Solution of fractional differential equations in quasi- b-metric and b-metric-like spaces

Hojjat Afshari ${ }^{1 *}$

"Correspondence:
hojat.afshari@yahoo.com
${ }^{1}$ Department of Mathematics, Basic Science Faculty, University of Bonab, Bona, Iran

Abstract

In this article, using by α-admissible and $\alpha_{q s p}$-admissible mappings, solutions of some fractional differential equations are investigated in quasi-b-metric and b-metric-like spaces.

Keywords: Fractional differential equation; $\alpha_{q S}$-admissible mappings; Quasi-b-metric and b-metric-like spaces

1 Introduction and preliminaries

Throughout this paper we denote the set of continuous functions, b-metric space, b -metric-like space, and quasi- b-metric space by $X=C(J), b-M S, b-M L S$, and $b-Q M S$, respectively, where $J=[0,1]$.

In [24], the authors presented a new class of $\alpha_{q s^{p}}$-admissible mappings and proved some consequences in b-MLS. In 2016, Nawab Hussain et al. [10] stated some conclusions in ordered $b-Q M S$.

The existence of a solution for problem

$$
\begin{equation*}
D^{\kappa} w(\eta)=h(\eta, w(\eta)) \quad(\eta \in[0,1], 1<\kappa \leq 2) \tag{1}
\end{equation*}
$$

has been studied widely by many authors.
In [6], Baleanu, Rezapour and Mohammadi studied Eq. (1) by $\alpha-\psi$-contractions. Similar ideas have also been considered by some authors; see, for example, [2, 3, 8, 9, 14-16, 1820], and the references therein.

In [1], the authors obtained some conclusions for $\alpha-\psi$-Geraghty type mappings in $b-M S$. Recently in [4], Afshari, Kalantari and Baleanu obtained solutions of equation (1) by $\alpha-\psi$ Geraghty type mappings in $b-M S$. In this paper, using α - and $\alpha_{q s} p$-admissible mappings, we find solutions for some fractional differential equations in $b-M L S$ and $b-Q M S$.

Definition 1.1 ($[12,17])$ The Riemann-Liouville derivative for a continuous function h is defined by

$$
D^{\kappa} h(\eta)=\frac{1}{\Gamma(m-\kappa)}\left(\frac{d}{d \eta}\right)^{m} \int_{0}^{\eta} \frac{h(\zeta)}{(\eta-\zeta)^{\kappa-m+1}} d \zeta \quad(m=[\kappa]+1)
$$

where the right-hand side is defined on $(0, \infty)$.

Definition 1.2 ([21]) Let $g: X \rightarrow X$, where X is nonempty, and $\alpha: X \times X \rightarrow[0, \infty)$ be given, then g is α-admissible if for $s, t \in X, \alpha(s, t) \geq 1$ implies $\alpha(g s, g t) \geq 1$.

Definition 1.3 ([5]) Let X be a nonempty set. The map $b_{l}: X \times X \rightarrow \mathbb{R}^{+}$is said to be metric-like on X if for any $w, y, z \in X$, the following hold:
(i) $b_{l}(w, y)=0$ implies $w=y$;
(ii) $b_{l}(w, y)=b_{l}(y, w)$;
(iii) $b_{l}(w, y) \leq s\left(b_{l}(w, z)+b_{l}(z, y)\right)$.

The pair $\left(X, b_{l}\right)$ called a $b-M L S$.

Let $\alpha: X \times X \rightarrow[0, \infty)$ and $p, q \geq 1$ be arbitrary constants, then $g: X \rightarrow X$ is $\alpha_{q s p^{p}}$ admissible if $\alpha(w, y) \geq q s^{p}$ implies $\alpha(g w, g y) \geq q s^{p}$ for all $w, y \in X$. We further consider the following properties:
$\left(H_{s^{p}}\right)$ If $\left\{w_{n}\right\} \subseteq X$ with $w_{n} \rightarrow w \in X$ and $\alpha\left(w_{n}, w_{n+1}\right) \geq s^{p}$, then there exists a subsequence $\left\{w_{n_{k}}\right\}$ of $\left\{w_{n}\right\}$ such that $\alpha\left(w_{n_{k}}, w\right) \geq s^{p}$ for all $k \in N$.
Let Θ be the set of all mappings $\gamma:[0, \infty) \rightarrow[0,1)$ such that $\gamma\left(t_{n}\right) \rightarrow 1$ implies that $t_{n} \rightarrow 0$.

Proposition 1.4([24]) Let $\left(X, b_{l}\right)$ be a complete b-MLS with parameter $s \geq 1$, let $g: X \rightarrow X$ and $\alpha: X \times X \rightarrow[0, \infty)$. Suppose
(i) g is $\alpha_{s^{p}}$-admissible;
(ii) There exists $\gamma \in \Theta$ such that

$$
\begin{equation*}
\alpha(w, y) b_{l}(g w, g y) \leq \gamma\left(b_{l}(w, y)\right) b_{l}(w, y) ; \tag{2}
\end{equation*}
$$

(iii) There exists $w_{0} \in X$ with $\alpha\left(w_{0}, g w_{0}\right) \geq s^{p}$;
(iv) Either g is continuous or property $\left(H_{s^{p}}\right)$ is satisfied.

Then g has a fixed point.

2 Main result

We endow X with

$$
\begin{equation*}
b_{l}(w, y)=\max _{t \in J}(|w(t)|+|y(t)|)^{p}, \tag{3}
\end{equation*}
$$

for $w, y \in X$, where $p>1$. Then $\left(X, b_{l}\right)$ is a complete $b-M L S$ with $s=2^{p-1}$. Now we study the problem

$$
\begin{equation*}
-D^{\kappa} w(\eta)=f(\eta, w(\eta)), \quad \eta \in(0,1) \tag{4}
\end{equation*}
$$

with the boundary condition (BC)

$$
\begin{equation*}
w(0)=w^{\prime}(0)=w^{\prime}(1)=0, \quad 2<\kappa<3, \tag{5}
\end{equation*}
$$

where $f \in C(J \times[0,+\infty), \mathbb{R})$ and D^{κ} is the Riemann-Liouville derivative.

Lemma 2.1 ([23]) Given $f \in C(J \times X, \mathbb{R})$ and $2<\kappa<3$, the unique solution of (4) with ($B C$) (5) is given by $w(\eta)=\int_{0}^{1} G(\eta, \zeta) f(\zeta, w(\zeta)) d \zeta$, where

$$
G(\eta, \zeta)= \begin{cases}\frac{\eta^{\kappa-1}(1-\zeta)^{\kappa-2}-(\eta-\zeta)^{\kappa-1}}{\Gamma(\kappa)}, & 0 \leq \zeta \leq \eta \leq 1 \tag{6}\\ \frac{\eta^{k-1}(1-\zeta)^{k-2}}{\Gamma(\kappa)}, & 0 \leq \eta \leq \zeta \leq 1\end{cases}
$$

Lemma 2.2 ([23]) The function $G(\eta, \zeta)$ defined by (6) satisfies the following condition:

$$
\frac{\eta^{\kappa-1} \zeta(1-\zeta)^{\kappa-2}}{\Gamma(\kappa)} \leq G(\eta, \zeta) \leq \frac{\zeta(1-\zeta)^{\kappa-2}}{\Gamma(\kappa)}, \quad 0 \leq \eta, \zeta \leq 1
$$

Theorem 2.3 Suppose there exists $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that
(i) There exists $p>1$ such that

$$
\begin{aligned}
& |f(\eta, w(\eta))|+|f(\eta, y(\eta))| \\
& \quad \leq \frac{1}{2^{p-1}} \Gamma(\kappa+1)(\kappa-1)\left(\gamma(|w(\eta)|+|y(\eta)|)^{p}\right)^{\frac{1}{p}}(|w(\eta)|+|y(\eta)|),
\end{aligned}
$$

for $w \in C(J), \eta \in J$;
(ii) Inequality $\varphi(w(\eta), y(\eta)) \geq 0$ implies

$$
\varphi\left(\int_{0}^{1} G(\eta, \zeta) f(\zeta, w(\zeta)) d \zeta, \int_{0}^{1} G(\eta, \zeta) f(\zeta, y(\zeta)) d \zeta\right) \geq 0
$$

(iii) If $\left\{w_{n}\right\} \subseteq C(J), w_{n} \rightarrow w$ in $C(J)$ and $\varphi\left(w_{n}, w_{n+1}\right) \geq 0$, then there exists a subsequence $\left\{w_{n_{k}}\right\}$ of $\left\{w_{n}\right\}$ such that $\varphi\left(w_{n_{k}}, w\right) \geq 0$ for all $k \in N$;
(iv) There exists $w_{0} \in C(J)$ with $\varphi\left(w_{0}(\eta), \int_{0}^{1} G(\eta, \zeta) f\left(\zeta, w_{0}(\zeta)\right) d \zeta\right) \geq 0$.

Then problem (4) has at least one solution in $\left(X, b_{l}\right)$.

Proof By Lemma 2.1, $w \in C(J)$ is a solution of (4) if and only if it is a solution of $w(\eta)=$ $\int_{0}^{1} G(\eta, \zeta) f(\zeta, w(\zeta)) d \zeta$. Define $T: C(J) \rightarrow C(J)$ by $T w(\eta)=\int_{0}^{1} G(\eta, \zeta) f(\zeta, w(\zeta)) d \zeta$, for all $\eta \in J$. We find a fixed point of T. Observe that

$$
\begin{aligned}
& (|T w(\eta)|+|T y(\eta)|)^{p} \\
& \quad=\left(\left|\int_{0}^{1} G(\eta, \zeta) f(\zeta, w(\zeta)) d \zeta\right|+\left|\int_{0}^{1} G(\eta, \zeta) f(\zeta, y(\zeta)) d \zeta\right|\right)^{p} \\
& \quad \leq\left[\int_{0}^{1} G(\eta, \zeta)|f(\zeta, w(\zeta))|+\int_{0}^{1} G(\eta, \zeta)|f(\zeta, y(\zeta))| d \zeta\right]^{p} \\
& \quad=\left[\int_{0}^{1} G(\eta, \zeta)(|f(\zeta, w(\zeta))|+|f(\zeta, y(\zeta))|) d \zeta\right]^{p} \\
& \quad \leq\left[\int_{0}^{1} G(\eta, \zeta) \frac{1}{2^{p-1}} \Gamma(\kappa+1)(\kappa-1)\left(\gamma(|w(\eta)|+|y(\eta)|)^{p}\right)^{\frac{1}{p}}(|w(\eta)|+|y(\eta)|) d \eta\right]^{p} \\
& \quad \leq \frac{1}{2^{p(p-1)}} \gamma(|w(\eta)|+|y(\eta)|)^{p}(|w(\eta)|+|y(\eta)|)^{p}
\end{aligned}
$$

with $\varphi(w(\eta), y(\eta)) \geq 0$. Define $\alpha: C(J) \times C(J) \rightarrow[0, \infty)$ by

$$
\alpha(w, y)= \begin{cases}2^{p(p-1)}, & \varphi(w(\eta), y(\eta)) \geq 0, \eta \in J \\ 0, & \text { else }\end{cases}
$$

So

$$
\alpha(w, y) b_{l}(T w, T y) \leq \gamma\left(b_{l}(w, y)\right) b_{l}(w, y), \quad \gamma \in S .
$$

Considering (ii), $\alpha(w, y) \geq 2^{p(p-1)}=s^{p}$ implies $\varphi(w(\eta), y(\eta)) \geq 0$ and $\varphi(T(w), T(y)) \geq 0$ implies $\alpha(T(w), T(y)) \geq 2^{p(p-1)}=s^{p}, w \in C(J)$. Thus, T is α-admissible. From (iv), there exists $w_{0} \in C(J)$ with $\alpha\left(w_{0}, T w_{0}\right) \geq 1$. By (iii) and Proposition 1.4, we notice that $w^{*} \in C(J)$ with $w^{*}=T w^{*}$.

Corollary 2.4 Suppose that for $\eta \in J$ and $w, y \in C(J)$ there exists $p>1$ such that

$$
|f(\eta, w(\eta))|+|f(\eta, y(\eta))| \leq \frac{45 \sqrt{\pi}}{2^{p+3}}\left(\gamma(|w(\eta)|+|y(\eta)|)^{p}\right)^{\frac{1}{p}}(|w(\eta)|+|y(\eta)|)
$$

also conditions (ii)-(v) from Theorem 2.3 hold for f, where $G(\eta, \zeta)$ is given in (6). Then the problem

$$
\begin{equation*}
-\frac{D^{\frac{5}{2}}}{D \eta} w(\eta)=f(\eta, w(\eta)), \quad \eta \in J, \tag{7}
\end{equation*}
$$

where

$$
w(0)=w^{\prime}(0)=w^{\prime}(1)=0,
$$

has at least one solution in (X, b_{l}).

Lemma 2.5 ([13]) Iff $\in C(J \times[0, \infty), \mathbb{R})$, then the problem

$$
\begin{align*}
& D_{0+}^{\kappa} z(\eta)+f(\eta, z(\eta))=0 \quad(0<\eta<1,1<\kappa<2), \tag{8}\\
& z(0)=z(1)=0 .
\end{align*}
$$

has a unique positive solution

$$
z(\eta)=\int_{0}^{1} G(\eta, \zeta) f(\zeta, z(\zeta)) d \zeta
$$

where $G(\eta, \zeta)$ is as follows:

$$
G(\eta, \zeta)=\frac{1}{\Gamma(\kappa)} \begin{cases}(\eta(1-\zeta))^{\kappa-1}-(\eta-\zeta)^{\kappa-1}, & \zeta \leq \eta \tag{9}\\ (\eta(1-\zeta))^{\kappa-1}, & \eta \leq \zeta\end{cases}
$$

Lemma 2.6 ([22]) Function $G(\eta, \zeta)$ in Lemma 2.5 has the following feature:

$$
\frac{\kappa-1}{\Gamma(\kappa)} \eta^{\kappa-1}(1-\eta)(1-\zeta)^{\kappa-1} \zeta \leq G(\eta, \zeta) \leq \frac{1}{\Gamma(\kappa)} \eta^{\kappa-1}(1-\eta)^{\kappa-1}(1-\zeta)^{\kappa-2}
$$

where $\eta, \zeta \in J, 1<\kappa<2$.

From Theorem 2.11, we get the following result.

Corollary 2.7 Suppose for $\eta \in J$ and $w, y \in C(J)$ there exists $p>1$ such that

$$
|f(\eta, w(\eta))|+|f(\eta, y(\eta))| \leq \frac{1}{M 2^{p-1}} \gamma\left((|w(\eta)|+|y(\eta)|)^{p}\right)^{\frac{1}{p}}(|w(\eta)|+|y(\eta)|)
$$

where $M=\sup _{\eta \in J} \int_{0}^{1} G(\eta, \zeta) d \zeta$, also conditions (ii)-(iv) from Theorem 2.3 are satisfied, where $G(\eta, \zeta)$ is given in (9). Then problem (8) has at least one solution.

Example 2.8 Endow $X=C(J)$ with

$$
\begin{equation*}
b_{l}(w, y)=\max _{\eta \in J}(|w(\eta)|+|y(\eta)|)^{2} \tag{10}
\end{equation*}
$$

then (X, d) is a complete $b-M L S$ with $s=2$.
Let $\varphi(w, y)=w y$ and $w_{n}(\eta)=\frac{\eta n^{2}}{n^{2}+1}$. We consider $f: J \times X \rightarrow \mathcal{R}^{+}$and the following periodic boundary value problem for $w, y \in X$:

$$
\begin{equation*}
-D^{\frac{5}{2}} w(\eta)=f(\eta, w(\eta)), \quad \eta \in(0,1) \tag{11}
\end{equation*}
$$

with the boundary condition (BC)

$$
w(0)=w^{\prime}(0)=w^{\prime}(1)=0
$$

where f satisfies in the following condition:

$$
|f(\eta, w(\eta))|+|f(\eta, y(\eta))| \leq \frac{45 \sqrt{\pi}}{64}\left(\gamma(|w(\eta)|+|y(\eta)|)^{2}\right)^{\frac{1}{2}}(|w(\eta)|+|y(\eta)|)
$$

If $w_{0}(\eta)=\eta$ then

$$
\varphi\left(w_{0}(\eta), \int_{0}^{1} G(\eta, \zeta) h\left(\zeta, w_{0}(\zeta)\right) d \zeta\right) \geq 0
$$

for all $\eta \in J$, also $\varphi(w(\eta), y(\eta))=w(\eta) y(\eta) \geq 0$ implies that

$$
\varphi\left(\int_{0}^{1} G(\eta, \zeta) f(\zeta, w(\zeta)) d \zeta, \int_{0}^{1} G(\eta, \zeta) f(\zeta, y(\zeta)) d \zeta\right) \geq 0
$$

It is obvious that condition (iii) in Theorem 2.4 holds. Hence, from Theorem 2.4 problem (7) has at least one solution.

Definition 2.9 ([11]) Let X be a nonempty set, $s \geq 1$, and suppose $q_{b}: X \times X \rightarrow[0, \infty)$, for all $w, y \in X$, satisfies the following:

$$
\begin{aligned}
& \left(q_{b_{1}}\right) q_{b}(w, y)=0 \text { if and only if } w=y \\
& \left(q_{b_{2}}\right) q_{b}(w, y) \leq s\left(q_{b}(w, z)+q_{b}(z, y)\right) \text { for all } w, y, z \in X .
\end{aligned}
$$

The pair $\left(X, q_{b}\right)$ is called a $b-Q M S$.

Theorem 2.10 ([10]) Let $\left(X, q_{b}\right)$ be a complete $b-Q M S, g: X \rightarrow X$, and suppose there exists $\alpha: X \times X \rightarrow[0, \infty)$ with

$$
\begin{equation*}
\alpha(w, y) q_{b}(g w, g y) \leq k q_{b}(w, y), \tag{12}
\end{equation*}
$$

for all $w, y \in X, k \in\left[0, s^{-1}\right)$. Also assume
(i) g is α-admissible;
(ii) There exists $w_{0} \in X$ such that $\alpha\left(w_{0}, g w_{0}\right) \geq 1$;
(iii) If $w_{n} \rightarrow w$, then $\lim \sup _{n \rightarrow \infty} q_{b}\left(w_{n}, y\right) \geq q_{b}(w, y)$, for all $y \in X$;
(iv) If $\left\{w_{n}\right\} \subseteq X, \alpha\left(w_{n}, w_{n+1}\right) \geq 1$, for all $n \in N$, and $w_{n} \rightarrow w \in X$, then there exists $\left\{w_{n(k)}\right\}$ of $\left\{w_{n}\right\}$ with $\alpha\left(w_{n(k)}, w\right) \geq 1$, for $k \in N$.
Then there exists $w \in X$ with $g(w)=w$.

Let $q_{b}: X \times X \rightarrow[0, \infty)$ be given by

$$
q_{b}(w, y)= \begin{cases}\left\|(w-y)^{2}\right\|_{\infty}+\|w\|_{\infty}, & w, y \in X, w \neq y \tag{13}\\ 0 & \text { otherwise }\end{cases}
$$

where

$$
\|w\|_{\infty}=\sup _{\eta \in J}|w(\eta)| .
$$

Then $\left(X, q_{b}\right)$ is a complete $b-Q M S$ with $s=2$, but $\left(X, q_{b}\right)$ is not $b-M S$.

Theorem 2.11 Suppose

(i) There exists $k \in\left[0, \frac{1}{2}\right)$ such that $|f(\eta, w(\eta))| \leq k \Gamma(\kappa+1)(\kappa-1)\|w\|_{\infty}$, and

$$
|f(\eta, w(\eta))-f(\eta, y(\eta))| \leq k \Gamma(\kappa+1)(1-\kappa)\left\|(w-y)^{2}\right\|_{\infty}
$$

for $w, y \in C(J), \eta \in J$.
(ii) Inequality $\varphi(w(\eta), y(\eta)) \geq 0$ implies

$$
\varphi\left(\int_{0}^{1} G(\eta, \zeta) f(\zeta, w(\zeta)) d \zeta, \int_{0}^{1} G(\eta, \zeta) f(\zeta, y(\zeta)) d \zeta\right) \geq 0
$$

(iii) If $w_{n} \rightarrow w, w_{n}, w \in C(J)$, then

$$
\limsup _{n \rightarrow \infty}\left(\left\|\left(w_{n}-y\right)^{2}\right\|_{\infty}+\left\|w_{n}\right\|_{\infty}\right) \geq\left\|(w-y)^{2}\right\|_{\infty}+\|w\|_{\infty}
$$

(iv) If $\left\{w_{n}\right\} \subseteq C(J), w_{n} \rightarrow w$ in $C(J)$ and $\varphi\left(w_{n}, w_{n+1}\right) \geq 0$ then there exists $\left\{w_{n(i)}\right\}$ of $\left\{w_{n}\right\}$, with $\varphi\left(w_{n(i)}, w\right) \geq 0$ for $i \in N$.
(v) There exists $w_{0} \in C(J)$ with $\varphi\left(w_{0}(\eta), \int_{0}^{1} G(\eta, \zeta) f\left(\zeta, w_{0}(\zeta)\right) d \zeta\right) \geq 0$.

Then problem (4) has at least one solution.

Proof By Lemma 2.1, $w \in C(J)$ is a solution of (4) if and only if it is a solution of $w(\eta)=$ $\int_{0}^{1} G(\eta, \zeta) f(\zeta, w(\zeta)) d \zeta$. We define $T: C(J) \rightarrow C(J)$ by $T w(\eta)=\int_{0}^{1} G(\eta, \zeta) f(\zeta, w(\zeta)) d \zeta$ for all $\eta \in J$. For $w \in C(J)$ with $\varphi(w(\eta), y(\eta)) \geq 0$ and $\eta \in J$, using (i), we have

$$
\begin{aligned}
&|T w(\eta)-T y(\eta)|^{2}+|T w(\eta)| \\
&=\left|\int_{0}^{1} G(\eta, \zeta)(f(\zeta, w(\zeta))-f(\zeta, y(\zeta))) d \zeta\right|^{2} \\
&+\left|\int_{0}^{1} G(\eta, \zeta) f(\zeta, w(\zeta)) d \zeta\right| \\
& \leq\left(\int_{0}^{1} G(\eta, \zeta)|f(\zeta, w(\zeta))-f(\zeta, y(\zeta))| d \zeta\right)^{2}+\int_{0}^{1} G(\eta, \zeta)|f(\zeta, w(\zeta))| d \zeta \\
& \leq\left(\int_{0}^{1} G(\eta, \zeta) k \Gamma(\kappa+1)(1-\kappa)\left\|(w-y)^{2}\right\|_{\infty} d \zeta\right)^{2} \\
&+\int_{0}^{1} G(\eta, \zeta) k \Gamma(\kappa+1)(1-\kappa)\|w\|_{\infty} d \zeta \\
& \leq k\left(\left(\left\|(w-y)^{2}\right\|_{\infty}\right)^{2}+\|w\|_{\infty}\right)=k q_{b}(w, y) .
\end{aligned}
$$

For $w \in C(J), \eta \in J$ with $\varphi(w(\eta), y(\eta)) \geq 0$, we have

$$
\left\|(T w-T y)^{2}\right\|_{\infty}+\|T w\|_{\infty} \leq k q_{b}(w, y) .
$$

Define $\alpha: C(J) \times C(J) \rightarrow[0, \infty)$ by

$$
\alpha(w, y)= \begin{cases}1, & \varphi(w(\eta), y(\eta)) \geq 0, \eta \in J \\ 0, & \text { else }\end{cases}
$$

Then we have

$$
\alpha(w, y) q_{b} a(T w, T y) \leq q_{b} a(T w, T y) \leq k q_{b}(w, y)
$$

from (ii); $\alpha(w, y) \geq 1$ implies $\varphi(w(\eta), y(\eta)) \geq 0$, and $\varphi(T(w), T(y)) \geq 0$ implies $\alpha(T(w)$, $T(y)) \geq 1, w \in C(J)$.
Thus, T is α-admissible. From (v), there exists $w_{0} \in C(J)$ with $\alpha\left(w_{0}, T w_{0}\right) \geq 1$. By (iii), (iv) and Theorem 2.10, we find that $w^{*} \in C(J)$ with $w^{*}=T w^{*}$.

Corollary 2.12 Suppose for $\eta \in J$ and $w \in C(J)$ there exists $k \in\left[0, \frac{1}{2}\right), \varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that

$$
\begin{align*}
& |f(\eta, w(\eta))| \leq k \frac{45 \sqrt{\pi}}{16}\|w\|_{\infty} \tag{14}\\
& |f(\eta, w(\eta))-f(\eta, y(\eta))| \leq k \frac{45 \sqrt{\pi}}{16}\left\|(w-y)^{2}\right\|_{\infty}
\end{align*}
$$

Also assume that conditions (ii)-(v) from Theorem 2.11 hold for f, where $G(\eta, \zeta)$ is given in (6). Then the problem

$$
-\frac{D^{\frac{5}{2}}}{D \eta} w(\eta)=f(\eta, w(\eta)), \quad \eta \in J, \quad w(0)=w^{\prime}(0)=w^{\prime}(1)=0,
$$

has at least one solution.

Proof By using Lemma 2.2,

$$
\begin{equation*}
0 \leq \int_{0}^{1} G(\eta, \zeta) d \zeta \leq \frac{16}{45 \sqrt{\pi}}, \quad \eta \in J \tag{15}
\end{equation*}
$$

By employing (14), (15) and in accordance with 2.11, we obtain

$$
\left\|(T w-T y)^{2}\right\|_{\infty}+\|T w\|_{\infty} \leq k\left(\left(\left\|(w-y)^{2}\right\|_{\infty}\right)^{2}+\|w\|_{\infty}\right)=k q_{b}(w, y)
$$

The rest of proof is similar to that of Theorem 2.11.

Corollary 2.13 Suppose for $\eta \in J$ and $w, y \in C(J)$ there exist $k \in\left[0, \frac{1}{2}\right)$ such that

$$
|f(\eta, w(\eta))-f(\eta, y(\eta))| \leq \frac{k}{M}\left\|(w-y)^{2}\right\|_{\infty}, \quad|f(\eta, w(\eta))| \leq \frac{k}{M}\|w\|_{\infty}
$$

$M=\sup _{\eta \in J} \int_{0}^{1} G(\eta, \zeta) d \zeta$, also conditions (ii)-(iv) from Theorem 2.11 are satisfied, where $G(\eta, \zeta)$ is given in (9). Then problem (8) has at least one solution.

Definition $2.14([12,17])$ For a continuous function $h:[0, \infty) \rightarrow \mathbb{R}$, the Caputo derivative of fractional order κ is defined by

$$
{ }^{c} D^{\kappa} h(\eta)=\frac{1}{\Gamma(m-\kappa)} \int_{0}^{\eta}(\eta-\zeta)^{m-\kappa-1} h^{(m)}(\zeta) d \zeta
$$

where $m-1<\kappa<m, m=[\kappa]+1$, and $[\kappa]$ denotes the integer part of κ.
We consider

$$
\begin{equation*}
{ }^{c} D^{\kappa} w(\eta)+f(\eta, w(\eta))=0, \quad 0<\eta<1,2<\kappa<3, \tag{16}
\end{equation*}
$$

with boundary conditions (BC)

$$
\begin{equation*}
w(0)=w^{\prime \prime}(0)=0, \quad w(1)=\lambda \int_{0}^{1} w(\zeta) d \zeta . \tag{17}
\end{equation*}
$$

Lemma 2.15 ([7]) Let $2<\kappa<3, \lambda \neq 0$ and $f \in C([0, T] \times X, \mathbb{R})$ be given. Then Eq. (16) with $(B C)(17)$ has a unique solution given by

$$
w(\eta)=\int_{0}^{1} G(\eta, \zeta) f(\zeta, w(\zeta)) d \zeta
$$

where

$$
G(\eta, \zeta)= \begin{cases}\frac{\left.\left.2 \eta(1-\zeta)^{\kappa-1}\right)(\kappa-\lambda+\lambda \zeta)-(2-\lambda) \kappa(\eta-\zeta)^{k-1}\right)}{(2-\lambda) \Gamma(\kappa+1)}, & 0 \leq \zeta \leq \eta \leq 1, \tag{18}\\ \frac{\left.2 \eta(1-\zeta)^{\kappa-1}\right)(\kappa-\lambda+\lambda \zeta)}{(2-\lambda) \Gamma(\kappa+1)}, & 0 \leq \eta \leq \zeta \leq 1\end{cases}
$$

From Lemma 2.15 and Theorem 2.11, we get the following conclusion.

Corollary 2.16 Suppose for $\eta \in J$ and $w, y \in C(J)$ there exists $k \in\left[0, \frac{1}{2}\right)$, such that

$$
\begin{aligned}
& |f(\eta, w(\eta))| \leq \frac{k(2-\lambda) \Gamma(\kappa)}{2}\|w\|_{\infty} \\
& |f(\eta, w(\eta))-f(\eta, y(\eta))| \leq \frac{k(2-\lambda) \Gamma(\kappa)}{2}\left\|(w-y)^{2}\right\|_{\infty^{\prime}}
\end{aligned}
$$

where $0<\lambda<2$; also suppose that conditions (ii)-(iv) from Theorem 2.11 are satisfied, where $G(\eta, \zeta)$ is given in (18). Then (16) with (BC) (17) has at least one solution.

Let $\left(X, q_{b}\right)$ be given in (13). For

$$
\begin{equation*}
{ }^{c} D^{\kappa} w(\eta)=f(\eta, w(\eta)) \quad(\eta \in J, 1<\kappa \leq 2) \tag{19}
\end{equation*}
$$

with

$$
w(0)=0, \quad w(1)=\int_{0}^{\xi} w(\zeta) d \zeta \quad(0<\xi<1)
$$

where $f: J \times X \rightarrow \mathbb{R}$ is continuous, we have the following result.

Theorem 2.17 Assume

(i) There exists $k \in\left[0, \frac{1}{2}\right)$ such that $|f(\eta, w(\eta))| \leq \frac{k}{2} \frac{\Gamma(\kappa+1)}{5}\|w\|_{\infty}$, and

$$
|f(\eta, w(\eta))-f(\eta, y(\eta))| \leq \sqrt{\frac{k}{2}} \frac{\Gamma(\kappa+1)}{5}\left\|(w-y)^{2}\right\|_{\infty}
$$

for $w \in C(J), \eta \in J$.
(ii) Inequality $\varphi(w(\eta), y(\eta)) \geq 0$ implies $\varphi(T(w(\eta)), T(y(\eta))) \geq 0$, where T : $C(J) \rightarrow C(J)$ is defined by

$$
\begin{aligned}
T w(\eta):= & \frac{1}{\Gamma(\kappa)} \int_{0}^{1}(\eta-\zeta)^{\kappa-1} f(\zeta, w(\zeta)) d \zeta \\
& -\frac{2 \eta}{\left(2-\xi^{2}\right) \Gamma(\kappa)} \int_{0}^{1}(1-\zeta)^{\kappa-1} f(\zeta, w(\zeta)) d \zeta \\
& +\frac{2 \eta}{\left(2-\xi^{2}\right) \Gamma(\kappa)} \int_{0}^{\xi}\left(\int_{0}^{\zeta}(\zeta-n)^{\kappa-1} f(n, w(n)) d n\right) d \zeta \quad(\eta \in J)
\end{aligned}
$$

(iii) If $w_{n} \rightarrow w, w_{n}, w \in C(J)$, then

$$
\limsup _{n \rightarrow \infty}\left(\left\|\left(w_{n}-y\right)^{2}\right\|_{\infty}+\left\|w_{n}\right\|_{\infty}\right) \geq\left\|(w-y)^{2}\right\|_{\infty}+\|w\|_{\infty}
$$

(iv) If $\left\{w_{n}\right\} \subseteq C(J), w_{n} \rightarrow w$ in $C(J)$ and $\varphi\left(w_{n}, w_{n+1}\right) \geq 0$ then there exists $\left\{w_{n(i)}\right\}$ of $\left\{w_{n}\right\}$, with $\varphi\left(w_{n(i)}, w\right) \geq 0$ for $i \in N$;
(v) There exists $w_{0} \in C(J)$ with $\varphi\left(w_{0}(\eta), T\left(w_{0}(\eta)\right)\right) \geq 0$.

Then (19) has at least one solution.

Proof Function $w \in C(J)$ is a solution of (19) if and only if it is a solution of

$$
\begin{aligned}
w(\eta)= & \frac{1}{\Gamma(\kappa)} \int_{0}^{1}(\eta-\zeta)^{\kappa-1} f(\zeta, w(\zeta)) d \zeta-\frac{2 \eta}{\left(2-\xi^{2}\right) \Gamma(\kappa)} \int_{0}^{1}(1-\zeta)^{\kappa-1} f(\zeta, w(\zeta)) d \zeta \\
& +\frac{2 \eta}{\left(2-\xi^{2}\right) \Gamma(\kappa)} \int_{0}^{\xi}\left(\int_{0}^{\zeta}(\zeta-n)^{\kappa-1} f(n, w(n)) d n\right) d \zeta \quad(\eta \in J)
\end{aligned}
$$

Then (19) is replaceable to get $w^{*} \in C(J)$, with $T w^{*}=w^{*}$. Let $w \in C(J)$ with $\varphi(w(\eta), y(\eta)) \geq$ $0, \eta \in J$. By (i), we have

$$
\begin{aligned}
& |T w(\eta)-T y(\eta)|^{2}+|T w(\eta)| \\
& =\left\lvert\, \frac{1}{\Gamma(\kappa)} \int_{0}^{1}(\eta-\zeta)^{\kappa-1} f(\zeta, w(\zeta)) d \zeta\right. \\
& -\frac{2 \eta}{\left(2-\xi^{2}\right) \Gamma(\kappa)} \int_{0}^{1}(1-\zeta)^{\kappa-1} f(\zeta, w(\zeta)) d \zeta \\
& +\frac{2 \eta}{\left(2-\xi^{2}\right) \Gamma(\kappa)} \int_{0}^{\xi}\left(\int_{0}^{\zeta}(\zeta-n)^{\kappa-1} f(n, w(n)) d n\right) d \zeta \\
& -\frac{1}{\Gamma(\alpha)} \int_{0}^{1}(\eta-\zeta)^{\kappa-1} f(\zeta, y(\zeta)) d \zeta \\
& +\frac{2 \eta}{\left(2-\xi^{2}\right) \Gamma(\kappa)} \int_{0}^{1}(1-\zeta)^{\kappa-1} f(\zeta, y(\zeta)) d \zeta \\
& -\left.\frac{2 \eta}{\left(2-\xi^{2}\right) \Gamma(\kappa)} \int_{0}^{\xi}\left(\int_{0}^{\zeta}(\zeta-n)^{\kappa-1} f(n, y(n)) d n\right) d \zeta\right|^{2} \\
& +\left\lvert\, \frac{1}{\Gamma(\kappa)} \int_{0}^{1}(\eta-\zeta)^{\kappa-1} f(\zeta, w(\zeta)) d \zeta-\frac{2 \eta}{\left(2-\xi^{2}\right) \Gamma(\kappa)} \int_{0}^{1}(1-\zeta)^{\kappa-1} f(\zeta, w(\zeta)) d \zeta\right. \\
& \left.+\frac{2 \eta}{\left(2-\xi^{2}\right) \Gamma(\kappa)} \int_{0}^{\xi}\left(\int_{0}^{\zeta}(\zeta-n)^{\kappa-1} f(n, w(n)) d n\right) d \zeta \right\rvert\, \\
& \leq\left[\frac{1}{\Gamma(\kappa)} \int_{0}^{1}|\eta-\zeta|^{\kappa-1}|f(\zeta, w(\zeta))-f(\zeta, y(\zeta))| d \zeta\right. \\
& +\frac{2 \eta}{\left(2-\xi^{2}\right) \Gamma(\kappa)} \int_{0}^{1}|1-\zeta|^{\kappa-1}|f(\zeta, w(\zeta))-f(\zeta, y(\zeta))| d \zeta \\
& \left.\left.+\frac{2 \eta}{\left(2-\xi^{2}\right) \Gamma(\kappa)} \int_{0}^{\xi}\left|\int_{0}^{\zeta}\right| \zeta-\left.n\right|^{\kappa-1}|f(n, w(n))-f(n, y(n))| d n \right\rvert\, d \zeta\right]^{2} \\
& +\frac{1}{\Gamma(\kappa)} \int_{0}^{1}|(\eta-\zeta)|^{\kappa-1}|f(\zeta, w(\zeta))| d \zeta \\
& +\frac{2 \eta}{\left(2-\xi^{2}\right) \Gamma(\kappa)} \int_{0}^{1}|(1-\zeta)|^{\kappa-1}|f(\zeta, w(\zeta))| d \zeta \\
& +\frac{2 \eta}{\left(2-\xi^{2}\right) \Gamma(\kappa)} \int_{0}^{\xi}\left(\int_{0}^{\zeta}|(\zeta-n)|^{\kappa-1}|f(n, w(n))| d n\right) d \zeta
\end{aligned}
$$

$$
\begin{aligned}
\leq & \left(\frac{\Gamma(\kappa+1)}{5}\right)^{2} \frac{k}{2}\|w-y\|_{\infty}^{2}\left[\operatorname { s u p } \left(\int_{0}^{1}|\eta-\zeta|^{\kappa-1} d \zeta+\frac{2 \eta}{\left(2-\xi^{2}\right) \Gamma(\kappa)} \int_{0}^{1}|1-\zeta|^{\kappa-1} d \zeta\right.\right. \\
& \left.\left.+\frac{2 \eta}{\left(2-\xi^{2}\right) \Gamma(\kappa)} \int_{0}^{\xi}\left(\int_{0}^{\zeta}|\zeta-n|^{\kappa-1} d n\right) d \zeta\right)\right]^{2} \\
& +\frac{\Gamma(\kappa+1)}{5} \frac{k}{2}\|w-y\|_{\infty}\left[\operatorname { s u p } \left(\int_{0}^{1}|\eta-\zeta|^{\kappa-1} d \zeta+\frac{2 \eta}{\left(2-\xi^{2}\right) \Gamma(\kappa)} \int_{0}^{1}|1-\zeta|^{\kappa-1} d \zeta\right.\right. \\
& \left.\left.+\frac{2 \eta}{\left(2-\xi^{2}\right) \Gamma(\kappa)} \int_{0}^{\xi}\left(\int_{0}^{\zeta}|\zeta-n|^{\kappa-1} d n\right) d \zeta\right)\right] \leq k\left(\|w-y\|_{\infty}^{2}+\|w-y\|_{\infty}\right)
\end{aligned}
$$

for each $w, y \in C(J)$ with $\varphi(w(\eta), y(\eta)) \geq 0, \eta \in J$, and

$$
\left\|(T w-T y)^{2}\right\|_{\infty}+\|T w\|_{\infty} \leq k q_{b}(w, y) .
$$

Suppose $\alpha: C(J) \times C(J) \rightarrow[0, \infty)$ is defined by

$$
\alpha(w, y)= \begin{cases}1, & \varphi(w(\eta), y(\eta)) \geq 0, \eta \in J \\ 0, & \text { else }\end{cases}
$$

then

$$
\alpha(w, y) q_{b}(T w, T y) \leq q_{b}(T w, T y) \leq k q_{b}(w, y),
$$

for $w, y \in C(J)$. By Theorem 2.10, the result is obtained by the process of the proof of Theorem 2.11.

Here, we find a positive solution for

$$
\begin{equation*}
\frac{{ }^{c} D^{\kappa}}{D \eta} w(\eta)=f(\eta, w(\eta)), \quad 0<\kappa \leq 1, \eta \in J \tag{20}
\end{equation*}
$$

where

$$
w(0)+\int_{0}^{1} w(\zeta) d \zeta=w(1)
$$

We note that ${ }^{c} D^{\nu}$ is the Caputo derivative of order ν. We consider the Banach space of continuous functions on J endowed with the sup norm. We have the following lemma.

Lemma 2.18 ([7]) Let $0<\kappa \leq 1$ and $h \in C([0, T] \times X, \mathbb{R})$ be given. Then the equation

$$
{ }^{c} D^{\kappa} w(\eta)=f(\eta, w(\eta)) \quad(\eta \in[0, T], T \geq 1)
$$

with

$$
w(0)+\int_{0}^{T} w(\zeta) d \zeta=w(T)
$$

has a unique solution given by

$$
w(\eta)=\int_{0}^{T} G(\eta, \zeta) f(\zeta, w(\zeta)) d \zeta
$$

where $G(\eta, \zeta)$ is defined by

$$
G(\eta, \zeta)= \begin{cases}\frac{-(T-\zeta)^{\kappa}+\kappa T(\eta-\zeta)^{\kappa-1}}{T \Gamma(\kappa+1)}+\frac{(T-\zeta)^{\kappa-1}}{T \Gamma(\kappa)}, & 0 \leq \zeta<\eta \tag{21}\\ \frac{-(T-\zeta)^{k}}{T \Gamma(\kappa+1)}+\frac{(T-\zeta)^{\kappa-1}}{T \Gamma(\kappa)}, & \eta \leq \zeta<T\end{cases}
$$

From Lemma 2.18 and Theorem 2.11, we get the following conclusion.

Corollary 2.19 Assume

(i) There exists $k \in\left[0, \frac{1}{2}\right)$ such that $|f(\eta, w(\eta))| \leq \frac{51 k}{80}\|w\|_{\infty}$, and

$$
|f(\eta, w(\eta))-f(\eta, y(\eta))| \leq \frac{51 k}{80}\left\|(w-y)^{2}\right\|_{\infty}
$$

$$
\text { for } w, y \in C(J), \eta \in J .
$$

Suppose that conditions (ii)-(iv) from Theorem 2.11 are met, where $G(\eta, \zeta)$ is given in (21), then the following problem has at least one solution:

$$
{ }^{c} D^{\frac{1}{2}} w(\eta)=f(\eta, w(\eta)) \quad(\eta \in[0,1]), \quad w(0)+\int_{0}^{1} w(\zeta) d \zeta=w(1)
$$

Example 2.20 Let $X=C(J)$ and $q_{b}: X \times X \rightarrow[0, \infty)$ be given by

$$
q_{b}(w, y)= \begin{cases}\left\|(w-y)^{2}\right\|_{\infty}+\|w\|_{\infty}, & w, y \in X, w \neq y \tag{22}\\ 0, & \text { otherwise }\end{cases}
$$

Then (X, d) is a complete b - $Q M S$ with $s=2$, but is not a b-metric space.
Let $\theta(w, y)=w^{3} y^{3}, w_{n}(\eta)=\frac{\eta}{n^{2}+1}$. We consider $f: J \times[0,5] \rightarrow[0,5]$ and the periodic boundary value problem

$$
\begin{equation*}
{ }^{c} D^{\frac{1}{2}} w(\eta)=f(\eta, w(\eta)) \quad(\eta \in J) \tag{23}
\end{equation*}
$$

with

$$
w(0)=0, \quad w(1)=\int_{0}^{\xi} w(\zeta) d \zeta \quad(0<\xi<1)
$$

and suppose there exists $k \in\left[0, \frac{1}{2}\right)$ such that f satisfies in the following condition:

$$
|f(\eta, w(\eta))| \leq \frac{51 k}{80}\|w\|_{\infty}, \quad|f(\eta, w(\eta))-f(\eta, y(\eta))| \leq \frac{51 k}{80}\left\|(w-y)^{2}\right\|_{\infty}
$$

when $\eta \in J$ and $w(\eta), y(\eta) \in[0,5]$. If $w_{0}(\eta)=\eta$, then

$$
\theta\left(w_{0}(\eta), \int_{0}^{1} G(\eta, \zeta) f\left(\zeta, y_{0}(\zeta)\right) d \zeta\right) \geq 0
$$

for all $\eta \in J$, also $\theta(w(\eta), y(\eta))=w(\eta)^{3} y(\eta)^{3} \geq 0$ implies that

$$
\theta\left(\int_{0}^{1} G(\eta, \zeta) f(\zeta, w(\zeta)) d \zeta, \int_{0}^{1} G(\eta, \zeta) f(\zeta, y(\zeta)) d \zeta\right) \geq 0
$$

It is obvious that conditions (iii) and (iv) in Corollary 2.19 hold. Hence, from Corollary 2.19 problem (23) has at least one solution.

Acknowledgements

Not applicable.

Funding

Not applicable

Competing interests

The authors declare that they have no competing interests.

Authors' contributions
All authors read and approved the final manuscript.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Received: 29 March 2019 Accepted: 2 July 2019 Published online: 12 July 2019

References

1. Afshari, H., Aydi, H., Karapinar, E.: On generalized $\alpha-\psi$-Geraghty contractions on b-metric spaces. Georgian Math. J. (2018, in press). https://doi.org/10.1515/gmj-2017-0063
2. Afshari, H., Marasi, H.R., Aydi, H.: Existence and uniqueness of positive solutions for boundary value problems of fractional differential equations. Filomat 31, 2675-2682 (2017)
3. Afshari, H., Kalantari, S., Aydi, H.:. Fixed point results for generalized $\alpha-\psi$-Suzuki-contractions in quasi b-metric-like spaces. Asian-Eur. J. Math. 11(1), article 1850012 (2018)
4. Afshari, H., Kalantari, S., Baleanu, D.: Solution of fractional differential equations via $\alpha-\psi$-Geraghty type mappings Adv. Differ. Equ. 2018, 347 (2018)
5. Amini Harandi, A.: Metric-like spaces, partial metric spaces and fixed points. Fixed Point Theory Appl. 2012, 204 (2012)
6. Baleanu, D., Rezapour, S., Mohammadi, H.: Some existence results on nonlinear fractional differential equations. Philos. Trans. R. Soc. Lond. A 371, 20120144 (2013)
7. Benchohra, M., Ouaar, F.: Existence results for nonlinear fractional differential equations with integral boundary conditions. Bull. Math. Anal. Appl. 4, 7-15 (2010)
8. Birhani, O.T., Chandok, S., Dedovic, N., Radenovic, S.: A note on some recent results of the conformable derivative. Adv. Theory Nonlinear Anal. Appl. 3(1), 11-17 (2019)
9. Faraji, H., Savic, D., Radenovic, S.: Fixed point theorems for Geraghty contraction type mappings in b-metric spaces and applications. Axioms 8, 34 (2019)
10. Hussain, N., Vetro, C., Vetro, F.: Fixed point results for α-implicit contractions with application to integral equations. Nonlinear Anal., Model. Control 21(3), 362-378 (2016)
11. Klin-eam, C., Suanoom, C.: Dislocated quasi-b-metric spaces and fixed point theorems for cyclic contractions. Fixed Point Theory Appl. (2015). https://doi.org/10.1186/s13663-015-0325-2
12. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies. Elsevier, Amsterdam (2006)
13. Liang, S., Zhang, J.: Positive solutions for boundary value problems of nonlinear fractional differential equation. Nonlinear Anal. 71, 5545-5550 (2009)
14. Nashine, H.K., Agarwal, R.P., Gupta, A.: Solutions of first-order periodic boundary value problem in generalized metric spaces. Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 23, 345-366 (2016)
15. Nashine, H.K., Gupta, A., Agarwal, R.P.: Positive solutions of nonlinear fractional differential equations in non-zero self-distance spaces. Georgian Math. J. 24(4), 569-589 (2017)
16. Nashine, H.K., Kadelburg, Z.: Existence of solutions of cantilever beam problem via ($\alpha-\beta$-FG)-contractions in b-metric-like spaces. Filomat 31(11), 3057-3074 (2017)
17. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
18. Padhan, S.K., Jagannadha, G.V.V., Nashine Rao, H.K., Agarwal, R.P.: Some fixed point results for $\left(\beta-\psi_{1}-\psi_{2}\right)$-contractive conditions in ordered b-metric-like spaces. Filomat 31(14), 4587-4612 (2017)
19. Samet, B., Aydi, H.: Lyapunov-type inequalities for an anti-periodic fractional boundary value problem involving ψ-Caputo fractional derivative. J. Inequal. Appl. 2018, 286 (2018)
20. Samet, B., Aydi, H.: On some inequalities involving Caputo fractional derivatives and applications to special means of real numbers. Mathematics 6(10), 193 (2018)
21. Samet, B., Vetro, C., Vetro, P.: Fixed point theorems for α - ψ-contractive type mappings. Nonlinear Anal. 75, 2154-2165 (2012)
22. Wang, H., Zhang, L.: The solution for a class of sum operator equation and its application to fractional differential equation boundary value problems. Bound. Value Probl. 2015, 203 (2015)
23. Graef, J.R., Kong, Q., Kong, L., Wang, M.: On a fractional boundary value problem with a perturbation term. J. Appl. Anal. Comput. 7, 57-66 (2017)
24. Zoto, K., Rhoades, B.E., Radenovic, S.: Some generalizations for $(\alpha-\psi, \phi)$-contractions in b-metric-like spaces and an application. Fixed Point Theory Appl. 2017, 26 (2017)

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

