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1 Introduction

There are numerous scientific, engineering, and technological processes that can be math-
ematically modeled by linear and nonlinear Boussinesq equations such as model flows
of water in unconfined aquifers. The fractional Boussinesq equations are appropriate for
discussing the water propagation through heterogeneous porous media. Many powerful
methods have been modified and developed to obtain numerical and analytical solutions
of fractional linear differential equations [1]. In [2] conformable fractional derivative was
used to obtain the exact analytical solutions for the time fractional variant Boussinesq
equations. In [3] the authors discussed the one- and two-dimensional heat diffusion mod-
els involving fractional order derivative in time and also considered the fractional orders
that include Caputo’s and the new fractional conformable derivatives. The conformable
Laplace transform was initiated in [4] and studied and modified in [5]. The conformable
Laplace transform is not only useful to solve local conformable fractional dynamical sys-
tems but also it can be employed to solve systems within nonlocal conformable fractional
derivatives that were defined in [6] and used in [7]. Very recently, the authors in [8] de-
fined and studied a more general version of generalized Laplace transforms with its cor-
responding convolution theory, which can be applied to solve systems of generalized frac-
tional derivatives with a kernel depending on a certain function g(¢). In case g(t) = %
we can treat the fractional derivatives in [6, 7], and if g(¢) = % we can treat the so-called
Katugampola fractional derivative [9]. Fractional double Laplace transform and its prop-
erties [10] and the fractional variational principles beside the semi-inverse technique are
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applied to derive the space-time fractional Boussinesq equation [11]. The space-time frac-
tional Boussinesq equations in Caputo sense derivatives are studied by using the homo-
topy perturbation method [12]. The authors in [13] discussed the nonlinear conformable
problem by using the exp(—¢(¢))-expansion and modified Kudryashov methods. In the
present study, the new conformable fractional double Laplace transform decomposition
method is recommended for developing the solutions of singular Boussinesq equation. In
[14] the authors introduced a new definition of fractional calculus, which is called con-
formable fractional derivative of order «, 0 < & < 1, as follows:

d° _ flt+et™) - f(2)

(¢) = lim

— , t>0,0<a<1.
dte €e—>0 €

Here we briefly recall some definitions from the conformable Laplace transform which are
used further in this work.

Definition 1 ([4, 15, 16]) Let f : [a,00) — R and 0 < B < 1. Then the fractional Laplace
transform of order f§ is defined by

) [ G)a
0

Definition 2 ([17]) Let u(x, t) be a piecewise continuous function on the interval [0, 00) x
[0, 00) of exponential order, consider for some a,b € R supx, ¢ > 0, %. Under these

a
ax
e @

conditions a conformable double Laplace transform is defined by

o« b [0 e b (x P
L (f( 55 ) = Faplos) = / / P T (D) drdy,  (12)
a B 0 0 a B

where the symbol L;‘C‘Lf indicates the conformable double Laplace transform and p,s € C,
O<a,B<1.

2 Properties of conformable fractional Laplace transform

The main objective of this section is to study the conformable double Laplace transform
using three examples. In addition, we discuss the existence condition of the conformable
double Laplace transform.

I
ﬁ): L(a"—+bF)

Example 1 Conformable double Laplace transform of the function f' (%, % e«

is denoted by

B
(p + ai)(s + bi)
(p — aui)(s — bi)(p + ai)(s + bi)
_ ps—ab+(as+pb)i
(P + au?)(s> + b2v?)’

Hence,

x P ps—ab
ot AR | P il R
: t[“’s(”a +bﬁ>} @ + )2+ 1)
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and

x* P as + pb
L“Lﬂ —+b— )|z
f [S“‘(“ o« 7B )} 0 + @)+ b?)
Example 2 ([17]) By applying the conformable double Laplace transform for the function
FE L) = (£2)", we have

o tﬂ n 1 2
(7))
where 7 is a positive integer. If the conditions of a(> —1) and b(> —1) are real numbers,
then

mﬂ[( )(fﬁ) ]M

o 13 pzz+lsb+1

then it follows from Eq. (1.2) that

H ﬁ
st (5 () ][t (2] (5) e vae
o a4 0 1 B b
e (€[ ()
0 0
o h

o B
Let p*- = - and s = &, we get

B © /1 2\ © Br/145\%1

[ ) (5) |-G s [Ter (55 e
o B 0o \puo r* Jo s B) st
11 [0\ (gP\ e

- — — ) e we Fdrd

g, [, (5) (5) e ara

I'a+1)r'(b+1)
pa+asb+/5

=%

’

where p,s € C, 0 < @, B < 1, gamma functions of a and b are given by

00 4 [y a-1 00 B q" b-1
I"(a)]"(b):/ e @ (—) dx/ e_?<—) dt, a>0,b>0.
0 o 0 B

Example 3 The conformable double Laplace transform for the function
o tﬂ o tﬂ o tﬂ
fA==)=H(E)eH(Z ) nEn
a B o B a B
is as follows:
x¥ a 4B
3% [H( ) ®H< ) I In —]
B a B

x“ XY ;‘3
/ / e ln—ln 5 P15 dt dx, (2.1)

o
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where H (%a, %) =H (%) QH (%) is a Heaviside function and the symbol ® indicates the
tensor product, see [18]. By substituting % =p’;—a and % = s% in Eq. (2.1), we have

arb[ (™ AT f)}
() on(§ o

00 B [oe) o o
R O (A ) R L

= ITS(V +Inp)(y +Ins), (2.2)

where the symbol y =0.5772 - ... is Euler’s constant.

Existence condition for the conformable double Laplace transform

Iff ( ) isan exponentlal order aandbas = — oo, F — 00, if there exists a constant
K >0, then for all = ? >X and & ?
x P &t
e,
a B
one can get

x® P i x* P
f(—,—)zO(e““+bﬂ) as — — 00, — —> 00,
o o B

=00 & >0
i+ P
F—ooo o0
x¥ 2 b i x¢
where p > a and n > a. The function f (%, = ) does not grow faster than Ke” T as =

B
OO,?—)OO.

Theorem 1 The function f (’;—a, %) is defined on (0,X) and (0, T) and of exponential or-

x“ tﬁ o
der ¢ "F  then the conformable Laplace transform of f(°, %) exists for all R(p) > u,
NR(s) > n.

Proof From Eq. (1.2), we obtain

|Fa,s(ps|—‘/ / s ?ﬁ (x_a %)tﬁl"‘ldtdx

R ) W

" - a)(s ) @4)
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For N(p) > u, R(s) > n, from Eq. (2.4), we get

pli)H[}O|Fa,ﬁ(p,s)‘ =0 or lim Fop(p,s)=0. 0
§—>00 5—>00

Theorem 2 Iff(% %) is aperiodicfunction of the periods ). > 0 and (1 > 0 such thatf(’ﬁ +
ka tﬁ ”ﬁ) =f (% ﬁ) for all "— £ € [0,00) if conformable fractional double Laplace of

)

LaLﬂ (fC xa tﬁ = Fo 5(p, s) exists, then

2 )Lﬂ

ﬂ o
f fO —PT—S (xa , %)tﬁ—lxa—l dt dx

Fa,ﬁ(P,S) = o P
(1-e?e %)

Proof By using the definition of conformable fractional double Laplace transform, we have

oo o0 B ﬁ_ ﬁ xa
Fu5(0,3) :/ / et sﬂf(—,—) P10 dt dx
0o Jo a B
2% ub
N i S N e
:/ / el Sﬁf(—,—)tﬂlx"‘ldtdx
o Jo a B
[ee) 00 B _O‘,i X% [ﬂ
+/ /B e?a Sﬁf(—,—) A-1yo=L dt dx.
w Ju o p

o o o ﬂ
Let - ="+ % and 2 =2 Mﬁ in the second double integral, we get

0 HT x tf
Fop(p,s) = / d <—,—)tﬂ_1x°‘_1 dtdx
a p
o) o] o sa Boub o o B B
+/ / e S(ﬂ"/ﬂ)f(u— PR M—)v’s‘lua‘ldvdu
o Jo a« a f B

A b
T L e B (x® P
:/ / el sﬂf(—,—)tﬁ‘lx"“ldtdx
0 0 a B
_pTa_s_/ f ﬁ Mﬁ)_f u_a’ﬁ Vﬂflua—ldvdu‘
a B

Consequently,
x -1 0-1
F,p(p,s) = —,— |t dtdx +e? BFO,,g(ps)
a’ B
we have
5 *‘*éﬂ*f)ﬂl ldtd
« B (%, )P w Y dtdx
Fa,ﬂ(prs): - . ﬁ,g .
Yy O
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3 The conformable Laplace transform of the convolution product
Theorem 3 Letf(%) andg(%) be integrable functions. If the convolution off(%) andg(%)
is denoted by

i
PN _ (7 (N (N s
(f*g)(ﬂ>_/o f<ﬂ) (ﬁ /3) @, 3D

then the conformable fractional Laplace transform of the convolution product is defined as
follows:

. N
|10 g 5 ) | = Eo0Gs ) (3.2)

where symbols Fg(s) and Gg(s) indicate the conformable fractional Laplace transforms of

f (%) and g(%) respectively.

Theorem4 Letf (’;—a, %) and g(%a, %) have a conformable fractional double Laplace trans-

form. Then the conformable fractional double Laplace transform of the double convolution

of f(5,5) and g(%, %) is

o B o B x a B B
oS ) [ LA WS e

Therefore one has the equality

atﬁ

LaLﬂ |:(f * *g (x_ E)i| = Fa,f} ®, S)Ga,ﬁ ;5), (3.4)

where F, g(p, S) and G, ﬂ(p s) indicate the conformable fractional double Laplace trans-
forms of f (x ) and g( ) respectively.

Proof If we apply the definition of conformable fractional double Laplace transform and

fractional double convolution above, then we obtain

cdo-o(5)
/ / 7 (f**g)(—a Eﬂ)tﬂ 'l dtdx

L L AU e

x P11 dt dx.
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o o o B 3
LetZ =X £ and ﬁ = %— T thenx*ldx = ,u"“l du, tP~1 dt = v#~1 dv, and applying

the valid extension of upper bound of integrals to %~ — oo and f — 00, we get

sty (2 tﬁ)} ([ [Ters (S et as an)
([ [l ) avan)

Both functions f (%, %) and g(%, %) have zero value for % <0 and % < 0, it follows

with respect to the lower limit of integrations that

sty (. tﬁ)} ([ [Tersia( S ) ewt s an)
([ [l ) avan)

Therefore,

atﬂ

L5Ly [(f * *g)(%, 3)} = Fo3(0,5)Ga (D, 9). 0

If the conformable fractional double Laplace transform of the function f (%, %) is given

by L"‘Lﬂ [ (xa t )] Uy 5(p,s), then the conformable fractional double Laplace transforms

of ¥4, 392;&, dﬁ;t(}ft), nd ”2;”) are given by
app| U
LYLY o =plUy g(p,s) — Ug(0,s), (3.5)
9%y QY B
;‘;Lf(ax ) =p Uaﬁ(lﬂ s) — pUg(0,s) — Lﬁ(ax" (0, E)) (3.6)
and
P
L;‘:Lﬂ (8—;{) = SUa,/S (10,5) - Ua(l% 0): (37)
%Py Pl x%
Lsz ( 3726 ) = Szua’/g(p,s) - sl,[a(p, O) - Lfct (WM<E,O)) (38)

Next, we generalize the conformable fractional double Laplace transform for m, n times

conformable fractional derivatives.

Theorem 5 Let0 < «,B <1andm,n € N such that u(%, %) € C(R* x R*), I = max(m, n).

Also, let the conformable fractional Laplace transforms of the functions u(’;—a, %), g;n%, and
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"u Then

FIZC
(2, (28
T\ game T\ o B
m-1 i l’ﬁ
=p"Uap(p,s) - " Up(0,5) = Y p"'" lLﬂ(wa‘u(O,E>>,
i=1
B (x P
! ,—
(7))
n-1

P
=5"Uyp(p,s) = " Us(p,0) = D 5" 1"L"‘<aaﬁﬂ < o))

j=1

‘m[X
U
where 2 g an nd 2 atnﬂ denote m, n times conformable fractional derivatives of function

u(’;—a, ?ﬂ) with order b and a respectively.

The conformable fractional double Laplace transforms of functions ’;—af (%, %) and

(x s M, are given by

) () ) M
i el ()2

4 Conformable double Laplace transform decomposition method applied to
singular Boussinesq equation

The aim of this section is to discuss the use of the conformable double Laplace transform
decomposition method (CFDLDM) for the linear and nonlinear singular one-dimensional
Boussinesq equations. In this work, we define the conformable double Laplace transform
of the function u(%, %) by U, p(p,s). We suggest here two important problems.

First problem: Consider the linear Boussinesq equation with initial conditions in the

following form:
0%y o 3% [x% 3% X%\ 0%y a%\ 9%y X P
— | — tal — )| —+b| — | ———=f — — ), (4.1)
028 x* 9x* \ o Ox* a ) dxie a ) dx2oeh a B
subject to
X% K aﬁu(§,0) xY
ul —,0)=Al— ) ——=HL{—) (4.2)
a o otP o

where the functions f(%, %),ﬁ(%),fg(’;—a), a(" ), and b(%- “) are given. Firstly, multiply
Eq. (4.1) by %, and then using the properties of partial derlvatlve of the conformable frac-

tional double Laplace transform and single conformable fractional transform for Eq. (4.1)
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and Eq. (4.2) respectively and using Eq. (3.9) and Eq. (3.10), we obtain

d P u(p,0)
_% [Szua,ﬂ(P,S) —suo,(p, 0) - 7}
_garhB i arh x_a ﬁ))]

o Bu(2%
where the conformable Laplace transforms of u(’-,0) and 2 ua(tg 9 are denoted by

Uq(p,0) = F1(p,0), aﬁg’ fg"” = F,(p,0) respectively and

0% [(x% 0%u x [ x*\0%u  x* [x%\ 0%
D = — - —al — - —bl — .
0x* \ o ox“ o a ) ox* o o ] ox“

Arranging Eq. (4.3), we get

d 1d 1d 1 1d
)] = ——Fy(p, Fy(p,0) — —L° Brop ——F,5(p,s). 4.4
o [Uap(p,9)] 57 1(p,0) + 27 2(p,0) SzLth[ 1+ 27 B(B,S) (4.4)

By applying the integral for both sides of Eq. (4.4), from 0 to p with respect to p, we have

F(p,0 BEpo 1 (7,
togtp) = 202+ ZE2 5 [riliolap
1
+ S_zFa’ﬁ(p’S)’ (4.5)

where F 4(p, s), F1(p,0), and F,(p,0) are conformable fractional Laplace transforms of the
functions f (’;—a, %), ﬁ(%), and fz(’;—a) respectively. The solution is obtained by taking the
inverse conformable fractional double Laplace transform for Eq. (4.5)

X th x* P (x® 1
) =A== ) hl = )+ L = Faplps
(5 5)(0) 5 (2) s [roes)
gl L r arh
-1 5 | L [@]dp |, (4.6)
where L;ILS‘1 indicates double inverse conformable fractional double Laplace transform.

The conformable fractional double Laplace transform decomposition method
(CFDLDM) defines the solutions u(’fx—a, %) with the help of infinite series as follows:

o 4B > a 4B
u<x—,—) =Zun(x—,—). (4.7)
o B “— o B
By substituting Eq. (4.7) into Eq. (4.6), we obtain

nd x P
(%)

n=0

o tﬂ o 1
£) () ]
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(1 7 3¢ (x99 (S (a0 P
—rit Lerf = A== d
e (e (B (5 5) )|
—1 i N x2 P
L'L! L“Lf‘ “al=)— A==
o[ [ (S5 )i (Ze(55)
) ( j|dp:|. (4.8)

B 1 B o o
F L L“L“*’ (x—b<x
0

SZ

By comparing both sides of Eq. (4.6), we get
X tP 2\ P [ 1l
w(g) (5) 5 (0) e [roeo)]
X P 1 0% (x% 3%u
- = :_L—lL—l ‘/LaLﬂ - 0
ul(a ,B) P [52 e\ a 0x® ap
1 LY aLY
+LP1L51[2/L“Lﬁ[( a( ) 2o
s o ox
o))
o ox*
In general, the remaining terms are given by
(x"‘ tﬂ>
Up\ —> —
a B
1 9 [x% 3 [ x tP
=-L'L! !
3 [ (G (S 5))) o
1 x“ L x tP
L ! i | = — d,
o | (o) (55)) o
1 (a0 3 [ X P
L ! b= i | = — dp|, (410
i [ (S B (5 R)) ) e

where the inverse conformable fractional double Laplace transform is given by L;lLs‘l.

(4.9)

To explain this method for solving the conformable fractional Boussinesq equation, we
let a(" )y=1, b(x )=-1, andf(xa ’ﬂ) = —(x )2 sm £ _2sint —, in Eq. (4.1), we obtain the
following example.

Example 4 Consider a singular conformable fractional Boussinesq equation in one di-

X% 2 tﬁ tﬂ
_(_> sin<—)—25in(—), (4.11)
o B B

mension

82a+2ﬂu

0%y o 3% [(x% 3%\ 9*u
g 29 (rauy 2% 9 % _
0t x® 9x® \ o Ix* ox%  9x209g2h

subject to the initial condition

<xa > au(ﬁ’O) (xa)z
ul —,0) =0, —x = —.
o ot o

(4.12)
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Multiplying both sides of Eq. (4.11) by % and applying the definition of partial deriva-
tives of the conformable fractional double Laplace transform, single conformable frac-
tional transform for Eq. (4.12) respectively, we have

dp Szxt

AU, p(p.s) 1L°‘Lﬂ|: a” <x°‘ 8“u> x 9%y x® 82‘“2’3u:|

—_— + —_—
9x \ o 0x“ o dx* o 9x29t?P
3! 1 6 (4.13)
+ + -—. .
pisA(s2+1)  ps2(s?+1) pis?

Applying the integral for Eq. (4.13), from O to p with respect to p, we get

1 (P 0% (x% 3%u\  x% Ity x% 3%y
Uypp,s)=—— | 10| — (= -z + d
#:3) s /0 x |:8x°‘ ( o 8x°‘> a dx* o 8x2°‘8t2/3] v
2 2 2!

4.14
PPs2(s2+1)  psi(s? + 1) ps® (414

By implementing the inverse Laplace transform on both sides of Eq. (4.14), we have

u x_a, ﬁ = _L—lLs—l l / LOZLI6 9 x_a u _ x_a—a4au + 7820["-25” dp
a’ B » 2 J, FACE

a ox*  9x2e9t2h

¥\ . (tf th %
+ (—) sin<—) + 2sin(—) - 2<—>. (4.15)
o B B B

Substituting Eq. (4.7) into Eq. (4.15), we have

oo o0

x2 P 1 0% [ x* 9“ X tP
> un( =, =) =-L,'L / Ly ———>u| = =) |4
n:(]M ( ) pos |:52 e\ o 9x ,,:ou P

o’ B
1 p a 84{1 o a tﬁ
“[—f LﬁLfﬂ[% o (Z”"@'E))}d’”}
n=0
1 N P 82a+2ﬂ 0 X t/S
-L'L;! [s / L Lﬂ[a_axha_tzﬁ (Z””(E’ﬁ))]dp}
0
() sn(5) +2on(5)(5)
+{— ) sin| — ) +2sin{ — | -2{ — ). (4.16)
o B B B

By applying the conformable fractional double Laplace transform decomposition method
we obtain
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1 ¥4 X 82a+2;3 x X tﬂ
e —/ )59 7] (R — A= =) dp|, 4.17
ps |:s2 o | a dx2epe2h Zu a B P (17)
hence
Y I O L B L x2 P x% g x th
wy =L = | et Tl (o)) e (2= ) | dp
LS 2 Jo 9x* \ o dx* a B a dxte a B
1 p P 82a+25 X% tﬂ
B —/ P = u( =, = ) |dp],
b |:52 o T « o a2p O\ B P
1 7 x* th -2
=-L'L7Y = / LoLP 2= )sin( = ) |dp|=-L'L7 | ———— |,
M S[sz o e )BT T @D
tP e
=2 — ) -2sin{ —
B B

and
-17-1 L [” arB
Uy :—Lp L; 2 ; LiL;[0]dp | =0.
By applying Eq. (4.7), we get
S o
X
Zun(—,t> =uUg+uUy+uyt---
o
n=0
() sn(5) +2sn( )
= —) sin{ — ) +2sin{ —
o B B
th th th
- 2(—) + 2(—) - 2sin(—> +0.
B B B
Therefore, the solution is denoted by

(55)-(2) (%)
ul —,—)={— sin{ — ).
o B o B

Figure 1 The exact and approximate solutions of 12

u(x,t), for Example 4, we take different values of g e 55 |
: oy — _ App. sol. a=0.98 , beta=0.66 3

fractional orders of o and B: ¢ = 0.99, B = 0.55, | e e Laar ﬁg

a =098, B=066a=097, =077 and o =0.96, L 0=096 , beta=0.67 &

B =087
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Second problem: Consider the following general form of the nonlinear singular Boussinesq

equation in one dimension:
%Py« 3% [a% 3% x\ 9%y
=7 [ val =
028 x® 9x® \ o Ox” o ) oxt
x2\ 92+2By x2\ 9Pu 8%y x4\ 9%y 9*tPy
-l—)|—+ce|l— ) ——— +d| — | ———
o ) 0x2gt2h o ) otP dx2 o ) 0x® 9x2oth
x2 P
_ <_, _>, (4.18)
a B

with the initial condition

X XY 3/314(’;_0(’0) X
ul =—,0) =g =), — T =ml—), (4.19)
o o ot o

where the functions a(’;—a), b(’;—a), c(%), and d(%) are arbitrary. In order to obtain the so-

o

lution of Eq. (4.18), first, by multiplying Eq. (4.18) by % and taking conformable fractional

double Laplace transform, we have

papp[ % 20u
T o 9128

wrp o XY 9%y xY XY 84()(” P XY 32a+2ﬂu
—rerf| - (= s e )2 ()
0x® \ o 0x“ o a)oxt o \ o )ox2ot?h
wrp[ X (x*\Puo®u x* (x*\0%u 0“*Fu
1oLf d
a \o /) oth axe o o ) 0x® 0x*9th

+L;Lf[x—af<x—a, ﬁ)} (4.20)
o o B

Second, applying Eq. (3.9), Eq. (3.10), Eq. (3.8) and the initial condition given in Eq. (4.19),

one can get that

1d

d 1d 1., 1d
%[Ua,ﬁ(P,S)] = ;%&(lﬂ, 0) + S—z%gz([?, 0) - S_ZL%Lt W]+ S_ZEFa,ﬁ(pxS)’ (4.21)

where
Q¢ X% 9%, xY xY 84ozu P xY 32a+2/3u
v = — ——a|l— | —+ —b — | ——
0x* \ o 9x o o )oxt  « o ) Ox2* 9tk
x2 (2% Pu oy x* [x%\ 8% 9%tPu
——c| — )|— - —d| — .
a \«a /) otP dx2* « o ) 0x® 9x*9tP

By taking the integral for Eq. (4.21), from 0 to p with respect to p, we have

GI(P:O) + VGZ(p’O) _ 1

P
Uy p(prs) = = > 5 /0 LELP[W]dp + Fup(p,s). (4.22)

Page 13 0of 19
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The third step, using (CFDLDM), the solution can be written in infinite series as in
Eq. (4.7). Applying the inverse transform for Eq. (4.22), we obtain

x2 P x* th x“ 1] 1
() 0(0) 5olT) me 5raws)

|l pL“L“[tI/]d (4.23)
p s | g2 o x ™t p |- .

. B, 92 +B
Furthermore, the nonlinear terms &% 2% and % 24 cap be defined by

9P 9x2% 95 9x% 92P
9Py 0%y nd 9%y 9*+Py it
YuoTu N, Ny =S B, 4.24
oth 9x2« ! ; " 0x% Jx*9th > HZO: g ( )

We have a few terms of the Adomian polynomials for A, and B,, that are denoted by

1(ad /. ,
A= (W [Nl > u,,)DM (4.25)

i=0

and

1(a >
By=— ( - |:N2 Z(x u,,)])kzo, (4.26)

where n =0,1,2,.... By putting Eq. (4.25), Eq. (4.26), and Eq. (4.24) into Eq. (4.23), we
get

i (x"‘ tf’)
U, —, —
n=0 ’ @ ﬂ
2\ P (x aall
=f " +§f2 " +L, Ly S—2Fa,,3(p,s)
1 p» B o
“17-1 B
i[5 (5 S]]
1 ¢» [x* /x0\ o% (&
-17-1 arhB
HLIL 5 i LoL! ;a(;) v (gun>:|dp:|
1 p P X 82a+2ﬁ 0
—“17-1 arh
g e () s | ) |

T sy B I 59 74
0
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where A, and B,, are defined as

_ aﬂuo 82"‘u0
07 3tP gx2e’
Puo 0%uy  9Pu; 0% u,
+ ’
otP  9x2« otP  ox2«

1=

(4.28)
Puo 0%uy  9Pu; 0%uy  9Puy 0%ug
= + + R
2T 0t ox2 | ot ox2 | otP ox
8ﬁu0 82"‘143 8’3141 82"‘u2 3’31/!2 820[1/[1 8’3M3 82%10
= + + +
ST 0t ax2 T atP ox2 | otP ox2 | otP ox
and
_ 8"‘u0 8‘“ﬂu0
07 9x ax*3th’
B 8°‘u0 8a+ﬂl/t1 8"‘u1 8“”3140
1= + )
0x® 0x%9tP  9x® Ox2oth
X% X XY X (4.29)

8“140 8‘“‘3142 B“ul 8‘“/3141 8"‘u2 8"‘*/3140

+ + ’

dx* 0x*0tP  0x® 0x*9tP  Qx* dx*9tP
8"‘140 80‘*’3143 8"‘u1 8“*’3u2 B“uz 8‘“’3u1 8alxl3 8"‘*‘3u0
B3 = + + + .
dx* 0x*9tP  0x® Ox*3tP  Ox® 0xv0tP  Ox* Jx*0tP

o =

Hence, from Eq. (4.27) above, we have

a B o B o
(5 5)4(5) 5o(5) [

and

(x"‘ tﬁ>
Up| —H —
o p

B 1 P _xa x*\ gl o
-17-1 arh
| [T e (Z”nlﬂdf’]
_1 p _xot X 82cx+2/3 0
-17-1 arh
-L, 'L 2 ), LiL; ab(a)axZaatZﬂ Eio U,1 | |dp

> > A+ %d(%) ZBM} dp]. (4.30)

Vel I 797
‘p s
0

In the next example, the proposed method is applied in order to obtain the solution of the

nonlinear singular Boussinesq equation.
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Example 5 Consider that nonlinear singular Boussinesq equation in one dimension is

governed by

3%Pu o 3% (%% 9% dlay ety 3Py 3%y
g _ a9 (rar)y, 24
o2 x® 9xv

9%y 3Py

o 9z ) " 9xte T 9x22F ot ox
tﬂ

)
B

subject to the initial condition
P aﬂu(ﬁ,o) xY 2
ul —,01) =0, —e = —).
o oth o
In order to implement our method for Eq. (4.31), we have
x* 2P\ 2P\
WO _yt = - -5\
o a \ B 3\ B
and
X P
Uy T
+1 o ﬂ
1 (7 3 [x* 3% [
=LY = / | —(=— .14
p S|:520 T axe \ o 9x@ 2::” P
1 xrx 82a+2ﬂ 0
“17-1
~LL [ L"‘Lﬁ|: ZA —2—23}@}

x“
o

The first iteration is given by

a B 1 [? 9 o g
U ad ' = =—L1;1LS_1 —2/ L‘jﬁﬁLt’S S dp
oa B s Jo @ 0x* \ o 0x“
1 p X% a4au0 xY 320{+2ﬁu0
L' —/ oLl = -= d
ps [s2 o Y a dxte o dx2epr2p P

p
/LO;_C,Lﬁ[zL Ag-2— Bo]dp]
0

where

9% [ x* 3%uq _4x"‘t5
e \a x¢ ) "« B8’

0

x2 3%y,

X9 32a+25 U

2 ) §
a ox* o dx2* Q2

9Py 0%, X\ 2 ¢P t#\3 %o 3% Puy X\ % ¢P
- =2{=—) =-4(—), By = =4 rR
Y «) B\ B ox oxeatp  \a) B

3x Jxth

(4.31)

(4.32)
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Therefore,

x2 P

(%

1.4 1
’_>:_Lp1Ls1

a B

b x_ﬁ] }
[ /LL [4 5w
[S% fo L;:‘LE[O—O]dp]

—17-1
S

1 [? X (P\3
-17-1 B
+Lp Ls |:S—2/(; Lth [16;(3) ]dp],
x P\ 2/t 4 (P

u(Z

o’ B

5)3(5) -2(5)

In the same way,

¢ ﬁaaul o i a4o¢ul ~ x_ot 82a+2ﬁu1 ~
e\ e ) o dxle o x2r
8‘3140 Bzo‘ul 8ﬂlftl Bzauo tﬂ 3 tﬂ >
1= + =4 - 8| — s
ot ox2« oth  ox2e B B
B = 9%y 0% P uy s 9%y, 9%+ Py, _
07 9x 9x%3tP | ox® dxvdtP
hence,

X
U
o

us
o

Similarly,

x* P

us| —
o

Therefore,

aﬂt
ox“

_<_

o

B tb

4 1 1 aﬂ
ﬂ)__L L [s2/“ [16_</3

B

B

’ 7)o (5) 1]

LIL / 16 x 3! 32 x5! J
s 52 0 p254 p256 P
i _1[16x3! 32x5!:|
=L,'L; = |
ps ps
x"‘tf‘ 4 (tB\° 16 /tB\’
") 5\ B 20\ )"

Ol

1

§2

1

§2

x“ 8abt2
o 0x*
4y
0 "‘u2

o Ox

’

)]

B
-L, - 1[

P
/ L“Lﬁ[
0
P
i
0

)]]

K 82a+2;3u2
o 9x212P

J«]

1 p
L' 5 4 4, -2% B, |d
|5 [t [T
X% 9%y x% 3%, X 320428y,
=0, z = T2,
o 0x¥ a 0x¥ o Ox2 2B
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Figure 2 The exact and approximate solutions of 7

u(x,b), for Example 5, we take different values of e

fractional orders of & and B: @ = 0.55, B =0.88, & ¥ fep.sol ac0idd, bein-0.00
App. sol. a=0.93 , beta=0.75

a =044, =080, =093, =075 and o =0.74, s - App. sol a=0.74, beta=0.68

B =068

3Puy 3%%uy  8Puq 3%u;  3Puy 0%uy
= + +
TP ax2 | 9t x| 9tP gae

(5)-36)
=81 — -——( =1,
B 3\8
Bo‘uo 8"‘+ﬂu2 8“u1 8‘“’3u1 8“u2 Ba*f’uo

= + + =
27 ox 3x@dtP | 9x® oxvtP | ox® dxdth

Then we have

x P\ 16PN\ 16 (P’
w(55)n(5) -5(5):

By using Eq. (4.7) the series solutions is denoted by
oo xa
Zun<—,t>=1/fo+1/f1+¢2+"'
n=0 o
_(x"‘ P 2P 3+2 BN 4P 5+4 tﬂ>5
N/ B 3\g) 3\8/) 5\8) 5\8
16 [t 7+16 P\ 16 (tf 9+
21\ B 21\ B 27\ B ’

and hence the conformable solution is given by

(x“ ﬁ) (xa)%ﬁ
B i N i W (4.33)
a B a) B

5 Conclusion
In the present research, we proposed a combination of conformable double Laplace trans-
form and decomposition methods to solve the singular linear and nonlinear Boussinesq
equations. The new method, developed in the current work, was tested on two examples.
In addition, if we let « = 1 and 8 =1 in two examples, we obtain the solutions which are
studied in [19].
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