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Abstract
In this paper, our aim is to investigate the region stability of stochastic discrete
time-delay systems. Firstly, region stabilities of systems are defined by a spectrum
operator. Secondly, with the aid of linear matrix inequality, some equivalent
conditions and related results for region stabilities of systems are obtained. Finally, the
relation between region stabilities and the convergence speed of the trajectories of
systems is given.
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1 Introduction
Stability is one of essential concepts in dynamical system theory, which has been consid-
ered by the researchers in many fields, such as [1–8], and [9–12]. For a linear system with-
out delays, as is well known, the stability is related to the system matrix root-clustering in
subregions of the complex plane. That is, the stability of systems has a close relation with
the spectrum placement of the system matrix. For example, the further left the spectrum
set of the considered system is located, the faster the system response rate is.

Mean square stability has become a hot issue, which has many important applications in
system analysis and designs. Some equivalent conditions for mean square stability of linear
stochastic systems have been obtained in terms of generalized algebraic Riccati equation
(see [13–17]), or linear matrix inequality (LMI) (see [18–21] and [22–25]), or spectra of
some operators (see [26–28]). The spectrum technique is very powerful in system analysis
and design, which began with [26] for a stochastic system.

Region stability considered in this paper is related with the mean square stability. Re-
gion stability problem is to check whether the spectrum set of deterministic or stochas-
tic systems lies in a given region of the complex plane, which has become a popular re-
search focus in the past decades (see [29–33], and the references therein). Compared with
deterministic systems, stochastic systems can describe the complexity of practical prob-
lems more accurately. For stochastic systems, a special case of region-stability and region-
stabilization, called respectively interval stability and interval stabilization, was studied,
and a sufficient condition was given for the interval stabilization of general linear stochas-
tic systems with state and control dependent noises in [29]. In [30], the authors further
defined and discussed a class of relative stability and stabilization, which is a more special
case of region-stability and region-stabilization of linear stochastic systems. The objec-
tive of the present work is to make a further investigation in the region stability of linear
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stochastic discrete systems. New results concerning the region stability of linear stochas-
tic discrete systems are developed. By means of LMI, some necessary and sufficient con-
ditions are presented for region-stability with generalized LMI regions. To the best of our
knowledge, there were no similar results reported for such dynamical systems up to now.

This paper is organized as follows: In Sect. 2, we introduce some LMI regions and gen-
eralized LMI regions. In Sect. 3, we give some definitions of region stability and obtain
some equivalent conditions and related results for the region stability of stochastic dis-
crete systems with delays.

For convenience, we adopt the following traditional notations: Sn is the set of all sym-
metric matrices, whose components may be complex;Rn×m is the set of all n×m matrices,
whose components are real; A′ (ker(A)) denotes the transpose (kernel space) of the matrix
A; A ≥ 0 (A > 0) is a positive semidefinite (positive definite) symmetric matrix; I is the
identity matrix; σ (L) is the spectral set of the operator or matrix L; N0 = {0, 1, 2, . . .}. Here
⊗ denotes Kronecker product operation of matrices (see [34] for details); Rn is the set of
all n-dimensional vectors, whose components are real. For x ∈R

n, ‖x‖ = 2√x′x.

2 LMI regions
In this paper, we shall discuss the stability of time-delay systems in generalized LMI re-
gions. First of all, we introduce some definitions and related examples in LMI regions and
generalized LMI regions.

Definition 2.1 ([35]) A region D in the complex plane is called an LMI region if there
exist symmetric matrices H1 and H2 such that

D =
{

z ∈ C|H1 + zH2 + zH ′
2 < 0

}
. (1)

Here we give two examples of LMI region.

Example 2.1 In the complex plane, the circle region D(q, r), which has center (q, 0) and
radius r, is an LMI region, where q and r satisfy |q| + r < 1.

Example 2.2 If r ∈ (0, 1], then the fan-shaped region

D(r, θ ) =
{

z = x + jy|x, y ∈R, tan θ < –
|y|
x

, |z| =
√

x2 + y2 < r
}

(2)

is an LMI region.

Different from an LMI region, we introduce another region, which is defined as follows.

Definition 2.2 ([33]) For a symmetric matrix

R =

(
R1 R2

R′
2 R3

)

, (3)

the region

DR =
{

z ∈ C|R1 + zR2 + zR′
2 + zzR3 < 0

}
(4)

in the complex plane is called a generalized LMI region.
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Example 2.3 The ring-shaped region D(0,α,β), 0 ≤ α < β ≤ 1 is a generalized LMI region.
Indeed, the matrix in (3) of Definition 2.2 can be written as

R =

⎛

⎜⎜⎜
⎝

–β2 0 0 0
0 –α2 0 0
0 0 1 0
0 0 0 –1

⎞

⎟⎟⎟
⎠

.

Remark 2.1 In fact, let R3 = 0 in the matrix of (3). Then the region in (4) becomes the
region in (1). That is, LMI region is regarded as a special case of a generalized region. The
details about the LMI region and generalized region are found in [35].

3 Criteria of region-stability
In this section, we shall investigate the region stability of a kind of linear stochastic discrete
systems with time-delays:

⎧
⎨

⎩
x(t + 1) =

∑m
j=0[Fjx(t – j) + Gjx(t – j)ω(t)],

x(k) = ϕ(k) ∈R
n, k = 0, –1, . . . , –m, t ∈N0,

(5)

where x(t) ∈ R
n is a column vector, Fj, Gj ∈ R

n×n, j = 0, 1, . . . , m are constant coefficient
matrices, ϕ(k) ∈R

n, k ∈ [–m, 0] is a deterministic initial condition, {w(t), t ∈N0} is a scalar
Brownian motion defined on a complete probability space (Ω ,F ,Ft ,μ) with E[w(t)] = 0
and E[w(t)w(s)] = δs,t , where δs,t is the Kronecker delta with Ft = σ {w(s)|0 ≤ s ≤ t}. For
briefness, system (5) is denoted by [

∑m
j=0 Fj,

∑m
j=0 Gj].

To study the stability of system (5), first of all, we define two vectors x(t) and x(0) as
follows:

x(t) =
[
x′(t), x′(t – 1), . . . , x′(t – m)

]′ ∈R
n(m+1),

x(0) =
[
ϕ′(0),ϕ′(–1), . . . ,ϕ′(–m)

]′ = x0 ∈R
n(m+1).

So system (5) can become the following equivalent stochastic system:

⎧
⎨

⎩
x(t + 1) = Fx(t) + Gx(t)ω(t),

x(0) = x0, t ∈N0,
(6)

where

F =

⎛

⎜⎜⎜⎜
⎝

F0 F1 . . . Fm–1 Fm

I 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0

⎞

⎟⎟⎟⎟
⎠

, G =

⎛

⎜⎜⎜⎜
⎝

G0 G1 . . . Gm–1 Gm

0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0

⎞

⎟⎟⎟⎟
⎠

.

Let X(t) = E[x(t)x′(t)], and suppose X(t) satisfies

X(t + 1) = FX(t)F ′ + GX(t)G′.
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Now we define a general Lyapunov operator as follows:

LF ,G : X(t) ∈ S
n(m+1) → FX(t)F ′ + GX(t)G′ ∈ S

n(m+1). (7)

Now we give some definitions of region-stability of stochastic time-delay systems by the
spectrum operator σ (LF ,G).

Definition 3.1 System (5) is DR-stable, if σ (LF ,G) ⊂ DR ⊂ D(0, 1).

Definition 3.2 System (5) is D(q, r)-stable, if σ (LF ,G) ⊂ D(q, r) ⊂ D(0, 1).

Definition 3.3 System (5) is D(r, θ )-stable, if σ (LF ,G) ⊂ D(r, θ ) ⊂ D(0, 1).

Definition 3.4 System (5) is D(0,α,β)-stable, if σ (LF ,G) ⊂ D(0,α,β) ⊂ D(0, 1).

Now we give some equivalent conditions of these region stabilities.

Theorem 3.1 The time-delay system (5) is DR-stable if and only if there exists a positive
matrix P > 0 such that

R1 ⊗ P + R2 ⊗ (
PΘ

(
H(n, m), F , G

))
+ R′

2 ⊗ (
Θ

(
H(n, m), F , G

)′P
)

+ R3 ⊗ (Θ
(
H(n, m), F , G

)′P
(
Θ

(
H(n, m), F , G

))
< 0,

where Θ(H(n, m), F , G) = [H(n, m)′H(n, m)]–1H(n, m)′[F ⊗ F + G ⊗ G]H(n, m).

Proof Let X(t) = E[x(t)x′(t)]. Then system (5) can be rewritten as a stochastic system

X(t + 1) = FX(t)F ′ + GX(t)G′. (8)

With the knowledge of Kronecker matrix product, system (8) becomes

−→
X (t + 1) = F̂

−→
X (t), (9)

where
−→
X (t) = [X1,1(t), . . . , X1,n(t), . . . , X1,n(m+1)(t), . . . , Xn(m+1),n(m+1)(t)]′ ∈ R

n2(m+1)2 and F̂ =
F ⊗F + G⊗G. By the theory of H representation method in [36], there exists a full column

rank matrix H(n, m) ∈ R
n2(m+1)2× n(m+1)[n(m+1)+1]

2 such that
−→
X = H(n, m)X̃, X̃ ∈R

n(m+1)[n(m+1)+1]
2 ,

so system (9) is equivalent to the following discrete system:

X̃(t + 1) = Θ
(
H(n, m), F , G

)
X̃(t),

where Θ(H(n, m), F , G) = [H(n, m)′H(n, m)]–1H(n, m)′[F ⊗ F + G ⊗ G]H(n, m). By Theo-
rem 1 in [33], we immediately obtain the result. �

From Eqs. (8) and (9) in Theorem 3.1 and Theorem 1 in [27], the relation between the
spectrum of operator LF ,G and matrix Θ(H(n, m), F , G) is obtained as follows.

Corollary 3.1 σ (LF ,G) = σ (Θ(H(n, m), F , G)).
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Remark 3.1 From Theorem 3.1, we know that the time-delay system (5) is DR-stable if and
only if a certain LMI is feasible.

Similar to Theorem 3.1, it is easy to draw some results as follows.

Theorem 3.2 System (5) is D(q, r)-stable if and only if there exists a positive matrix P > 0
such that the following inequality holds:

(
–r –q
–q –r

)

⊗ P +

(
0 1
0 0

)

⊗ (
PΘ

(
H(n, m), F , G

))

+

(
0 1
0 0

)′
⊗ (

Θ
(
H(n, m), F , G

)′P
)

< 0.

Theorem 3.3 System (5) is D(r, θ )-stable if and only if there exists a positive matrix P > 0
satisfying the inequality in Theorem 3.2 and the following inequality:

(
M N
N ′ M

)

< 0,

where

M = sin θ
(
Θ

(
H(n, m), F , G

)
P + PΘ

(
H(n, m), F , G

)′),

N = cos θ
(
Θ

(
H(n, m), F , G

)
P – PΘ

(
H(n, m), F , G

)′).

Theorem 3.4 System (5) is D(0,α,β)-stable if and only if there exists a positive matrix
P > 0 satisfying

(
–β2 0

0 α2

)

⊗ P +

(
1 0
0 –1

)

⊗ (
Θ

(
H(n, m), F , G

))′PΘ
(
H(n, m), F , G

)
< 0.

Using MATLAB, it is quick to check the above criterion of DR-stability with LMI. Now
we give an example as follows.

Example 3.1 In the time-delay system [
∑m

j=0 Fj,
∑m

j=0 Gj], let

F0 = –
1
4

, F1 =
1
8

, G0 =
1

16
, G1 =

1
32

.

Then

F =

(
– 1

4
1
8

1 0

)

, G =

(
– 1

16
1

32
0 0

)

.

Through a simple calculation, we can obtain that

H(1, 1) =

⎛

⎜⎜⎜
⎝

1 0 0
0 1 0
0 1 0
0 0 1

⎞

⎟
⎟⎟
⎠

, Θ
(
H(1, 1), F , G

)
=

⎛

⎜
⎝

0.0664 –0.0664 0.0166
–0.2500 0.1250 0
1.0000 0 0

⎞

⎟
⎠ .
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Given q = 1
4 , r = 1

6 , using MATLAB, we cannot find a feasible solution of the inequality in
Theorem 3.2. That is, system (5) is not D( 1

4 , 1
6 )-stable.

Choosing q = 1
4 , r = 1

2 and using MATLAB, we can obtain that there exists a positive
region matrix

P =

⎛

⎜
⎝

29.7165 0.8568 0.0985
0.8568 16.4863 2.7158
0.0985 2.7158 3.2825

⎞

⎟
⎠ > 0

such that

(
– 1

6 P – 1
4 P + PΘ(H(1, 1), F , G)

– 1
4 P + Θ(H(1, 1), F , G)′P – 1

6 P

)

< 0.

By Theorem 3.2, the system is D( 1
4 , 1

2 )-stable.
We use the LMI toolbox of Matlab and commands for obtaining P as follows:

H=[1 0 0;0 1 0;0 1 0;0 0 1];

F=[-1/4 1/8;1 0];

G=[-1/16 1/32;0 0];

T1=H.’*H;

T3=[kron(F,F)+kron(G,G)]*H;

T=inv(T1)*H.’*T3;

E=[1 0 0;0 1 0;0 0 1];

q=1/4;

A2=-q*E+T;

r=1/2;

B1=-r*E;

setlmis([])

P=lmivar(1,[3,1])

lmiterm([1 1 1 P],B1,1)

lmiterm([1 1 2 P],1,A2)

lmiterm([1 2 2 P],B1,1)

lmiterm([-2 1 1 P],1,1)

lmisys=getlmis;

[tmin,xfeas]=feasp(lmisys)

P=dec2mat(lmisys,xfeas,P)

eig(P)

Remark 3.2 Theorems 3.1–3.4 give a kind of characterization for region stability. But the
relation between region stabilities and the convergence speed of the trajectories of a sys-
tem need to be further investigated, which is an interesting and practical problem.

Theorem 3.5 System (5) is D(0,α,β)-stable if and only if system (1) is such for arbitrary
sufficiently small real number ε > 0, the convergence speed of the system [

∑m
j=0 Fj,

∑m
j=0 Gj]

is slower than O((α + ε)t), but is faster than O((β – ε)t). That is, there exist two constants
C1 > 0, C2 > 0 such that

C2‖x0‖2(α + ε)t ≤ E
∥∥x(t)

∥∥2 ≤ C1‖x0‖2(β – ε)t .
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Proof (Necessity) Assume that system (5) is D(0,α,β)-stable. For λi ∈ σ (LF ,G), i = 1, 2, . . . ,
n(m+1)[n(m+1)+1]

2 , without loss of generality, let

max |λi| = |λ1| < β , min |λi| = |λ2| > α.

And let X(t) = E[x(t)x′(t)], where x(t) = [x′(t), x′(t – 1), . . . , x′(t – m)]′; x(t) is the or-
bit of system (5) satisfying the initial condition x(k) = ϕ(k), k = 0, –1, . . . , –m (i.e., x0 =
[ϕ′(0),ϕ′(–1), . . . ,ϕ′(–m)]′). Using the same proof process as that of Theorem 2.1 in [27],
system (5) is equivalent to

X(t + 1) = LF ,G
(
X(t)

)
. (10)

By the theory of H representation method in [36], the initial problem of system (10) is
equivalent to the initial problem of the following discrete system:

⎧
⎨

⎩
X̃(t + 1) = Θ(H(n, m), F , G)X̃(t),

X̃(0) = [H(n, m)′H(n, m)]–1H(n, m)′
−→
X (0).

(11)

By the stability theory of linear deterministic discrete system, there exist two positive real
constants c0 and c0 such that the following inequality holds:

∥∥X̃(t)
∥∥ ≤ c0

∥∥X̃(0)
∥∥
( r1∑

i=1

ti–1

)

|λ1|t ,

∥∥X̃(t)
∥∥ ≥ c0∥∥X̃(0)

∥∥
( r2∑

i=1

ti–1

)

|λ2|t ,

here r1 and r2 are respectively the multiplicities of the characteristic roots λ1 and λ2. For
|λ1| < β , |λ2| > α, by the denseness of real numbers, there exists a sufficiently small number
ε > 0, such that |λ1| – β + ε < 0, |λ2| – α – ε > 0, and so, by the results in [29], we can obtain
the following inequality:

E‖x‖2 ≤ √
n(m + 1)‖X̃‖, ‖X̃‖ ≤

√
n(m + 1) + 1

2
E‖x‖2.

So

E
∥∥x(t)

∥∥2 ≤ c1‖x0‖2(β – ε)t , E
∥∥x(t)

∥∥2 ≥ c2‖x0‖2(α + ε)t ,

where

c1 = c0

√
n(m + 1)[n(m + 1) + 1]

2
sup

t∈[0,∞)

( r1∑

i=1

ti–1

)( |λ1|
β – ε

)t

< ∞,

c2 = c0

√
2

n(m + 1)[n(m + 1) + 1]
.
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Hence, from the above inequality, we can obtain that there exist two constants C1 > 0,
C2 > 0 such that

E
∥∥x(t)

∥∥2 ≤ C1‖x0‖2(β – ε)t , E
∥∥x(t)

∥∥2 ≥ C2‖x0‖2(α + ε)t .

(Sufficiency) Suppose that system (5) is (α,β) region stable. For arbitrary real number
ε > 0, the convergence speed of the system [

∑m
j=0 Fj,

∑m
j=0 Gj] is slower than O((α + ε)t),

but is faster than O((β – ε)t). That is, there exist two constants C1 > 0, C2 > 0 such that

C2‖x0‖2(α + ε)t ≤ E
∥∥x(t)

∥∥2 ≤ C1‖x0‖2(β – ε)t .

Note that x(t) = [x′(t), x′(t – 1), . . . , x′(t – m)]′, and it is easy to obtain that there exist two
numbers c1, c2 satisfying

c2‖x0‖2(α + ε)t ≤ E
∥∥x(t)

∥∥2 ≤ c1‖x0‖2(β – ε)t . (12)

Note that x(t) is the trajectory of system (6), so from (12), we can obtain σ (LF ,G) ⊂
D(0,α,β) ⊂ D(0, 1). The proof is completed. �

Corollary 3.2 If system (5) is DR-stable then there exists a constant C > 0 such that
limt→+∞ E‖x(t)‖2 = 0.

Corollary 3.3 If system (5) is D(q, r)-stable then there exist two constants C1 > 0, C2 > 0
such that C2‖x0‖2(‖q‖ + ε)t ≤ E‖x(t)‖2 ≤ C1‖x0‖2((‖q‖ + r) – ε)t .

Corollary 3.4 If system (5) is D(r, θ )-stable then there exists a constant C > 0 such that
E‖x(t)‖2 ≤ C‖x0‖2(r – ε)t .

Remark 3.3 From Theorem 3.5 and Corollaries 3.2–3.4, region stabilities defined in this
paper imply mean square stability of system (5).

4 Conclusion
In this paper, we investigated the region stability of discrete stochastic time-delay sys-
tems. First of all, we defined the notions of region-stability of discrete stochastic time-
delay systems. We then gave some equivalent conditions for the region stabilization of
linear stochastic discrete time-delay systems. We only considered the stability of discrete
stochastic time-delay systems on some LMI regions. But the stability of discrete stochastic
time-delay systems on general regions is still a challenging problem.
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