η, y(η)

)∣∣ ≤ kΓ (κ + 1)(1 – κ)
∥∥(w – y)2∥∥∞

for w, y ∈ C(J), η ∈ J .
(ii) Inequality ϕ(w(η), y(η)) ≥ 0 implies

ϕ

(∫ 1

0
G(η, ζ )f

(
ζ , w(ζ )

)
dζ ,

∫ 1

0
G(η, ζ )f

(
ζ , y(ζ )

)
dζ

)
≥ 0;

(iii) If wn → w, wn, w ∈ C(J), then

lim sup
n→∞

(∥∥(wn – y)2∥∥∞ + ‖wn‖∞
) ≥ ∥∥(w – y)2∥∥∞ + ‖w‖∞

(iv) If {wn} ⊆ C(J), wn → w in C(J) and ϕ(wn, wn+1) ≥ 0 then there exists {wn(i)} of {wn},
with ϕ(wn(i), w) ≥ 0 for i ∈ N .
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(v) There exists w0 ∈ C(J) with ϕ(w0(η),
∫ 1

0 G(η, ζ )f (ζ , w0(ζ )) dζ ) ≥ 0.
Then problem (4) has at least one solution.

Proof By Lemma 2.1, w ∈ C(J) is a solution of (4) if and only if it is a solution of w(η) =
∫ 1

0 G(η, ζ )f (ζ , w(ζ )) dζ . We define T : C(J) → C(J) by Tw(η) =
∫ 1

0 G(η, ζ )f (ζ , w(ζ )) dζ for
all η ∈ J . For w ∈ C(J) with ϕ(w(η), y(η)) ≥ 0 and η ∈ J , using (i), we have

∣∣Tw(η) – Ty(η)
∣∣2 +

∣∣Tw(η)
∣∣

=
∣∣∣
∣

∫ 1

0
G(η, ζ )

(
f
(
ζ , w(ζ )

)
– f

(
ζ , y(ζ )

))
dζ

∣∣∣
∣

2

+
∣
∣∣∣

∫ 1

0
G(η, ζ )f

(
ζ , w(ζ )

)
dζ

∣
∣∣∣

≤
(∫ 1

0
G(η, ζ )

∣
∣f

(
ζ , w(ζ )

)
– f

(
ζ , y(ζ )

)∣∣dζ

)2

+
∫ 1

0
G(η, ζ )

∣
∣f

(
ζ , w(ζ )

)∣∣dζ

≤
(∫ 1

0
G(η, ζ )kΓ (κ + 1)(1 – κ)

∥
∥(w – y)2∥∥∞ dζ

)2

+
∫ 1

0
G(η, ζ )kΓ (κ + 1)(1 – κ)‖w‖∞ dζ

≤ k
((∥∥(w – y)2∥∥∞

)2 + ‖w‖∞
)

= kqb(w, y).

For w ∈ C(J), η ∈ J with ϕ(w(η), y(η)) ≥ 0, we have

∥∥(Tw – Ty)2∥∥∞ + ‖Tw‖∞ ≤ kqb(w, y).

Define α : C(J) × C(J) → [0,∞) by

α(w, y) =

⎧
⎨

⎩
1, ϕ(w(η), y(η)) ≥ 0,η ∈ J ,

0, else.

Then we have

α(w, y)qba(Tw, Ty) ≤ qba(Tw, Ty) ≤ kqb(w, y),

from (ii); α(w, y) ≥ 1 implies ϕ(w(η), y(η)) ≥ 0, and ϕ(T(w), T(y)) ≥ 0 implies α(T(w),
T(y)) ≥ 1, w ∈ C(J).

Thus, T is α-admissible. From (v), there exists w0 ∈ C(J) with α(w0, Tw0) ≥ 1. By (iii),
(iv) and Theorem 2.10, we find that w∗ ∈ C(J) with w∗ = Tw∗. �

Corollary 2.12 Suppose for η ∈ J and w ∈ C(J) there exists k ∈ [0, 1
2 ), ϕ : R2 →R such that

∣∣f
(
η, w(η)

)∣∣ ≤ k
45

√
π

16
‖w‖∞,

∣∣f
(
η, w(η)

)
– f

(
η, y(η)

)∣∣ ≤ k
45

√
π

16
∥∥(w – y)2∥∥∞.

(14)
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Also assume that conditions (ii)–(v) from Theorem 2.11 hold for f , where G(η, ζ ) is given in
(6). Then the problem

–
D 5

2

Dη
w(η) = f

(
η, w(η)

)
, η ∈ J , w(0) = w′(0) = w′(1) = 0,

has at least one solution.

Proof By using Lemma 2.2,

0 ≤
∫ 1

0
G(η, ζ ) dζ ≤ 16

45
√

π
, η ∈ J . (15)

By employing (14), (15) and in accordance with 2.11, we obtain

∥∥(Tw – Ty)2∥∥∞ + ‖Tw‖∞ ≤ k
((∥∥(w – y)2∥∥∞

)2 + ‖w‖∞
)

= kqb(w, y).

The rest of proof is similar to that of Theorem 2.11. �

Corollary 2.13 Suppose for η ∈ J and w, y ∈ C(J) there exist k ∈ [0, 1
2 ) such that

∣
∣f

(
η, w(η)

)
– f

(
η, y(η)

)∣∣ ≤ k
M

∥
∥(w – y)2∥∥∞,

∣
∣f

(
η, w(η)

)∣∣ ≤ k
M

‖w‖∞,

M = supη∈J
∫ 1

0 G(η, ζ ) dζ , also conditions (ii)–(iv) from Theorem 2.11 are satisfied, where
G(η, ζ ) is given in (9). Then problem (8) has at least one solution.

Definition 2.14 ([12, 17]) For a continuous function h : [0,∞) →R, the Caputo derivative
of fractional order κ is defined by

cDκh(η) =
1

Γ (m – κ)

∫ η

0
(η – ζ )m–κ–1h(m)(ζ ) dζ ,

where m – 1 < κ < m, m = [κ] + 1, and [κ] denotes the integer part of κ .

We consider

cDκw(η) + f
(
η, w(η)

)
= 0, 0 < η < 1, 2 < κ < 3, (16)

with boundary conditions (BC)

w(0) = w′′(0) = 0, w(1) = λ

∫ 1

0
w(ζ ) dζ . (17)

Lemma 2.15 ([7]) Let 2 < κ < 3, λ �= 0 and f ∈ C([0, T]×X,R) be given. Then Eq. (16) with
(BC) (17) has a unique solution given by

w(η) =
∫ 1

0
G(η, ζ )f

(
ζ , w(ζ )

)
dζ ,
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where

G(η, ζ ) =

⎧
⎨

⎩

2η(1–ζ )κ–1)(κ–λ+λζ )–(2–λ)κ(η–ζ )κ–1)
(2–λ)Γ (κ+1) , 0 ≤ ζ ≤ η ≤ 1,

2η(1–ζ )κ–1)(κ–λ+λζ )
(2–λ)Γ (κ+1) , 0 ≤ η ≤ ζ ≤ 1.

(18)

From Lemma 2.15 and Theorem 2.11, we get the following conclusion.

Corollary 2.16 Suppose for η ∈ J and w, y ∈ C(J) there exists k ∈ [0, 1
2 ), such that

∣∣f
(
η, w(η)

)∣∣ ≤ k(2 – λ)Γ (κ)
2

‖w‖∞,

∣∣f
(
η, w(η)

)
– f

(
η, y(η)

)∣∣ ≤ k(2 – λ)Γ (κ)
2

∥∥(w – y)2∥∥∞,

where 0 < λ < 2; also suppose that conditions (ii)–(iv) from Theorem 2.11 are satisfied, where
G(η, ζ ) is given in (18). Then (16) with (BC) (17) has at least one solution.

Let (X, qb) be given in (13). For

cDκw(η) = f
(
η, w(η)

)
(η ∈ J , 1 < κ ≤ 2), (19)

with

w(0) = 0, w(1) =
∫ ξ

0
w(ζ ) dζ (0 < ξ < 1),

where f : J × X →R is continuous, we have the following result.

Theorem 2.17 Assume
(i) There exists k ∈ [0, 1

2 ) such that |f (η, w(η))| ≤ k
2

Γ (κ+1)
5 ‖w‖∞, and

∣∣f
(
η, w(η)

)
– f

(
η, y(η)

)∣∣ ≤
√

k
2

Γ (κ + 1)
5

∥∥(w – y)2∥∥∞

for w ∈ C(J), η ∈ J .
(ii) Inequality ϕ(w(η), y(η)) ≥ 0 implies ϕ(T(w(η)), T(y(η))) ≥ 0, where T : C(J) → C(J)

is defined by

Tw(η) :=
1

Γ (κ)

∫ 1

0
(η – ζ )κ–1f

(
ζ , w(ζ )

)
dζ

–
2η

(2 – ξ 2)Γ (κ)

∫ 1

0
(1 – ζ )κ–1f

(
ζ , w(ζ )

)
dζ

+
2η

(2 – ξ 2)Γ (κ)

∫ ξ

0

(∫ ζ

0
(ζ – n)κ–1f

(
n, w(n)

)
dn

)
dζ (η ∈ J);

(iii) If wn → w, wn, w ∈ C(J), then

lim sup
n→∞

(∥∥(wn – y)2∥∥∞ + ‖wn‖∞
) ≥ ∥∥(w – y)2∥∥∞ + ‖w‖∞;
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(iv) If {wn} ⊆ C(J), wn → w in C(J) and ϕ(wn, wn+1) ≥ 0 then there exists {wn(i)} of {wn},
with ϕ(wn(i), w) ≥ 0 for i ∈ N ;

(v) There exists w0 ∈ C(J) with ϕ(w0(η), T(w0(η))) ≥ 0.
Then (19) has at least one solution.

Proof Function w ∈ C(J) is a solution of (19) if and only if it is a solution of

w(η) =
1

Γ (κ)

∫ 1

0
(η – ζ )κ–1f

(
ζ , w(ζ )

)
dζ –

2η

(2 – ξ 2)Γ (κ)

∫ 1

0
(1 – ζ )κ–1f

(
ζ , w(ζ )

)
dζ

+
2η

(2 – ξ 2)Γ (κ)

∫ ξ

0

(∫ ζ

0
(ζ – n)κ–1f

(
n, w(n)

)
dn

)
dζ (η ∈ J).

Then (19) is replaceable to get w∗ ∈ C(J), with Tw∗ = w∗. Let w ∈ C(J) with ϕ(w(η), y(η)) ≥
0, η ∈ J . By (i), we have

∣∣Tw(η) – Ty(η)
∣∣2 +

∣∣Tw(η)
∣∣

=
∣
∣∣
∣

1
Γ (κ)

∫ 1

0
(η – ζ )κ–1f

(
ζ , w(ζ )

)
dζ

–
2η

(2 – ξ 2)Γ (κ)

∫ 1

0
(1 – ζ )κ–1f

(
ζ , w(ζ )

)
dζ

+
2η

(2 – ξ 2)Γ (κ)

∫ ξ

0

(∫ ζ

0
(ζ – n)κ–1f

(
n, w(n)

)
dn

)
dζ

–
1

Γ (α)

∫ 1

0
(η – ζ )κ–1f

(
ζ , y(ζ )

)
dζ

+
2η

(2 – ξ 2)Γ (κ)

∫ 1

0
(1 – ζ )κ–1f

(
ζ , y(ζ )

)
dζ

–
2η

(2 – ξ 2)Γ (κ)

∫ ξ

0

(∫ ζ

0
(ζ – n)κ–1f

(
n, y(n)

)
dn

)
dζ

∣∣∣
∣

2

+
∣
∣∣∣

1
Γ (κ)

∫ 1

0
(η – ζ )κ–1f

(
ζ , w(ζ )

)
dζ –

2η

(2 – ξ 2)Γ (κ)

∫ 1

0
(1 – ζ )κ–1f

(
ζ , w(ζ )

)
dζ

+
2η

(2 – ξ 2)Γ (κ)

∫ ξ

0

(∫ ζ

0
(ζ – n)κ–1f

(
n, w(n)

)
dn

)
dζ

∣
∣∣∣

≤
[

1
Γ (κ)

∫ 1

0
|η – ζ |κ–1∣∣f

(
ζ , w(ζ )

)
– f

(
ζ , y(ζ )

)∣∣dζ

+
2η

(2 – ξ 2)Γ (κ)

∫ 1

0
|1 – ζ |κ–1∣∣f

(
ζ , w(ζ )

)
– f

(
ζ , y(ζ )

)∣∣dζ

+
2η

(2 – ξ 2)Γ (κ)

∫ ξ

0

∣∣
∣∣

∫ ζ

0
|ζ – n|κ–1∣∣f

(
n, w(n)

)
– f

(
n, y(n)

)∣∣dn
∣∣
∣∣dζ

]2

+
1

Γ (κ)

∫ 1

0

∣∣(η – ζ )
∣∣κ–1∣∣f

(
ζ , w(ζ )

)∣∣dζ

+
2η

(2 – ξ 2)Γ (κ)

∫ 1

0

∣
∣(1 – ζ )

∣
∣κ–1∣∣f

(
ζ , w(ζ )

)∣∣dζ

+
2η

(2 – ξ 2)Γ (κ)

∫ ξ

0

(∫ ζ

0

∣
∣(ζ – n)

∣
∣κ–1∣∣f

(
n, w(n)

)∣∣dn
)

dζ
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≤
(

Γ (κ + 1)
5

)2 k
2
‖w – y‖2

∞

[
sup

(∫ 1

0
|η – ζ |κ–1 dζ +

2η

(2 – ξ 2)Γ (κ)

∫ 1

0
|1 – ζ |κ–1 dζ

+
2η

(2 – ξ 2)Γ (κ)

∫ ξ

0

(∫ ζ

0
|ζ – n|κ–1 dn

)
dζ

)]2

+
Γ (κ + 1)

5
k
2
‖w – y‖∞

[
sup

(∫ 1

0
|η – ζ |κ–1 dζ +

2η

(2 – ξ 2)Γ (κ)

∫ 1

0
|1 – ζ |κ–1 dζ

+
2η

(2 – ξ 2)Γ (κ)

∫ ξ

0

(∫ ζ

0
|ζ – n|κ–1 dn

)
dζ

)]
≤ k

(‖w – y‖2
∞ + ‖w – y‖∞

)

for each w, y ∈ C(J) with ϕ(w(η), y(η)) ≥ 0, η ∈ J , and

∥
∥(Tw – Ty)2∥∥∞ + ‖Tw‖∞ ≤ kqb(w, y).

Suppose α : C(J) × C(J) → [0,∞) is defined by

α(w, y) =

⎧
⎨

⎩
1, ϕ(w(η), y(η)) ≥ 0,η ∈ J ,

0, else,

then

α(w, y)qb(Tw, Ty) ≤ qb(Tw, Ty) ≤ kqb(w, y),

for w, y ∈ C(J). By Theorem 2.10, the result is obtained by the process of the proof of
Theorem 2.11. �

Here, we find a positive solution for

cDκ

Dη
w(η) = f

(
η, w(η)

)
, 0 < κ ≤ 1,η ∈ J , (20)

where

w(0) +
∫ 1

0
w(ζ ) dζ = w(1).

We note that cDν is the Caputo derivative of order ν . We consider the Banach space of
continuous functions on J endowed with the sup norm. We have the following lemma.

Lemma 2.18 ([7]) Let 0 < κ ≤ 1 and h ∈ C([0, T] × X,R) be given. Then the equation

cDκw(η) = f
(
η, w(η)

) (
η ∈ [0, T], T ≥ 1

)
,

with

w(0) +
∫ T

0
w(ζ ) dζ = w(T),
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has a unique solution given by

w(η) =
∫ T

0
G(η, ζ )f

(
ζ , w(ζ )

)
dζ ,

where G(η, ζ ) is defined by

G(η, ζ ) =

⎧
⎨

⎩

–(T–ζ )κ +κT(η–ζ )κ–1

TΓ (κ+1) + (T–ζ )κ–1

TΓ (κ) , 0 ≤ ζ < η,
–(T–ζ )κ
TΓ (κ+1) + (T–ζ )κ–1

TΓ (κ) , η ≤ ζ < T .
(21)

From Lemma 2.18 and Theorem 2.11, we get the following conclusion.

Corollary 2.19 Assume
(i) There exists k ∈ [0, 1

2 ) such that |f (η, w(η))| ≤ 51k
80 ‖w‖∞, and

∣∣f
(
η, w(η)

)
– f

(
η, y(η)

)∣∣ ≤ 51k
80

∥∥(w – y)2∥∥∞

for w, y ∈ C(J), η ∈ J .
Suppose that conditions (ii)–(iv) from Theorem 2.11 are met, where G(η, ζ ) is given in (21),
then the following problem has at least one solution:

cD
1
2 w(η) = f

(
η, w(η)

) (
η ∈ [0, 1]

)
, w(0) +

∫ 1

0
w(ζ ) dζ = w(1).

Example 2.20 Let X = C(J) and qb : X × X → [0,∞) be given by

qb(w, y) =

⎧
⎨

⎩
‖(w – y)2‖∞ + ‖w‖∞, w, y ∈ X, w �= y,

0, otherwise.
(22)

Then (X, d) is a complete b-QMS with s = 2, but is not a b-metric space.
Let θ (w, y) = w3y3, wn(η) = η

n2+1 . We consider f : J × [0, 5] → [0, 5] and the periodic
boundary value problem

cD
1
2 w(η) = f

(
η, w(η)

)
(η ∈ J), (23)

with

w(0) = 0, w(1) =
∫ ξ

0
w(ζ ) dζ (0 < ξ < 1),

and suppose there exists k ∈ [0, 1
2 ) such that f satisfies in the following condition:

∣∣f
(
η, w(η)

)∣∣ ≤ 51k
80

‖w‖∞,
∣∣f

(
η, w(η)

)
– f

(
η, y(η)

)∣∣ ≤ 51k
80

∥∥(w – y)2∥∥∞

when η ∈ J and w(η), y(η) ∈ [0, 5]. If w0(η) = η, then

θ

(
w0(η),

∫ 1

0
G(η, ζ )f

(
ζ , y0(ζ )

)
dζ

)
≥ 0,
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for all η ∈ J , also θ (w(η), y(η)) = w(η)3y(η)3 ≥ 0 implies that

θ

(∫ 1

0
G(η, ζ )f (ζ , w(ζ ))dζ,

∫ 1

0
G(η, ζ )f

(
ζ , y(ζ )

)
dζ

)
≥ 0.

It is obvious that conditions (iii) and (iv) in Corollary 2.19 hold. Hence, from Corollary 2.19
problem (23) has at least one solution.
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