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Abstract
We deal with a class of coupled systems of neutral fractional integro-differential
equations with infinite delay in a Banach space in this paper. Based on the Banach
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an example is given to illustrate the effectiveness of our main results.
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1 Introduction
Fractional differential equations have arisen as an excellent instrument for the description
of hereditary properties of various processes and applications in plenty of fields such as
porous medium, network, electro-magnetics, aerodynamics, visco-elasticity, ecology, bio-
science, medicine biology, and so on. In the monograph [1], readers can find many math-
ematical models of fractional differential equations and their applications. Therefore, the
study of fractional differential equation has attracted much attention and research. In re-
cent years, many scholars have begun researching some new type of fractional differential
equations, which include the neutral terms, integro-differential terms, or coupled terms.
There have been some papers dealing with these fractional differential equations (see [2–
35]). However, it is difficult and challenging to study this type of fractional differential
equations since it involves the time delays and the abstract operators. So the purpose of
this paper is to consider a class of coupled systems of neutral fractional integro-differential
equations with infinite delay in a Banach space as follows:

⎧
⎪⎪⎨

⎪⎪⎩

cDα
t [x(t) – g1(t, xt , yt)] = A [x(t) – g1(t, xt , yt)] + f1(t, xt , yt ,

∫ t
0 e1(t, s, xs, ys) ds),

cDβ
t [y(t) – g2(t, xt , yt)] = B[y(t) – g2(t, xt , yt)] + f2(t, xt , yt ,

∫ t
0 e2(t, s, xs, ys) ds),

x(t) = φ1(t) ∈ Bh, y(t) = φ2(t) ∈ Bh, t ∈ (–∞, 0],

(1.1)
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where 0 < α, β < 1, J = [0, b], cDα
t and cDβ

t denote the Caputo fractional derivatives. A ,
B are the infinitesimal generators of a strongly continuous semigroup {Tα(t), t ≥ 0} and
{Tβ (t), t ≥ 0} in a Banach space X, respectively. gi : J × B2

h → X, fi : J × B2
h × X → X, ei :

J2 ×B2
h → X (i = 1, 2) are three given continuous functions. We assume that the histories

xt , yt : (–∞, 0] → X, xt(s) = x(t + s), yt(s) = x(t + s), s ≤ 0, belong to an abstract phase space
Bh characterized in Preliminaries. Two given initial functions φ1, φ2 also belong to an
abstract phase space Bh.

In addition, the main inspiration also comes from the literature [10, 13]. In [10], the
authors investigated the existence of a mild solution for the following neutral fractional
functional integro-differential equation with infinite delay:

⎧
⎨

⎩

cDq
t [x(t) – g(t, xt)] = A x(t) + f (t, xt ,

∫ t
0 h(t, s, xs) ds), t ∈ J = [0, b],

x(t) = φ(t) ∈ Bh, t ∈ (–∞, 0],

where cDq
t is the Caputo fractional derivative of order 0 < q < 1. A is the infinitesimal

generator of a strongly continuous semigroup of {T (t), t > 0} in a Banach space X. f : J ×
Bh × X, g : J ×Bh, h : J2 ×Bh are given functions, where Bh is a phase space. The histories
xt : (–∞, 0]→X defined by xt(s) = x(t + s), s ≤ 0, belong to an abstract space Bh.

In [13], Zhang, Huang, and Liu researched the existence and uniqueness of a mild solu-
tion for the fractional equation with nonlocal conditions and infinite delay as follows:

⎧
⎪⎪⎨

⎪⎪⎩

cDq
t [x(t) – u(t, xt)] = A [x(t) – u(t, xt)] + f (t, xt ,

∫ t
0 h(t, s, xs) ds), t ∈ J = [0, b], t �= tk ,

�x|t=tk = Ik(x(t–
k )), k = 1, 2, . . . , n,

x(t) = φ(t) ∈ Bh, t ∈ (–∞, 0],

where cDq
t is the Caputo fractional derivative of order 0 < q < 1. The operator A generates

a strongly continuous semigroup of bounded liner operators {T (t), t > 0} in the Banach
space X. And u, f are two given continuous functions, x(·) belongs to the Banach space
X, and xt(·) denotes xt(θ ) = x(t + θ ), θ ∈ (–∞, 0]. Ik : X→X, �x|t=tk = x(t+

k ) – x(t–
k ) with

x(t+
k ) = limh→0+ x(tk + h), x(t–

k ) = limh→0– x(tk + h), k = 1, 2, . . . , n, for 0 = t0 < t1 < t2 < · · · <
tn < tn+1 = b.

To the best our knowledge, there are rare papers dealing with the coupled system of neu-
tral fractional integro-differential equations with infinite delay in a Banach space. There-
fore, it is important and interesting to study the existence of a mild solution for system
(1.1) by the fixed point theorem. Our results are based on the properties of the analytic
semigroup and ideas and techniques.

The rest of this paper is organized as follows. In Sect. 2, we recall some definitions and
lemmas including the Caputo fractional calculus, the Mittag-Leffler function, and the an-
alytic semigroup. In Sect. 3, we shall prove the existence of solutions for system (1.1). In
Sect. 4, an example is given to demonstrate the application of our main results. Finally, the
conclusion is given to simply recall our studies and results obtained in Sect. 5.

2 Preliminaries
In this section, we present some primary components, including notations, definitions,
lemmas, and so on, which are required in the whole paper.
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First, we present the abstract phase space Bh, which has been used in [36]. Assume that
h : (–∞, 0] → (0, +∞) is a continuous function with l =

∫ 0
–∞ h(t) dt < +∞. For any c > 0,

we define B = {ψ : [–c, 0] → X such that ψ(t) is bounded and measurable} and equip with
the norm ‖ψ‖[–c,0] = sups∈[–c,0] |ψ(s)|, ∀ψ ∈ B. Let us define

Bh =
{

ψ : (–∞, 0] → Xsuch that for any a > 0,ψ |[–a,0] ∈ B

and
∫ 0

–∞
h(s)‖ψ‖[s,0] ds < +∞

}

.

If Bh is equipped with the norm ‖ψ‖Bh =
∫ 0

–∞ h(s)‖ψ‖[s,0] ds, ∀ψ ∈ Bh, then it is obvious
that (Bh,‖ · ‖Bh ) is a Banach space. Define

B′
h =

{
w = (w1, w2)|wi : (–∞, b] → X such that wi(0) = φi(0) ∈ Bh, i = 1, 2

}

equipped with a seminorm ‖w‖B′
h

= max{‖φ1‖Bh ,‖φ2‖Bh ,‖w1‖b,‖w2‖b}, where ‖wi‖b =
sups∈[0,b]{‖wi(s)‖}, i = 1, 2.

Obviously, B′
h ⊂X = X × X. For any (x, y) ∈X, define the seminorm ‖(x, y)‖ = ‖(x, y)‖B′

h
.

Thus B′
h is a Banach space.

Lemma 2.1 ([10, 36]) Assume w = (w1, w2) ∈ B′
h, then for t ∈ J , wit ∈ Bh. Moreover,

l|wi(t)| ≤ ‖wit‖Bh ≤ ‖φi‖Bh + l sups∈[0,t] |wi(s)|, where l =
∫ 0

–∞ h(t) < +∞, i = 1, 2.

Definition 2.1 ([37, 38]) The Riemann–Liouville fractional integral of order α of a con-
tinuous function f : (a,∞) → R is given by

Iα
a+ f (t) =

1
Γ (α)

∫ t

a
(t – s)α–1f (s) ds,

provided that the right-hand side is pointwise defined on (a,∞).

Definition 2.2 ([37, 38]) If f ∈ Cn((a,∞), R) and α > 0, then the Caputo fractional deriva-
tive of order α is given by

cDα
a+ f (t) =

1
Γ (n – α)

∫ t

a

f (n)(s)
(t – s)α–n+1 ds,

where n – 1 < α ≤ n, provided that the right-hand side is pointwise defined on (a,∞).

Lemma 2.2 ([37]) Assume that u ∈ C(a, b) ∩ L(a, b) with a Caputo fractional derivative of
order α > 0 that belongs to Cn(a, b), then

Iα
a+

cDα
a+ u(t) = u(t) + c1 + c2(t – a) + · · · + cn(t – a)n–1

for some ci ∈ R, i = 0, 1, 2, . . . , n – 1, where n is the smallest integer greater than or equal
to α.
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Definition 2.3 ([37]) A two-parameter function of the Mittag-Leffler type is defined by
the series expansion

Eα,β (z) =
∞∑

k=0

zk

Γ (αk + β)
=

1
2π i

∫

C

λα–βeλ

λα – z
dλ, α,β , z ∈ C, Re(α) > 0,

where C is a contour which starts and ends at –∞ and encircles the disc |λ| ≤ √|z| counter
clockwise. C is the complex field, Re(z) stands for the real part of complex number z.

For short, Eα(z) = Eα,1(z). It is an entire function which provides a simple generalization
of the exponent function E1(z) = ez and the cosine function E2(z2) = cosh(z), E2(–z2) =
cos(z), and plays a vital role in the theory of fractional differential equations. The most
interesting properties of the Mittag-Leffler functions are associated with their Laplace
integral

∫ ∞

0
e–λttβ–1Eα,β

(
ωtα

)
dt =

λα–β

λα – ω
, Re(λ) > ω

1
α ,ω > 0,

and for more details, see [37].

Definition 2.4 ([39]) A closed and linear operator A is said to be sectorial if there are
constants ω ∈R, θ ∈ [ π

2 ,π ], M > 0 such that the following two conditions are satisfied:
(1) ρ(A ) ⊂ Sω,θ = {λ ∈C : λ �= ω, | arg(λ – ω)| < θ},
(2) ‖(λI – A )–1‖ ≤ M

|λ–ω| , λ ∈ Sω,θ .

Definition 2.5 ([39]) Let A be a closed and linear operator with the domain D(A ) de-
fined in a Banach space X. Let ρ(A ) be the resolvent set of A . A is called the gen-
erator of an α-resolvent family if there exist ω ≥ 0 and a strongly continuous function
Tα : R+→L(X), where L(X) is a Banach space of all bounded linear operators from X into
X and the corresponding norm is denoted by ‖ · ‖ such that {λα : Re(λ) > ω} ⊂ ρ(A ) and

(
λαI – A

)–1x =
∫ ∞

0
eλtTα(t)x dt, Re(λ) > ω, x ∈ X,

where Tα(t) is called the α-resolvent family generated by A .

Definition 2.6 ([39]) Let A be a closed and linear operator with the domain D(A ) de-
fined in a Banach space X and α > 0. We say that A is the generator of a solution op-
erator if there exist ω ≥ 0 and a strongly continuous function Tα : R+→L(X) such that
{λα : Re(λ) > ω} ⊂ ρ(A ) and

λα–1(λαI – A
)–1x =

∫ ∞

0
eλtTα(t)x dt, Re(λ) > ω, x ∈ X,

where Tα(t) is called the solution operator generated by A .

The concept of the solution operator is closely related to the concept of a resolvent fam-
ily. For more details on α-resolvent family and solution operators, we refer the reader to
[38] and the references therein.
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Lemma 2.3 ([16]) If E is a real Banach space and F : E → E is a contraction mapping, then
F has a unique fixed point in E.

Lemma 2.4 (Krasnoselskii’s fixed point theorem [15]) Let B be a nonempty closed convex
subset of a Banach space (X,‖ · ‖). Suppose that P and Q map B into X such that

(i) Px + Qx ∈ B;
(ii) P is a contraction mapping;

(iii) Q is continuous and compact.
Then there exists z ∈ B such that z = Pz + Qz.

Lemma 2.5 If the functions gi : J × B2
h → X, fi : J × B2

h × X → X, ei : J2 × B2
h → X (i =

1, 2) satisfy the uniform Hölder condition with exponent γ ∈ (0, 1], A and B are sectorial
operators, then a pair of solutions (x, y) ∈ X = X × X of system (1.1) is given by the following
coupled system of integral equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x(t) = Tα(t)[φ1(0) – g1(0,φ1(0),φ2(0))] + g1(t, xt , yt)

+
∫ t

0 Tα(t – s)f1(s, xs, ys,
∫ s

0 e1(s, τ , xτ , yτ ) dτ ) ds, t ∈ J ,

y(t) = Tβ (t)[φ2(0) – g2(0,φ1(0),φ2(0))] + g2(t, xt , yt)

+
∫ t

0 Tβ (t – s)f2(s, xs, ys
∫ s

0 e2(s, τ , xτ , yτ ) dτ ) ds, t ∈ J ,

(2.1)

where

Tα(t) = Eα,1
(
A tα

)
=

1
2π i

∫

B̂r

eλt λα–1

λα – A
dλ,

Tβ (t) = Eβ ,1
(
Btα

)
=

1
2π i

∫

B̂r

eλt λβ–1

λβ – B
dλ,

here B̂r denotes the Bromwich path; Tα(t) and Tβ (t) are the solution operators generated by
A and B, respectively.

Proof Assume that (x, y) ∈ X = X × X is a pair of solutions of system (1.1), then we have
for t ∈ J

⎧
⎨

⎩

cDα
t [x(t) – g1(t, xt , yt)] = A [x(t) – g1(t, xt , yt)] + f1(t, xt , yt

∫ t
0 e1(t, s, xs, ys) ds),

cDβ
t [y(t) – g2(t, xt , yt)] = B[y(t) – g2(t, xt , yt)] + f2(t, xt , yt

∫ t
0 e2(t, s, xs, ys) ds).

(2.2)

Applying Lemma 2.2, (2.2) gives

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x(t) – g1(t, xt , yt) = c1 + 1
Γ (α)

∫ t
0 (t – s)α–1A [x(s) – g1(s, xs, ys)] ds

+ 1
Γ (α)

∫ t
0 (t – s)α–1f1(s, xs, ys,

∫ s
0 e1(s, τ , xτ , yτ ) dτ ) ds,

y(t) – g2(t, xt , yt) = c2 + 1
Γ (β)

∫ t
0 (t – s)β–1B[y(s) – g2(s, xs, ys)] ds

+ 1
Γ (β)

∫ t
0 (t – s)β–1f2(s, xs, ys,

∫ s
0 e2(s, τ , xτ , yτ ) dτ ) ds.

(2.3)
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By using the initial conditions x(0) = φ1(0), y(0) = φ2(0), we get

⎧
⎨

⎩

c1 = φ1(0) – g1(0,φ1(0),φ2(0)),

c2 = φ2(0) – g2(0,φ1(0),φ2(0)).

Therefore,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(t) – g1(t, xt , yt)

= φ1(0) – g1(0,φ1(0),φ2(0)) + 1
Γ (α)

∫ t
0 (t – s)α–1A [x(s)

– g1(s, xs, ys)] ds + 1
Γ (α)

∫ t
0 (t – s)α–1f1(s, xs, ys,

∫ s
0 e1(s, τ , xτ , yτ ) dτ ) ds,

y(t) – g2(t, xt , yt)

= φ2(0) – g2(0,φ1(0),φ2(0)) + 1
Γ (β)

∫ t
0 (t – s)β–1B[y(s)

– g2(s, xs, ys)] ds + 1
Γ (β)

∫ t
0 (t – s)β–1f2(s, xs, ys,

∫ s
0 e2(s, τ , xτ , yτ ) dτ ) ds.

(2.4)

Taking the Laplace transformation of system (2.4) on both sides, we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L {x(t) – g1(t, xt , yt)}
= 1

λ
[φ1(0) – g1(0,φ1(0),φ2(0))]

+ 1
λα A L {x(t) – g1(t, xt , yt)} + 1

λα L {f1(t, xt , yt ,
∫ t

0 e1(t, s, xs, ys) ds)},
L {y(t) – g2(t, xt , yt)}

= 1
λ

[φ2(0) – g2(0,φ1(0),φ2(0))]

+ 1
λβ BL {y(t) – g2(t, xt , yt)} + 1

λβ L {f2(t, xt , yt ,
∫ t

0 e2(t, s, xs, ys) ds)}.

(2.5)

Taking the inverse Laplace transformation on both sides of system (2.5), we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x(t) = Tα(t)[φ1(0) – g1(0,φ1(0),φ2(0))] + g1(t, xt , yt)

+
∫ t

0 Tα(t – s)f1(s, xs, ys,
∫ s

0 e1(s, τ , xτ , yτ ) dτ ) ds, t ∈ J ,

y(t) = Tβ (t)[φ2(0) – g2(0,φ1(0),φ2(0))] + g2(t, xt , yt)

+
∫ t

0 Tβ (t – s)f2(s, xs, ys
∫ s

0 e2(s, τ , xτ , yτ ) dτ ) ds, t ∈ J .

(2.6)

By the above computation, we obtain the mild solution defined by (2.1) satisfying (1.1).
The proof is completed. �

Definition 2.7 A pair of continuous functions (x, y) : (–∞, +∞)→X = X × X is said to
be a pair of mild solutions of system (1.1) if x(0) = φ1(0) ∈ Bh, y(0) = φ2(0) ∈ Bh, and (x, y)
satisfies the following coupled system (2.1) of integral equations.

3 Existence of mild solutions
In this section, we shall employ the fixed point theorems of the operator to prove the ex-
istence of a mild solution to system (1.1). According to Lemma 2.5, we define the operator
F : X →X by

F(x, y)(t) =
(
F1(x, y)(t), F2(x, y)(t)

)T , ∀(x, y) ∈ X, t ∈ (–∞, b], (3.1)
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where

F1(x, y)(t) =

⎧
⎪⎪⎨

⎪⎪⎩

Tα(t)[φ1(0) – g1(0,φ1(0),φ2(0))] + g1(t, xt , yt)

+
∫ t

0 Tα(t – s)f1(s, xs, ys,
∫ s

0 e1(s, τ , xτ , yτ ) dτ ) ds, t ∈ J ,

φ1(t), t ∈ (–∞, 0],

(3.2)

F2(x, y)(t) =

⎧
⎪⎪⎨

⎪⎪⎩

Tβ (t)[φ2(0) – g2(0,φ1(0),φ2(0))] + g2(t, xt , yt)

+
∫ t

0 Tβ (t – s)f2(s, xs, ys
∫ s

0 e2(s, τ , xτ , yτ ) dτ ) ds, t ∈ J ,

φ2, t ∈ (–∞, 0].

(3.3)

So the existence of solutions for system (1.1) is equivalent to the existence of the fixed
point for the operator F defined by (3.1)–(3.3). Next we shall prove our main results.

Theorem 3.1 Assume that conditions (H1)–(H5) hold. Then system (1.1) has a pair of
unique mild solutions (x∗, y∗) ∈X.

(H1) The strongly continuous semigroups of bounded linear operators Tα(t) and Tβ (t) gen-
erated by A and B are all compact, and there exist two positive constants N1 and
N2 such that the modules of Tα(t) and Tβ (t) satisfy

∥
∥Tα(t)

∥
∥ ≤ N1,

∥
∥Tβ (t)

∥
∥ ≤ N2, ∀t ∈ J .

(H2) The functions gi : J ×B2
h → X (i = 1, 2) are the continuous functions, and there exist

some positive constants ai1 and ai2 such that, for all t ∈ J , xt , yt , xt , yt ∈ Bh

∥
∥gi(t, xt , yt) – gi(t, xt , yt)

∥
∥ ≤ ai1‖xt – xt‖Bh + ai2‖yt – yt‖Bh .

(H3) The functions fi : J × B2
h × X → X (i = 1, 2) are the continuous functions, and there

exist some positive constants bi1, bi2, and bi3 such that for all t ∈ J , xt , yt , xt , yt ∈ Bh,
u, v ∈ X

∥
∥fi(t, xt , yt , u) – fi(t, xt , yt , v)

∥
∥ ≤ bi1‖xt – xt‖Bh + bi2‖yt – yt‖Bh + bi3‖u – v‖.

(H4) The functions ei : J2 ×B2
h → X (i = 1, 2) are the continuous functions, and there exist

some positive constants ci1 and ci2 such that for all t, s ∈ J , xs, ys, xs, ys ∈ Bh

∥
∥ei(t, s, xs, ys) – ei(t, s, xs, ys)

∥
∥ ≤ ci1‖xs – xs‖Bh + ci2‖ys – ys‖Bh .

(H5) l[ai1 + ai2 + bNi(bi1 + b12) + b2Nibi3(ci1 + ci2)] < 1, i = 1, 2, where l =
∫ 0

–∞ h(s) ds.

Proof Now we use Lemma 2.3 to prove that F : X→X defined by (3.1)–(3.3) has a unique
fixed point. In fact, for all t ∈ (–∞, b], (x, y), (x, y) ∈X, when t ∈ (–∞, 0], we have

F(x, y)(t) – F(x, y)(t) =
(
φ1(t) – φ1(t),φ2(t) – φ2(t)

)
= (0, 0),

which implies that

∥
∥F(x, y)(t) – F(x, y)(t)

∥
∥ = 0. (3.4)
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When t ∈ J = [0, b], it follows from (H1)–(H4) that

∥
∥F1(x, y)(t) – F1(x, y)(t)

∥
∥

=
∥
∥
∥
∥g1(t, xt , yt) – g1(t, xt , yt) +

∫ t

0
Tα(t – s)

×
[

f1

(

s, xs, ys,
∫ s

0
e1(s, τ , xτ , yτ ) dτ

)

ds – f1

(

s, xs, ys,
∫ s

0
e1(s, τ , xτ , yτ ) dτ

)

ds
]∥
∥
∥
∥

≤ ∥
∥g1(t, xt , yt) – g1(t, xt , yt)

∥
∥ +

∫ b

0

∣
∣Tα(t – s)

∣
∣

∥
∥
∥
∥f1

(

s, xs, ys,
∫ s

0
e1(s, τ , xτ , yτ ) dτ

)

ds

– f1

(

s, xs, ys,
∫ s

0
e1(s, τ , xτ , yτ ) dτ

)

ds
∥
∥
∥
∥

≤ ∥
∥g1(t, xt , yt) – g1(t, xt , yt)

∥
∥ +

∫ b

0

∣
∣Tα(t – s)

∣
∣

∥
∥
∥
∥f1

(

s, xs, ys,
∫ s

0
e1(s, τ , xτ , yτ ) dτ

)

ds

– f1

(

s, xs, ys,
∫ s

0
e1(s, τ , xτ , yτ ) dτ

)

ds
∥
∥
∥
∥

≤ a11‖xt – xt‖Bh + a12‖yt – yt‖Bh + N1

∫ b

0

[

b11‖xs – xs‖Bh + b12‖ys – ys‖Bh

+ b13

∥
∥
∥
∥

∫ s

0

[
e1(s, τ , xτ , yτ ) – e1(s, τ , xτ , yτ )

]
dτ

∥
∥
∥
∥

]

ds

≤ a11‖xt – xt‖Bh + a12‖yt – yt‖Bh + N1

∫ b

0

[

b11‖xs – xs‖Bh + b12‖ys – ys‖Bh

+ b13

∫ s

0

[
c11‖xτ – xτ‖Bh + c12‖yτ – yτ‖Bh

]
dτ

]

ds

≤ la11‖x – x‖b + la12‖y – y‖b + N1

∫ b

0

[

lb11‖x – x‖b + lb12‖y – y‖b

+ b13

∫ b

0

[
lc11‖x – x‖b + lc12‖y – y‖b

]
dτ

]

ds

= la11‖x – x‖b + la12‖y – y‖b + bN1
[
lb11‖x – x‖b + lb12‖y – y‖b

+ bb13
[
lc11‖x – x‖b + lc12‖y – y‖b

]]

≤ l
[
a11 + a12 + bN1(b11 + b12) + b2N1b13(c11 + c12)

]∥
∥(x – x, y – y)

∥
∥

<
∥
∥(x – x, y – y)

∥
∥. (3.5)

Similarly, we have

∥
∥F2(x, y)(t) – F2(x, y)(t)

∥
∥

≤ l
[
a21 + a22 + bN2(b21 + b22) + b2N2b23(c21 + c22)

]∥
∥(x – x, y – y)

∥
∥

<
∥
∥(x – x, y – y)

∥
∥, t ∈ J = [0, b]. (3.6)

In view of (H5) and (3.4)–(3.6), we know that F defined by (3.1)–(3.3) is a contraction
mapping. Then F has a unique fixed point (x∗, y∗) ∈ X. Therefore, system (1.1) has a pair
of unique mild solutions (x∗, y∗) ∈X. The proof of Theorem 3.1 is completed. �
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Theorem 3.2 Assume that (H1)–(H2) hold. If the following conditions (H6)–(H8) hold, then
system (1.1) has at least a pair of mild solutions.

(H6) The functions fi : J × B2
h × X → X (i = 1, 2) are the continuous functions, and there

exist some positive constants Bi1, Bi2, and Bi3 such that for all t ∈ J , xt , yt ∈ Bh, u ∈ X

∥
∥fi(t, xt , yt , u)

∥
∥ ≤ Bi1‖xt‖Bh + Bi2‖yt‖Bh + Bi3‖u‖.

(H7) The functions ei : J2 ×B2
h → X (i = 1, 2) are the continuous functions, and there exist

some positive constants Ci1 and Ci2 such that for all t, s ∈ J , xs, ys ∈ Bh

∥
∥ei(t, s, xs, ys)

∥
∥ ≤ Ci1‖xs‖Bh + Ci2‖ys‖Bh .

(H8) �i = Ni + (l + Ni)(ai1 + ai2) + lbNi(Bi1 + Bi2) + lb2NiBi3(Ci1 + Ci2) < 1, i = 1, 2, where
l =

∫ 0
–∞ h(s) ds.

Proof Let r = max{ (1+N1) supt∈J ‖g1(t,0,0)‖
1–�1

, (1+N2) supt∈J ‖g2(t,0,0)‖
1–�2

}, Ω = {(x, y) ∈ X : ‖(x, y)‖ ≤ r},
where ‖(x, y)‖ = ‖(x, y)‖B′

h
Clearly, Ω is a nonempty closed convex subset of a Banach

space X. Define the operator F : X→X as (3.1)–(3.3). We split F = P + Q such that, for
all t ∈ (–∞, b], (x, y) ∈X,

P1(x, y)(t) =

⎧
⎨

⎩

φ1(t), t ∈ (–∞, 0],

Tα(t)[φ1(0) – g1(0,φ1(0),φ2(0))] + g1(t, xt , yt), t ∈ J ,
(3.7)

P2(x, y)(t) =

⎧
⎨

⎩

φ2(t), t ∈ (–∞, 0],

Tβ (t)[φ2(0) – g2(0,φ1(0),φ2(0))] + g2(t, xt , yt), t ∈ J ,
(3.8)

Q1(x, y)(t) =

⎧
⎨

⎩

0, t ∈ (–∞, 0],
∫ t

0 Tα(t – s)f1(s, xs, ys,
∫ s

0 e1(s, τ , xτ , yτ ) dτ ) ds, t ∈ J ,
(3.9)

Q2(x, y)(t) =

⎧
⎨

⎩

0, t ∈ (–∞, 0],
∫ t

0 Tβ (t – s)f2(s, xs, ys
∫ s

0 e2(s, τ , xτ , yτ ) dτ ) ds, t ∈ J .
(3.10)

When t ∈ (–∞, 0], for all (x, y) ∈ Ω , we have

∥
∥F(x, y)(t)

∥
∥ =

∥
∥(φ1,φ2)

∥
∥ = max

{‖φ1‖Bh ,‖φ2‖Bh

} ≤ ∥
∥(x, y)

∥
∥ ≤ r. (3.11)

When t ∈ J = [0, b], for all (x, y) ∈ Ω , it follows from (H1)–(H2) and (H6)–(H8) that

∥
∥F1(x, y)(t)

∥
∥

=
∥
∥
∥
∥Tα(t)

[
φ1(0) – g1

(
0,φ1(0),φ2(0)

)]
+ g1(t, xt , yt)

+
∫ t

0
Tα(t – s)f1

(

s, xs, ys,
∫ s

0
e1(s, τ , xτ , yτ ) dτ

)

ds
∥
∥
∥
∥

=
∥
∥
∥
∥Tα(t)

[
φ1(0) + g1(0, 0, 0) –

(
g1

(
0,φ1(0),φ2(0)

)
– g1(0, 0, 0)

)]
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+
(
g1(t, xt , yt) – g1(t, 0, 0)

)
+ g1(t, 0, 0)

+
∫ t

0
Tα(t – s)f1

(

s, xs, ys,
∫ s

0
e1(s, τ , xτ , yτ ) dτ

)

ds
∥
∥
∥
∥

≤ ∣
∣Tα(t)

∣
∣
[‖φ1‖Bh +

∥
∥g1(0, 0, 0)

∥
∥ + a11‖φ1‖Bh + a12‖φ2‖Bh

]

+ sup
t∈J

∥
∥g1(t, 0, 0)

∥
∥ + a11‖xt‖Bh + a12‖yt‖Bh

+
∫ b

0

∣
∣Tα(t – s)

∣
∣

[

B11‖xs‖Bh + B12‖ys‖Bh + B13

∫ b

0

∥
∥e1(s, τ , xτ , yτ )

∥
∥dτ

]

ds

≤ N1

[
‖φ1‖Bh + sup

t∈J

∥
∥g1(t, 0, 0)

∥
∥ + a11‖φ1‖Bh + a12‖φ2‖Bh

]

+ sup
t∈J

∥
∥g1(t, 0, 0)

∥
∥ + a11‖xt‖Bh + a12‖yt‖Bh

+ bN1
[
B11‖xs‖Bh + B12‖ys‖Bh + bB13

(
C11‖xτ‖Bh + C12‖yτ‖Bh

)]

≤ N1

[
‖φ1‖Bh + sup

t∈J

∥
∥g1(t, 0, 0)

∥
∥ + a11‖φ1‖Bh + a12‖φ2‖Bh

]

+ sup
t∈J

∥
∥g1(t, 0, 0)

∥
∥ + la11‖x‖b + la12‖y‖b + bN1

[
lB11‖x‖b + lB12‖y‖b

+ bB13
(
lC11‖x‖b + lC12‖y‖b

)]

≤ [
N1 + (l + N1)(a11 + a12) + lbN1(B11 + B12) + lb2N1B13(C11 + C12)

]∥
∥(x, y)

∥
∥

+ (1 + N1) sup
t∈J

∥
∥g1(t, 0, 0)

∥
∥ = �1

∥
∥(x, y)

∥
∥ + (1 + N1) sup

t∈J

∥
∥g1(t, 0, 0)

∥
∥

≤ r. (3.12)

Similarly, we also get

∥
∥F2(x, y)(t)

∥
∥

≤ [
N2 + (l + N2)(a21 + a22) + lbN2(B21 + B22) + lb2N2B23(C21 + C22)

]∥
∥(x, y)

∥
∥

+ (1 + N2) sup
t∈J

∥
∥g2(t, 0, 0)

∥
∥ = �2

∥
∥(x, y)

∥
∥ + (1 + M2) sup

t∈J

∥
∥g2(t, 0, 0)

∥
∥

≤ r. (3.13)

(3.11)–(3.13) indicate that P(x, y) + Q(x, y) ∈ Ω , that is, condition (i) of Lemma 2.4 holds.
Similar to (3.11)–(3.13), we also prove that P and Q map Ω into Ω ⊂ X, and Q is uni-
formly bounded. Next we only need to show that P is a contraction mapping, and Q is
equicontinuous. Indeed, for all (x, y), (x, y) ∈ Ω , when t ∈ (–∞, 0], P(x, y)(t) – P(x, y)(t) =
(φ1(t) – φ1(t),φ2(t) – φ2(t)) = (0, 0), which leads to

∥
∥P(x, y)(t) – P(x, y)(t)

∥
∥ = 0. (3.14)

When t ∈ J = [0, b], from (3.7)–(3.8), (H2), and (H8), we have

∥
∥Pi(x, y)(t) – Pi(x, y)(t)

∥
∥

=
∥
∥gi(t, xt , yt) – gi(t, xt , yt)

∥
∥
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≤ ai1‖xt – xt‖Bh + ai2‖yt – yt‖Bh ≤ lai1‖x – x‖b + lai2‖y – y‖b

≤ l(ai1 + ai2)
∥
∥(x – x, y – y)

∥
∥ < �i

∥
∥(x – x, y – y)

∥
∥ <

∥
∥(x – x, y – y)

∥
∥, i = 1, 2. (3.15)

According to (3.14) and (3.15), we conclude that P is contract, namely condition (ii) of
Lemma 2.4 holds.

Now we verify that Q is equicontinuous. For all (x, y) ∈ Ω , t1, t2 ∈ (–∞, b] with t1 < t2.
When –∞ < t1 < t2 ≤ 0, (3.9) and (3.10) give

∥
∥
(
Q(x, y)(t2) – Q(x, y)(t1)

)∥
∥ =

∥
∥(0, 0)

∥
∥ = 0 → 0, as t2 → t1. (3.16)

When 0 ≤ t1 < t2 ≤ b, from (3.9), (3.10), (H1), (H6), and (H7), we have

∥
∥Q1(x, y)(t2) – Q1(x, y)(t1)

∥
∥

=
∥
∥
∥
∥

∫ t2

0
Tα(t2 – s)f1

(

s, xs, ys,
∫ s

0
e1(s, τ , xτ , yτ ) dτ

)

ds

–
∫ t1

0
Tα(t1 – s)f1

(

s, xs, ys,
∫ s

0
e1(s, τ , xτ , yτ ) dτ

)

ds
∥
∥
∥
∥

=
∥
∥
∥
∥

∫ t1

0
Tα(t2 – s)f1

(

s, xs, ys,
∫ s

0
e1(s, τ , xτ , yτ ) dτ

)

ds

+
∫ t2

t1

Tα(t2 – s)f1

(

s, xs, ys,
∫ s

0
e1(s, τ , xτ , yτ ) dτ

)

ds

–
∫ t1

0
Tα(t1 – s)f1

(

s, xs, ys,
∫ s

0
e1(s, τ , xτ , yτ ) dτ

)

ds
∥
∥
∥
∥

=
∥
∥
∥
∥

∫ t1

0

[
Tα(t2 – s) – Tα(t1 – s)

]
f1

(

s, xs, ys,
∫ s

0
e1(s, τ , xτ , yτ ) dτ

)

ds

+
∫ t2

t1

Tα(t2 – s)f1

(

s, xs, ys,
∫ s

0
e1(s, τ , xτ , yτ ) dτ

)

ds
∥
∥
∥
∥

≤
∫ b

0

∣
∣Tα(t2 – s) – Tα(t1 – s)

∣
∣

∥
∥
∥
∥f1

(

s, xs, ys,
∫ s

0
e1(s, τ , xτ , yτ ) dτ

)∥
∥
∥
∥ds

+
∫ t2

t1

∣
∣Tα(t2 – s)

∣
∣

∥
∥
∥
∥f1

(

s, xs, ys,
∫ s

0
e1(s, τ , xτ , yτ ) dτ

)∥
∥
∥
∥ds

≤ [
lb(B11 + B12) + lb2B13(C11 + C12)

]∣
∣Tα(t2 – s) – Tα(t1 – s)

∣
∣

+
[
lbN1(B11 + B12) + lb2N1B13(C11 + C12)

]
(t2 – t1)

→ 0, as t2 → t1. (3.17)

Similar to (3.17), we also get

∥
∥Q2(x, y)(t2) – Q2(x, y)(t1)

∥
∥

≤ [
lb(B21 + B22) + lb2B23(C21 + C22)

]∣
∣Tβ (t2 – s) – Tβ (t1 – s)

∣
∣

+
[
lbN2(B21 + B22) + lb2N2B23(C21 + C22)

]
(t2 – t1)

→ 0, as t2 → t1. (3.18)
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When –∞ < t1 < 0 < t2 ≤ b, noticing that t2 → t1 means that t2 → 0+ and t1 → 0–, we
obtain

∥
∥
(
Q(x, y)(t2) – Q(x, y)(t1)

)∥
∥ → ∥

∥(0, 0)
∥
∥ = 0, as t2 → t1. (3.19)

From (3.16)–(3.19), we know that Q is equicontinuous. Hence, by the Arzela–Ascoli
theorem, we conclude that Q : Ω→Ω is completely continuous, that is, condition (iii)
of Lemma 2.4 also holds. Thus all the conditions of Lemma 2.4 hold. According to
Lemma 2.4, we know that system (1.1) has a pair of solutions (x∗, y∗) ∈ Ω . The proof is
completed. �

4 Illustrative example
Consider the following coupled system of neutral partial integro-differential equations
with fractional derivative of the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cDα
t [u(t, x) – g1(t, ut , vt)]

= ∂2

∂x2 [u(t, x) – g1(t, ut , vt)]

+ f1(t, ut , vt ,
∫ t

0 e1(t, s, us, vs) ds), x ∈ [0,π ], t ∈ [0, 1],
cDβ

t [v(t, x) – g2(t, ut , vt)]

= ∂2

∂x2 [v(t, x) – g2(t, ut , vt)]

+ f2(t, ut , vt ,
∫ t

0 e2(t, s, us, vs) ds), x ∈ [0,π ], t ∈ [0, 1],

u(t, x) = φ1(t, x), v(t, x) = φ2(t, x), t ∈ (–∞, 0], x ∈ [0,π ],

u(t, 0) = u(t,π ) = v(t, 0) = v(t,π ) = 0, t ≥ 0,

(4.1)

where 0 < α, β < 1, ut = u(t + θ , x), vt = v(t + θ , x), θ ≤ 0, φ1(t, x),φ2(t, x) ∈ Bh, cDα
t and cDβ

t

are Caputo fractional derivatives.
Let X = L2[0,π ] with the norm ‖u‖L2 = (

∫ π

0 |u(s)|2 ds) 1
2 . X = X × X with the norm

‖(u, v)‖ = max{‖u‖L2 ,‖v‖L2}.We choose h = e2s, s < 0, then l =
∫ 0

–∞ h(s) ds = 1
2 < ∞ for t ≤ 0

and determine

‖φ‖Bh =
∫ 0

–∞
h(s) sup

θ∈[s,0]

∥
∥φ(θ )

∥
∥

L2 ds.

Define the operator A ,B : D ⊂ X→X by A w = Bw = w′′ with the domain D defined as

D =
{

w ∈ X : w, w′ are absolutely continuous, w′′ ∈ X, w(0) = w(π ) = 0
}

.

Then

A w = Bw =
∞∑

n=1

n2〈w, wn〉wn, w ∈ D,

in which wn(x) =
√

2
π

sin(nx) (n = 1, 2, . . .) is the orthogonal set of eigenvectors of A and
B. It has been long known that A and B are the infinitesimal generators of an analytic
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semigroup {Tα(t)}t≥0 and {Tβ (t)}t≥0 in X and are provided by

Tα(t)w = Tβ (t)w =
∞∑

n=1

e–n2t〈w, wn〉wn, ∀w ∈ X, t > 0.

Since the analytic semigroups {Tα(t)}t≥0 and {Tβ (t)}t≥0 are compact [37], there exist some
constants N1, N2 > 0 such that ‖Tα(t)‖L(X) ≤ N1 and ‖Tβ (t)‖L(X) ≤ N2.

Take gi(t, ut , vt) = sin t(u2
t +v2

t )
100 (i = 1, 2), fi(t, ut , vt , w) = u3

t +cos(vt )+w
100 (i = 1, 2), ei(t, s, us, vs) =

et+s–2(ut+vt )
100 (i = 1, 2). By the simple calculation, we have

∥
∥gi(t, xt , yt) – gi(t, xt , yt)

∥
∥ ≤

√
π

50
‖xt – xt‖Bh +

√
π

50
‖yt – yt‖Bh ,

∥
∥fi(t, xt , yt , w) – fi(t, xt , yt , w)

∥
∥ ≤ 3

√
π

100
‖xt – xt‖Bh +

√
π

100
‖yt – yt‖Bh +

√
π

100
‖w – w‖,

∥
∥ei(t, s, xs, ys) – ei(t, s, xs, ys)

∥
∥ ≤

√
π

100
‖xs – xs‖Bh +

√
π

100
‖ys – ys‖Bh .

From the above discussion, we obtain l = 1
2 , b = 1, a11 = a21 = a12 = a22 =

√
π

50 , b11 = b21 =
3
√

π

100 , b12 = b22 = b13 = b23 = c11 = c21 = c12 = c21 =
√

π

100 . Taking Ni = 1
5 (i = 1, 2), we derive

l
[
ai1 + ai2 + bNi(bi1 + bi2) + b2Nibi3(ci1 + ci2)

] ≈ 0.0426 < 1, i = 1, 2.

Thus, conditions (H1)–(H5) hold. According to Theorem 3.1, we know that system (4.1)
has a pair of unique mild solutions (u∗, v∗) ∈ L2[0,π ] × L2[0,π ]. Similarly, we easily verify
that conditions (H6)–(H8) also hold. It follows from Theorem 3.2 that system (4.1) has at
least a pair of mild solutions (u∗, v∗) ∈ L2[0,π ] × L2[0,π ].

5 Conclusions
The fractional differential equation has a significant role to play in some phenomena and
processes of many fields such as physics, chemistry, aerodynamics, electrodynamics of a
complex medium, polymer rheology, capacitor theory, electrical circuits, biology, control
theory, fitting of experimental data, and so on. Therefore, the subject of fractional differ-
ential equations is gaining much importance and attention. In recent years, some scholars
began researching the neutral fractional differential equation. These types of equations
usually contain the fractional derivatives of time delay and the abstract operators. So it is
difficult and challenging to study them. There are rare papers dealing with a coupled sys-
tem of neutral fractional equations with time delays. Thereby, we study a class of coupled
systems of neutral fractional differential integro-differential equations with infinite delay
in a Banach space in this paper. By applying the Banach contraction principle and Kras-
noselskii’s fixed point theorem, some new existence criteria of mild solutions are obtained.
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